R q

Solution to Laplace equation in 1D
𝑑2 𝑉
= 0, β‡’ 𝑉 = π‘šπ‘₯ + 𝑏
2
𝑑π‘₯
V
Mean value theorem in 1D
1
𝑉 π‘₯ = [𝑉 π‘₯ + π‘Ž + 𝑉 π‘₯ βˆ’ π‘Ž ]
2
V(x-a)
V(x)
V(x+a)
x-a
x
x+a
x
Mean value theorem in 2D
𝑉 π‘Ÿπ‘ƒ
V
y
π‘Ÿπ‘ƒ
R
x
1
=
2πœ‹π‘…
𝑉 π‘Ÿ 𝑑𝑙
π‘π‘–π‘Ÿπ‘π‘™π‘’
q
r
z

Equipotentials
R
y
x
q
Mean value theorem in 3D
z
1
𝑉 π‘Ÿ =
4πœ‹π‘…2
r

π‘‘π‘Ž
R
y
x
π‘‰π‘‘π‘Ž
π‘ π‘β„Žπ‘’π‘Ÿπ‘’
q1
q2
π‘‰π‘Žπ‘£π‘’
1
=
4πœ‹π‘…2
𝑉1 + 𝑉2 + 𝑉3 π‘‘π‘Ž
π‘ π‘β„Žπ‘’π‘Ÿπ‘’
r
z

1
=
4πœ‹π‘…2
1
+
4πœ‹π‘…2
π‘‘π‘Ž
R
y
1
+
4πœ‹π‘…2
𝑉1 π‘‘π‘Ž
π‘ π‘β„Žπ‘’π‘Ÿπ‘’
𝑉2 π‘‘π‘Ž
π‘ π‘β„Žπ‘’π‘Ÿπ‘’
𝑉3 π‘‘π‘Ž
π‘ π‘β„Žπ‘’π‘Ÿπ‘’
q3
= 𝑉1 π‘Ÿ + 𝑉2 π‘Ÿ + 𝑉3 π‘Ÿ
x
=𝑉 π‘Ÿ
Mean value theorem
𝛻2𝑉 = 0
1
𝑉 π‘Ÿ =
4πœ‹π‘…2
π‘‰π‘‘π‘Ž
π‘ π‘β„Žπ‘’π‘Ÿπ‘’
No absolute maximum or
minimum allowed in the
region that 𝛻 2 𝑉 = 0
There can
never be a
maximum or
minimum in
potential if
𝛻2𝑉 = 0
Let there be two possible potentials which are solutions to Laplace’s equation
𝜈
V1
Same boundary
conditions
𝜈
V2
V3 = V1 - V2
Let there be two possible solutions:
𝜈
Charge density 𝜌
Q2
Q1
Q3
𝜌
𝛻 βˆ™ 𝐸1 =
πœ–0
𝜌
𝛻 βˆ™ 𝐸2 =
πœ–0
E = 0 inside the metallic regions
Q3
Q2
π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ 1
𝑄1
𝐸1 βˆ™ π‘‘π‘Ž =
πœ–0
𝐸1 βˆ™ π‘‘π‘Ž =
𝑄2
πœ–0
𝐸1 βˆ™ π‘‘π‘Ž =
𝑄3
πœ–0
π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ 2
Q1
π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ 3
π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ 𝑖
𝑄𝑖
𝐸1 βˆ™ π‘‘π‘Ž =
πœ–0
𝐸1 βˆ™ π‘‘π‘Ž =
π‘œπ‘’π‘‘π‘’π‘Ÿ
π‘π‘œπ‘’π‘›π‘‘π‘Žπ‘Ÿπ‘¦
π‘„π‘‘π‘œπ‘‘
πœ–0
E = 0 inside the metallic regions
𝐸2 βˆ™ 𝑑 π‘Ž =
Q3
Q2
π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ 1
π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ 2
Q1
π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ 3
𝑄2
𝐸2 βˆ™ 𝑑 π‘Ž =
πœ–0
𝑄3
𝐸2 βˆ™ 𝑑 π‘Ž =
πœ–0
𝐸2 βˆ™ 𝑑 π‘Ž =
π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ 𝑖
𝑄𝑖
πœ–0
𝐸2 βˆ™ 𝑑 π‘Ž =
π‘œπ‘’π‘‘π‘’π‘Ÿ
π‘π‘œπ‘’π‘›π‘‘π‘Žπ‘Ÿπ‘¦
𝑄1
πœ–0
π‘„π‘‘π‘œπ‘‘
πœ–0
Let
𝐸3 ≑ 𝐸1 βˆ’ 𝐸2
𝛻 βˆ™ 𝐸3 = 𝛻 βˆ™ 𝐸1 βˆ’ 𝐸2 = 0
Q3
𝐸3 βˆ™ π‘‘π‘Ž = 0
π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ 1
Q2
Q1
𝐸3 βˆ™ π‘‘π‘Ž = 0
π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ 2
𝐸3 βˆ™ π‘‘π‘Ž = 0
π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ 3
𝐸3 βˆ™ 𝑑 π‘Ž = 0
π‘ π‘’π‘Ÿπ‘“π‘Žπ‘π‘’ 𝑖
𝐸3 βˆ™ π‘‘π‘Ž = 0
π‘œπ‘’π‘‘π‘’π‘Ÿ
π‘π‘œπ‘’π‘›π‘‘π‘Žπ‘Ÿπ‘¦
The corresponding potentials 𝑉1 , 𝑉2 , 𝑉3
are constants at the surfaces of the conductors.
Q3
𝛻 βˆ™ 𝑉3 𝐸3 = 𝑉3 𝛻 βˆ™ 𝐸3 + 𝐸3 βˆ™ 𝛻𝑉3
= 0 βˆ’ 𝐸32
Q2
Q1