DETERMINANT definition and origin Associated with every square matrix A there is a number called the determinant of A. The definition of the determinant of a 22 matrix follows: det ( a c b d ) = ad - bc Associated with every square matrix A there is a number called the determinant of A. The definition of the determinant of a 22 matrix follows: det ( a c b d ) = ad - bc Associated with every square matrix A there is a number called the determinant of A. The definition of the determinant of a 22 matrix follows: det ( a c b d ) = ad - bc The concept “determinant” arose from early attempts to generalize the process of solving systems of linear equations. Consider the following: Solve the system : ax cy j bx dy k Solve the system : a c ad bc det b d ax cy j bx dy k a j ak bj det b k j c dj ck det k d Solve the system : a c ad bc det b d a c b d ax replace y coordinates with j k j bx dy k a j ak bj det b k a j b k cy j c dj ck det k d j c k d replace x coordinates with j k Solve the system : a c ad bc det b d ax cy j bx dy k a j ak bj det b k j c dj ck det k d Solve the system : a c ad bc det b d ax cy j bx dy k ax j bx dy k a j ak bj det b k to solve for cy y: j c dj ck det k d b(ax a(bx cy j) dy k ) ax Solve the system : a c ad bc det b d ax cy j bx dy k cy bx dy k a j ak bj det b k to solve for y: j c dj ck det k d b(ax a(bx abx bcy bj abx ady j ak (ad bc) y ak bj ak bj y ad bc cy j) dy k ) ax Solve the system : a c ad bc det b d ax cy j bx dy k cy bx dy k a j ak bj det b k to solve for y: j c dj ck det k d b(ax a(bx abx bcy bj abx ady j ak (ad bc) y ak bj ak bj y ad bc cy j) dy k ) Solve the system : a c ad bc det b d ax cy j bx dy k ax j bx dy k a j ak bj det b k to solve for cy x: j c dj ck det k d d (ax cy j) c(bx dy k ) ax Solve the system : a c ad bc det b d ax cy j bx dy k a j ak bj det b k cdy j bx dy k to solve for adx cy x: j c dj ck det k d d (ax cy j) c(bx dy k ) dj bcx cdy ck (ad bc) x dj ck dj ck y ad bc ax Solve the system : a c ad bc det b d ax cy j bx dy k a j ak bj det b k cdy j bx dy k to solve for adx cy x: j c dj ck det k d d (ax cy j) c(bx dy k ) dj bcx cdy ck (ad bc) x dj ck dj ck y ad bc The following presentation entitled will outline the algorithm for evaluating the determinant of a 33 matrix
© Copyright 2026 Paperzz