Advanced Monetary Theory and Policy EPOS 2012/13 Using Dynare Giovanni Di Bartolomeo [email protected] The RBC model • The Neo-classical growth model u2 (ct , lt ) zt f 2 (kt , nt ) u1 (ct , lt ) ct kt 1 zt f (kt , nt ) (1 )kt u1 (ct , lt ) E t u1 (ct 1 , lt 1 ) zt f1 (kt , nt ) (1 ) The RBC model • The Neo-classical growth model u2 (ct , lt ) zt f 2 (kt , nt ) u1 (ct , lt ) ct kt 1 zt f (kt , nt ) (1 )kt u1 (ct , lt ) E t u1 (ct 1 , lt 1 ) zt f1 (kt , nt ) (1 ) How to solve it? Dynare • Dynare is preprocessor and a collection of Matlab routines, which solves DSGE models • A suite of programs for the simulation and estimation of rational expectation models, developed by a group of leading applied DSGE researchers headed by Michel Juillard since 1994 • Widely used by central banks, IMF, academics research and in teaching graduate students • The Dynare home page is http://www.dynare.org/, here you can download it • Instructions how to install Dynare can be found in the manual (Chapter 2, Installation and configuration) • Dynare is open source!!!! What you do, what dynare do!!! • You tell Dynare what the variables, shocks and parameters of your model • You write down the model equations • You tell Dynare to find the steady state • Dynare (log)linearizes the model around the steady state ... and solves the recursive equilibrium laws of motion of the linearized model • Finally, the model is analyzed via impulse responses, stochastic simulations and moments Features • • • • • • • • • Computes the steady state of the D(S)GE model Computes the solution of deterministic models Computes the first and second order approximation of linear/non-linear stochastic models Estimates the parameters of DSGE models using MLE or Bayesian methods Computes optimal policy for LQ economies Simple regression tool Useful checking tool No or little programming skills required The general model • The model • Et{f( yt+1, yt, yt−1, vt; θ)} = 0 – y: vector of endogenous (state and jump) variables – v: vector of exogenous shocks – θ: vector of model parameters – f(.): linear or non-linear function • Steady state: y = {y : [f(yt+1, yt, yt-1, vt; θ)] = 0, t →∞} • Solution: yt = g(yt-1,vt; ψ) • Compute statistics of interest: zt = h(vt; ψ, y0, ybar) Labeling and parameter value blocks • Labeling block: indicate (list) which symbols indicate what – (endogenous) variables in "var" – exogenous shocks in "varexo" – parameters in "parameters" • Parameter values block: Assign values to parameters • You may also find it useful to give some parameter transformations. e.g. beta is a parameter, and you define steady state real interest rate: rr = 1/beta −1 Model block • The model block starts with model; ... and ends with end; • Between ’model’ and ’end’ you write down the necessary equations – defining the dynamic equilibrium of the model firstorder conditions – constraints • Remember: you need as many equations as there are variables Notation: Time conventions • Time indices are given in parenthesis Xt+1 is written X(+1), Xt−1 