Optimization: Maximums & Minimums The Graphical Representations Optimization: Procedures • Find “Extreme Value” of Function (Min or Max) • To Do So: – Set Up Objective Function – Take Derivative, Set = 0 k i i S 0 (so slope =0) – Solve Derivative Equation Profit Example: TP = TR – TC (Total Profit Equation) Given: P = 10 ‐ .05Q (demand curve) TC = 120 + 2Q +.05Q2 (cost curve) Then You Can Determine Total Revenue & Profit Then You Can Determine Total Revenue & Profit TR = [10‐.05Q ]*Q= 10Q ‐.05Q2 (since TR = P*Q) TP = [10Q ‐ .05Q2] ‐ [120 + 2Q +.05Q2] TP = 8Q ‐ .1Q2 ‐ 120 1 TR = [10Q ‐ .05Q2] (shape?) Total Revenue 500 400 300 200 100 0 0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870 TC = 120 +2Q +.05Q2 (shape?) Total Cost 600 500 400 300 200 100 0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870 TR & TC Total Rev & Total Cost 600 500 400 300 200 100 0 0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870 2 Profitability: Losses Total Rev & Total Cost 600 500 400 300 200 100 Losses 0 0 2 4 6 810121416182022242628303234363840424446485052545658606264666870 Profitability: Breakeven Total Rev & Total Cost 600 500 400 300 200 Breakeven 100 0 0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870 Profitability: Positive Profits Total Rev & Total Cost 600 500 400 Profit 300 200 100 0 0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870 3 The Profit Function (shape?) TP = 8Q ‐ .1Q2 ‐ 120 Total Profit 50 0 -50 -100 -150 0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870 Profit Function: Losses TP = 8Q ‐ .1Q2 ‐ 120 Total Profit 50 0 -50 -100 Losses -150 0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870 Profit Function: Breakeven TP = 8Q ‐ .1Q2 ‐ 120 Total Profit 50 0 -50 Breakeven -100 -150 0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870 4 Profit Function: Positive Profits TP = 8Q ‐ .1Q2 ‐ 120 Total Profit 50 Profits 0 -50 -100 -150 0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870 Profit Function: Max Profits TP = 8Q ‐ .1Q2 ‐ 120 Total Profit 50 50 0 ‐50 Profit MAX ! ‐100 ‐150 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 NOTE: Alternative Approach TR = 10Q ‐ .05Q2 TC = 120 +2Q+.05Q2 dTR = 10 ‐ .1Q = MR dTC = 2 + .1Q = MC dQ dQ Q Q MR 10 ‐ .1Q = MC = 2 + .1Q Q = 40 5 AR = 10 – .05Q TR = 10Q ‐ .05Q2 MR = 10 ‐ .1Q Ave & Marginal Revenue 10 9 8 7 6 5 4 3 0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870 Ave Rev Marg Rev TC = 120 +2Q+.05Q2 MC = 2 + .1Q Ave & Marginal Revenue 10 8 6 AR = 10 – .05Q 4 MR = 10 ‐ .1Q 2 0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870 Ave Rev Marg Rev Marg Cost MR = MC Profit Max! Ave & Marginal Revenue 10 MC = 2 + .1Q 8 6 AR = 10 – .05Q 4 2 Max ! MR = 10 ‐ .1Q 0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870 Ave Rev Marg Rev Marg Cost 6 Wrap Up: • Many Optimization Applications in Business • Basic Mechanics Straightforward • 2 Math Approaches: Set Up Objective Function Take Derivative Set = 0 Take Derivative, Set = 0 Solve Derivative Equation Check Sign of 2nd Derivative Determine Marginal Revenue Determine Marginal Cost Set MR =MC • 2 Graphical Approaches: Total Rev & Total Cost 600 Ave & Marginal Revenue 500 10 400 300 8 200 100 6 0 0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870 Total Profit 4 50 0 2 Max ! 0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870 -50 Ave Rev Marg Rev Marg Cost -100 -150 0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870 7
© Copyright 2026 Paperzz