Semester Exam Review Too 1. 2. 3. Determine if the curve is a function: a. Determine if the curve has an inverse : a. f(x) = x2 + 2x Name: _______________________________ b. f(x) = -x3 +x2-2 b. Graph the function, indicating all extrema (intercepts, asymptotes, local min/max). a. f(x) = -x3 + 5x + 2 b. f(x) = π+π ππ βπβπ 4. Find the domain of f(x) = βππ + 1 5. Find the inverse of f(x) = x2+ 4 6. Determine the number of solutions (and tell what they are) for: βππ + π = x3 β 1 7. Convert to exponential form : a. 8. ππ βπ Convert to root/fractional form : a. 15-1/4 b. ππ ππππ b. -3x-5 π 9. Find g(f(x)) for f(x) = x2 and g(x) = ππβπ 10. Approximate the value of: π ππππ π (to the hundredths place). 11. Rewrite as a single log: ln 9 β 3 ln 3. 12. Solve the equation for x : a. 6 ln 2x = 12 b. πππ ππ = ππ 13. Determine if the lines are parallel, perpendicular, or neither. F(x) = -2(x + 3) β 4 and g(x) = -2x + 5 14. Find all zeros of: f(x) = 2x3 β x2 + 9 15. Identify functions f(x) and g(x) such that (f o g)(x) equals the given function: βπππ ππ + π 16. Estimate the length of the curve using n = 4 intervals for y = (x β 2)2 in the interval [0, 8]. 17. Identify the limits from the graph of f(x). a. π₯π’π¦β π(π) πβπ b. π₯π’π¦ π(π) πβπ c. 18. π₯π’π¦ π(π) πβββ Sketch a graph of f(x) and then find the π₯π’π¦ π(π). πβπ f(x) = 19. -2 if x β€ -1 3 if -1 < x β€ 1 x+2 if x > 1 ππ + ππβπ πββπ ππ+π The value of the π₯π’π¦ is? 20. Is the function in problem #19 discontinuous anywhere? If so, where? If not, explain. 21. Identify any asymptotes (vertical or horizontal) for f(x). Tell what intervals f(x) is π+ ππ continuous. f(x) = ππ+ ππ 22. The function g(x) = π± π βππ±+π is π±+π discontinuous at x = 3. Is this discontinuity non-removable or removable? Explain. 23. Find the π₯π’π¦ 24. Evaluate: (πβπ)(π+π)β(πβπ) πβπ (π+π) by showing the algebraic work. πβππ π₯π’π¦ ππββππ. πβπ 25. On what interval is the function f(x) = β(π± + π) + 8 continuous? 26. Evaluate the π₯π’π¦ πππ + ππβπ πββ ππ + πππ βπ . 27. For the position function, f(t) =ππ + π, find the instantaneous velocity at a = 1 knowing the instantaneous velocity function is π₯π’π¦ πβπ 28. π(π+π‘)βπ(π) . π Sketch a tangent line at the given point for the graph. a. x = 0 b. x = -4 c. x = 5 29. List the points in order of increasing slope of the tangent line. B A 30. Use the limit definition: π₯π’π¦ πβπ π(π+π‘)βπ(π) π C , to find the indicated derivative. πβ²(5) πππ π(π₯) = π₯ 2 β 4π₯ D 31. Use the position function f(t) -8t2 + 2t + 4 to find the instantaneous velocity and acceleration at time a = 5. 32. Given the position function s(t ) ο½ ο16t 2 ο« 100t , give the velocity at t = 8 seconds and tell whether or not the object is rising or falling at this time. 33. Use the graph given below to sketch the corresponding graph of its derivative. 34. Find a value c satisfying the Mean Value Theorem for f(x) = x4 + 4x + 1 on the interval [0, 2]. 35. Compute the derivative of: a. f(x) = 5x3 + 2 b. f(x) = β4π₯ + 2 c. f(x) = (x3 + 1)(x2-4x + 2) 5π₯β3 d. f(x) = 4π₯+1 e. f. g. f ( x) ο½ sin 4 x 2 f(x) = 5 tan x βcsc 4x f ( x) ο½ ( x 2 ο 6)7 h. f(x) = (x2-1) π₯ 2 +3π₯ π₯ +2 i. h(x) = ln (x3 + 1) 36. Find the derivative of the function; be careful, it is NOT the first derivative you are finding. 37. 38. a. fββ(x) for f(x) = xe3x b. fββ(t) for f(t) = πππ β π + ππ c. f(4)(x) for f(x) = x6 + 3x5 β 20 π Find an equation of the tangent line to y = f(x) at x = a. a. f(x) = x3 β 2 a=0 b. f(x) = x cos x a = Ο/2 Find a function for the given derivative. a. fβ(x) = 5x + 6 b. fβ(x) = βπ c. fβ(x) = 5x4 d. fβ(x) = 8x7 + 10x9 - 6
© Copyright 2026 Paperzz