is written X(−1) Xt is written X (no time index needed) • Note In Dynare, the time index refers to the period when the value of the variable is determined Example • The value of the capital stock, which is used in production in period t, is determined in period t − 1 • In period t − 1, the agents decide how much to consume and invest, and they simultaneously determine the size of the capital stock that will be available in period t. • In a theory model we often write the period t production function Yt= ZtKtαLt1−α • In Dynare we need to write Y = Z*K(−1)^(alpha)*L^(1−alpha) • Note that we now use L for labor (do not make confusion with leisure) The RBC model (dynare notation) • The model is non-linear. Difficult to solve!!!! Ct 1 Z t Kt1 Lt Ct Kt Z t Kt1 L1t (1 ) Kt 1 Ct 1 Zt 1 Kt 1 Et Et (1 ) 1 Ct Lt 1 State-space form • Generalised state-space form (matrix notation) A0 Et X t 1 A1 X t B0vt 1 • Many techniques available to solve this class of models Dynare uses standard: Blanchard-Kahn • We will discuss this issue later on (other classes) • Linearization • In the long-run the model in on the steady state.We want to evaluate what occurs after a shock – If the economy goes back to the steady state (stability) – and how (path followed by the variables after the shock in backing to the steady state • Linearize the model, consider a linear approximation (Taylor expansion) of the non-linear model around the steady state and compute the effects of small perturbations around steady state • Our results are good is we are in the neighborhood of the steady state (small perturbations) • After we will go back on this issue Linearization and log-linearization • Dynare linearizes the model around the steady state • It does not log-linearize the model • Advantages of log-linearization: We are dealing with percentage deviations from the steady state (or the balanced growth path) • Note: log(Y)log(Yss) = % deviation from the steady state • Log-deviations (or percentage deviations) are easy to interpret (is a deviation ’small’ or ’large’?) • Similar measures are used in empirical examination of the data (e.g. applying HP filter to log(GDP)) Log-linearization: A useful trick • A useful trick: Write down the model in terms of logarithmic transformations of the original variables • Adopt the notation ly = log(Y), lc = log(C), lk = log(K) etc. • Then use Y = exp(ly), C = exp(lc), K=exp(lk) etc. • When Dynare linearizes the model in terms of the logarithmic transformations, it log-linearizes the model in terms of the original variables Log-linearization in practice • Adopt the notation ly = log(Y), lc = log(C), lk = log(K) etc. • Note: For employment we use the notation lh = log(L) • where h refers to hours worked • Then the resource constraint Yt = Ct + Kt+1 − (1− δ)Kt • can be written as exp(ly) = exp(lc) + exp(lk) − (1− delta) ∗ exp(lk(−1)) • Remember the Dynare conventions pertaining to time indexation Conditional expectations • The expectation operator Et is not used in Dynare code. – Dynare ’knows’ when one has to take expectations, we do not have to tell this explicitly. • E.g., the consumption Euler equation Ct 1 Yt 1 Et Et (1 ) Ct Kt 1 • is written as (1/beta)∗ exp(lc(+1) − lc) = alfa ∗ (exp(y(+1) − lk) + 1− δ Dynare program blocks • Initialization block: Dynare has to solve for the steady state. This can be the most diffcult part (since it is a true non-linear problem). So good initial conditions are important • Random shock block: Indicate the standard deviation for the exogenous innovation Initialization block • It is often useful to give Dynare an initial guess of the steady state values, after the command initval; • Dynare finds the steady state with the command steady; Random shock block shock; var e; we shock only one ’variable’ (the TFP shock e) stderr 0.007; the standard error of the TFP shock is 0.007 – If there are several shocks, say e_z and e_c, you have to be more careful: stderr e_z 0.007; stderr e_c 0.002; – More generally, if there are several shocks, you may want to give the variance-covariance matrix of the shocks; end; Stochastic simulation (IRF) stoch_simul(order=1,irf=100) ly lh lc li lk z; – order=1 means that Dynare takes a first order Taylor approximation around the steady state (order=2 => second order approximation, order=3 …) – irf=100 means that you want Dynare to compute the impulse responses for 100 periods • Dynare computes the moments of the endogenous variables mean, standard deviation, variance, skewness, kurtosis (contemporaneous) cov-matrix autocorrelations • The list of variables, we want to Dynare to analyze is ly lh lc li lk z • Notice that z ≡ log(Zt)−log(Z) = log (Zt), since Z=1 and log(Z)=0 (a useful normalization). Stochastic simulation (IRF) • Alternatively we can write: stoch_simul(order=1,periods=1000,irf=100); • Now Dynare simulates the model for 1000 periods, and computes the moments based on the simulated data The structure of the code in a nutshell • • • • • • • • • • • • • var (list of endogenous variables ); varexo (list of shocks) ; parameters (parameters + parameter values + transformations); model; model equations; end; initval; (initial guesses for computing the steady state) steady; (compute the steady state) shocks; (the shock structure of the model ) var (what variables are shocked); stderr (the standard error of the shocks); end; stoch_simul(order=1,irf=100) ly lh lc li lk z; (analyzing the model) The RBC DSGE model (dynare notation) • Our RBC model (social planner) Ct 1 Z t K t1Lt Ct K t Z t K t1L1t (1 ) K t 1 1 Ct 1 Z t 1 K t Et Et Ct Lt 1 (1 ) Now recall that • Competitive markets imply Wt MPL rt 1 MPK (1 ) • From the production function definition MPL 1 Zt K L t 1 t MPK Zt 1 Kt / Lt 1 1 Yt / Lt 1 Yt 1 / Kt Full micro-founded RBC model 1/ Ct E t rt 1 / Ct 1 [Euler equation, SD ] Ct Wt [Labor supply] K t I t (1 ) K t 1 [Capital accumulation] Yt Z t K t1 Lt [Production function] Yt I t Ct [Market equilibrium] Wt 1 Yt / Lt [Market equilibrium] rt 1 E t Yt 1 / K t (1 ) [Real net interest rate, SS ] log Z t 1 log( Z ) log Z t 1 t , t iid [TFP] Full micro-founded RBC model 1/ Ct E t rt 1 / Ct 1 [Euler equation, SD ] Ct Wt [Labor supply] K I (1 ) K [Capital accumulation] t t t 1 Check that the social planner model and Ythe Z K [Producti function] t t t 1 Lt micro-foundend one areonthe same Yt I t Ct First Wt 1 Yt / Lt [Market equilibrium] welfare theorem!!! [Market equilibrium] rt 1 E t Yt 1 / K t (1 ) [Real net interest rate, SS ] log Z t 1 log( Z ) log Z t 1 t , t iid [TFP] RBC DSGE model (after some algebra) Ct 1 Yt 1 Et (1 ) Et Ct Kt Ct 1 Z t K t 1 Lt 1 t 1 t Ct K t Z t K L (1 ) K t 1 Yt Z t K t1 Lt I t Yt Ct Wt 1 Yt / Lt log Z t 1 log( Z ) log Z t 1 t , t iid 1. Definitions // following are the ’endogenous’ variables: var ly, lh, lc, li, lw, lk, z ; // following are the shocks varexo e; parameters beta, fi, alpha, delta, psi; alpha = 0.33; fi = 0.74; beta = 0.99; delta = 0.024; psi =0.262; Steady state (solved) 1/ K ss / Lss 1 (1 ) Css 1 K ss Lss 1 Css K ss Lss K ss Yss K ss Lss I ss Yss Css Wss 1 Yss / Lss log Z ss 0, Z 1 ss 0 Steady state (solved) // Steady state expressed in terms of parameters rr = 1/beta-1; zss = 1; css = (1alpha)*(zss/psi)*(alpha*zss/(rr+delta))^(alpha/(1alpha)); kss = css/((rr+delta)/alpha-delta); hss = (1/psi)*(1-alpha*rr/(rr+(1-alpha)*delta)); yss = zss*kss^(alpha)*hss^(1-alpha); iss = delta*kss; wss = (1-alpha)*yss/hss; 2. The model Ct 1 Yt 1 Et (1 ) Et Ct Kt Ct 1 Yt / Lt Ct K t Z t K t1 L1t (1 ) K t 1 Yt Z t K t1 Lt I t Yt Ct Wt 1 Yt / Lt log Z t 1 log( Z ) log Z t 1 t , t iid (a) Euler equation (1/beta)*exp(lc(+1)-lc)= alpha*exp(ly(+1)-lk) + 1 - delta; Ct 1 Yt 1 Et (1 ) Et Ct Kt rt 1 Inter-temporal marginal rate of substitution between consumption today and tomorrow is equal to the real interest rate (marginal product of capital) [dynamic] (b) Labor market equilibrium psi*exp(lc)= (1-alpha)*exp(ly-lh); Yt Ct 1 Lt The marginal rate of substitution between consumption and leisure should be equated to the wage rate (marginal product of labor) [static] (c) Capital accumulation exp(ly) = exp(lc) + exp(lk) - (1-delta)*exp(lk(-1)); 1 t 1 t Zt K L Ct Kt (1 ) Kt 1 Yt Note that Yt Ct Kt (1 ) Kt 1 Yt Ct Kt (1 ) K t 1 I t Kt (1 ) Kt 1 Kt I t (1 ) K t 1 (d) Production function exp(ly) = exp(z+alpha*lk(-1)+(1-alpha)*lh); Yt Zt Kt1Lt Cobb-Douglas production function (e) Investment exp(li)=exp(ly)-exp(lc); It Yt Ct Maybe, more familiar identity: Y = C + I (f) Real wage exp(lw)=(1-alpha)*exp(ly-lh); Wt 1 Yt / Lt Real wage is equal to the marginal product of labor Recall that Kt 1 Yt MPL 1 Zt 1 Lt Lt (g) Law of motion of TFP z = fi*z(-1) + e; log Zt 1 log( Z ) log Zt 1 t , t iid • Note for later use: we assume that the steady state value of the total factor productivity is one, its log is zero Model: Summary model; (1/beta)*exp(lc(+1)-lc)= alpha*exp(ly(+1)-lk) + 1 delta; //Euler equation psi*exp(lc)= (1-alpha)*exp(ly-lh); //Labour market equilibrium exp(ly) = exp(lc) + exp(lk) - (1-delta)*exp(lk(-1)); //Resource constraint exp(ly) = exp(z+alpha*lk(-1)+(1-alpha)*lh); //Production function exp(li)=exp(ly)-exp(lc); // Investment exp(lw)=(1-alpha)*exp(ly-lh); //Real wage z = fi*z(-1) + e; //Law of motion of TFP end; 4. Initial values //Initial guesses for the computation of steady state initval; lc=log(css); lh=log(hss); lk=log(kss); ly=log(yss); li=log(iss); lw=log(wss); z=zss; end; steady; 5. Stochastic block and simulation shocks; var e; stderr 0.007; end; stoch_simul(order=1,irf=100) ly lh lc li lk z; To get the results • Save the file as [Name of the file].mod • For example rbc.mod • You run the model by writing to the Matlab command window dynare rbc.mod Dynare output • The output is shown on the screen, and in separate figures (impulse responses). • Output includes – – – – – – Policy and transition functions Moments of the endogenous variables mean, variance, standard deviation, skewness, kurtosis matrix of contemporaneous correlations coefficients of autocorrelation Impulse responses • If you have included the periods option in stoch_simul the output also includes the results (time paths of endogenous variables) from the stochastic simulation. Output storing • The output is shown on the screen, and in separate figures (impulse responses). • Output is also stored in a separate structure, called oo_. The structure oo_ contains (for example) – The steady state (oo_.steady_state ) – The variance-covariance matrix (oo_.var) – The autocorrelations (oo_.autocorr) – The impulse responses (oo_.irfs) – The coefficients of the policy and transition functions (oo_.dr) – Results (time paths of endogenous variables) from stochastic simulations (oo_.endo_simul) Dynare output Type dynare rbc.mod Starting Dynare (version 4.3.0). Starting preprocessing of the model file ... Found 7 equation(s). Evaluating expressions...done Computing static model derivatives: - order 1 Computing dynamic model derivatives: - order 1 Processing outputs ...done Preprocessing completed. Starting MATLAB/Octave computing. Steady state STEADY-STATE RESULTS: ly lh lc li lw lk z 0.02 -1.10 -0.24 -1.44 0.72 2.23 0.00 • The term constant is the steady state (of log transformation) • E.g. lh = -1.1 and thus L = exp(-1.1) = 0.33 Summary MODEL SUMMARY Number of variables: Number of stochastic shocks: Number of state variables: Number of jumpers: Number of static variables: 7 1 2 2 3 Shock co-variance MATRIX OF COVARIANCE OF EXOGENOUS SHOCKS Variables e e 0.000049 Policy and transition functions POLICY AND TRANSITION FUNCTIONS ly lh lc li Const 0.018 -1.099 -0.245 -1.441 lk(-1) -0.007 -0.503 0.496 -1.672 z(-1) 1.868 1.683 0.184 7.433 e 2.524 2.275 0.249 10.045 lk 2.288 0.935 0.178 0.241 z 0.000 0.000 0.740 1.000 • Transition functions: how the period t values of the state variables (lk and z) depend on t-1 values of the state variables, and the shock • Policy functions: how the period t values of the other variables depend on t-1 values of the state variables, and the shock – Rows: period t values of the variables – Columns: period t-1 values of the state variables + the shock (e) • The term constant is the steady state (of log transformation) Moments THEORETICAL MOMENTS VARIABLE ly lh lc li lk MEAN 0.0186 -1.0994 -0.2457 -1.4414 2.2884 STD. DEV. 0.0262 0.0221 0.0095 0.0980 0.0167 VARIANCE 0.0007 0.0005 0.0001 0.0096 0.0003 z 0.0000 0.0104 0.0001 Correlations MATRIX OF CORRELATIONS Variables ly lh lc li lk z ly 1.0000 0.9363 0.5824 0.9652 0.4846 1.0000 lh 0.9363 1.0000 0.2597 0.9956 0.1465 0.9347 lc 0.5824 0.2597 1.0000 0.3494 0.9933 0.5860 li 0.9652 0.9956 0.3494 1.0000 0.2388 0.9640 lk 0.4846 0.1465 0.9933 0.2388 1.0000 0.4885 z 1.0000 0.9347 0.5860 0.9640 0.4885 1.0000 Autocorrelation COEFFICIENTS OF AUTOCORRELATION Order ly lh lc li lk z 1 0.7389 0.6860 0.9811 0.6931 0.9901 0.7400 2 0.5458 0.4571 0.9517 0.4690 0.9668 0.5476 3 0.4030 0.2910 0.9155 0.3060 0.9345 0.4052 4 0.2974 0.1711 0.8751 0.1880 0.8966 0.2999 5 0.2192 0.0852 0.8326 0.1031 0.8553 0.2219 Impulse response functions (IRF) How to write the solution in a VAR form POLICY AND TRANSITION FUNCTIONS Dynare output Log(y) Log(h) Log(c) Log(i) Log(k) z Constant 0,019 -1,099 -0,246 -1,441 2,288 0,000 Log(k(-1)) -0,008 -0,504 0,496 -1,673 0,936 0,000 z(-1) 1,868 1,684 0,184 7,434 0,178 0,740 e 2,524 2,275 0,249 10,046 0,241 1,000 0,333 0,782 0,237 9,859 1,000 Levels Exp(Constant) Steady state 1,019 We rewrite the table in equations Trasfor m Dynare output ly lh lc li lk z ly = 0,019 + -0,008 lk(-1)- 2,288 + 1,868 z(-1) + 2,524 e Constant 0,019 -1,099 -0,246 -1,441 2,288 0,000 lh= -1,099 + -0,504 lk(-1)- 2,288 + 1,684 z(-1) + 2,275 e lk(-1) -0,008 -0,504 0,496 -1,673 0,936 0,000 lc= -0,246 + 0,496 lk(-1)- 2,288 + 0,184 z(-1) + 0,249 e z(-1) 1,868 1,684 0,184 7,434 0,178 0,740 li= -1,441 + -1,673 lk(-1)- 2,288 + 7,434 z(-1) + 10,046 e e 2,524 2,275 0,249 10,046 0,241 1,000 lK= 2,288 + 0,936 lk(-1)- 2,288 + 0,178 z(-1) + 0,241 e z= 0,000 + 0,000 lk(-1)- 2,288 + 0,740 z(-1) + 1,000 e We rewrite the table in equations Trasfor m Dynare output ly lh lc li lk z ly = 0,019 + -0,008 lk(-1)- 2,288 + 1,868 z(-1) + 2,524 e Constant 0,019 -1,099 -0,246 -1,441 2,288 0,000 lh= -1,099 + -0,504 lk(-1)- 2,288 + 1,684 z(-1) + 2,275 e lk(-1) -0,008 -0,504 0,496 -1,673 0,936 0,000 lc= -0,246 + 0,496 lk(-1)- 2,288 + 0,184 z(-1) + 0,249 e z(-1) 1,868 1,684 0,184 7,434 0,178 0,740 li= -1,441 + -1,673 lk(-1)- 2,288 + 7,434 z(-1) + 10,046 e e 2,524 2,275 0,249 10,046 0,241 1,000 lK= 2,288 + 0,936 lk(-1)- 2,288 + 0,178 z(-1) + 0,241 e z= 0,000 + 0,000 lk(-1)- 2,288 + 0,740 z(-1) + 1,000 e We rewrite the table in equations Trasfor m Dynare output ly lh lc li lk z ly = 0,019 + -0,008 lk(-1)- 2,288 + 1,868 z(-1) + 2,524 e Constant 0,019 -1,099 -0,246 -1,441 2,288 0,000 lh= -1,099 + -0,504 lk(-1)- 2,288 + 1,684 z(-1) + 2,275 e lk(-1) -0,008 -0,504 0,496 -1,673 0,936 0,000 lc= -0,246 + 0,496 lk(-1)- 2,288 + 0,184 z(-1) + 0,249 e z(-1) 1,868 1,684 0,184 7,434 0,178 0,740 li= -1,441 + -1,673 lk(-1)- 2,288 + 7,434 z(-1) + 10,046 e e 2,524 2,275 0,249 10,046 0,241 1,000 lK= 2,288 + 0,936 lk(-1)- 2,288 + 0,178 z(-1) + 0,241 e z= 0,000 + 0,000 lk(-1)- 2,288 + 0,740 z(-1) + 1,000 e We rewrite the table in equations Trasfor m Dynare output ly lh lc li lk z ly = 0,019 + -0,008 lk(-1)- 2,288 + 1,868 z(-1) + 2,524 e Constant 0,019 -1,099 -0,246 -1,441 2,288 0,000 lh= -1,099 + -0,504 lk(-1)- 2,288 + 1,684 z(-1) + 2,275 e lk(-1) -0,008 -0,504 0,496 -1,673 0,936 0,000 lc= -0,246 + 0,496 lk(-1)- 2,288 + 0,184 z(-1) + 0,249 e z(-1) 1,868 1,684 0,184 7,434 0,178 0,740 li= -1,441 + -1,673 lk(-1)- 2,288 + 7,434 z(-1) + 10,046 e e 2,524 2,275 0,249 10,046 0,241 1,000 lK= 2,288 + 0,936 lk(-1)- 2,288 + 0,178 z(-1) + 0,241 e z= 0,000 + 0,000 lk(-1)- 2,288 + 0,740 z(-1) + 1,000 e Now we manipulate our equations Given ly = 0,019 + -0,008 lk(-1)- 2,288 + 1,868 z(-1) + 2,524 e lh= -1,099 + -0,504 lk(-1)- 2,288 + 1,684 z(-1) + 2,275 e lc= -0,246 + 0,496 lk(-1)- 2,288 + 0,184 z(-1) + 0,249 e li= -1,441 + -1,673 lk(-1)- 2,288 + 7,434 z(-1) + 10,046 e lK= 2,288 + 0,936 lk(-1)- 2,288 + 0,178 z(-1) + 0,241 e + 0,000 lk(-1)- 2,288 + 0,740 z(-1) + 1,000 e z We move the steady state on the left ly - 0,019 = -0,008 lk(-1)- 2,288 + 1,868 z(-1) + 2,524 e lh - -1,099 = -0,504 lk(-1)- 2,288 + 1,684 z(-1) + 2,275 e lc - -0,246 = 0,496 lk(-1)- 2,288 + 0,184 z(-1) + 0,249 e li - -1,441 = -1,673 lk(-1)- 2,288 + 7,434 z(-1) + 10,046 e lk - 2,288 = 0,936 lk(-1)- 2,288 + 0,178 z(-1) + 0,241 e = 0,000 lk(-1)- 2,288 + 0,740 z(-1) + 1,000 e z Obtaining the log deviations y= -0,008 k(-1) + 1,868 z(-1) + 2,524 E h= -0,504 k(-1) + 1,684 z(-1) + 2,275 E c= 0,496 k(-1) + 0,184 z(-1) + 0,249 E i= -1,673 k(-1) + 7,434 z(-1) + 10,046 E k= 0,936 k(-1) + 0,178 z(-1) + 0,241 E z= 0,000 k(-1) + 0,740 z(-1) + 1,000 e Looking at the shock Form log deviations (y=log(y)-log(yss) …) y = -0,008 k(-1) h = -0,504 k(-1) c= 0,496 k(-1) i = -1,673 k(-1) k= 0,936 k(-1) z= 0,000 k(-1) + + + + + + 1,868 1,684 0,184 7,434 0,178 0,740 Note z = Multiply 2,524 2,275 0,249 10,046 0,241 *z *z *z *z *z = = = = = phi 0,740 z(-1) + e 1,868 1,684 0,184 7,434 0,178 z(-1) z(-1) z(-1) z(-1) z(-1) 2,52 2,27 0,24 10,0 0,24 + + + + + e e e e e z(-1) z(-1) z(-1) z(-1) z(-1) z(-1) + 2,524 e + 2,275 e + 0,249 e + 10,046 e + 0,241 e + 1,000 e Looking at the shock Form log deviations y= h= c= i= k= z= -0,008 -0,504 0,496 -1,673 0,936 0,000 k(-1) k(-1) k(-1) k(-1) k(-1) k(-1) + + + + + + 1,868 1,684 0,184 7,434 0,178 0,740 z(-1) z(-1) z(-1) z(-1) z(-1) z(-1) 2,524 2,275 0,249 10,046 0,241 e z z z z z Note that z = phi 0,740 z(-1) + e 2,524 *z = 1,868 z(-1) 2,524 + e 2,275 *z = 1,684 z(-1) 2,275 + e 0,249 *z = 0,184 z(-1) 0,249 + e 10,046 *z = 7,434 z(-1) 10,05 + e 0,241 *z = 0,178 z(-1) 0,241 + e k(-1) k(-1) k(-1) k(-1) k(-1) z(-1) + + + + + + Multiply by Hence we can write y= h= c= i= k= z= -0,008 -0,504 0,496 -1,673 0,936 0,740 + + + + + + 2,524 2,275 0,249 10,046 0,241 1,000 e e e e e e Compact form X t AX t 1 BZt Zt Zt 1 St y = -0,008 k(-1) h = -0,504 k(-1) c = 0,496 k(-1) i = -1,673 k(-1) k = 0,936 k(-1) z = 0,740 z(-1) + + + + + + 2,524 z 2,275 z 0,249 z 10,046 z 0,241 z e
© Copyright 2026 Paperzz