Introduction to Multivariate Genetic Analysis (2) Marleen de Moor, Kees-Jan Kan & Nick Martin March 7, 2012 M. de Moor, Twin Workshop Boulder 1 Outline • 11.00-12.30 – Lecture Bivariate Cholesky Decomposition – Practical Bivariate analysis of IQ and attention problems • 12.30-13.30 LUNCH • 13.30-15.00 – Lecture Multivariate Cholesky Decomposition – PCA versus Cholesky – Practical Tri- and Four-variate analysis of IQ, educational attainment and attention problems March 7, 2012 M. de Moor, Twin Workshop Boulder 2 Outline • 11.00-12.30 – Lecture Bivariate Cholesky Decomposition – Practical Bivariate analysis of IQ and attention problems • 12.30-13.30 LUNCH • 13.30-15.00 – Lecture Multivariate Cholesky Decomposition – PCA versus Cholesky – Practical Tri- and Four-variate analysis of IQ, educational attainment and attention problems March 7, 2012 M. de Moor, Twin Workshop Boulder 3 Bivariate Cholesky a1 P1 1 1 A 1 A C1 1 P2 C2 a11 a 21 a2 0 a22 2 c21 c22 a21 a11 c1 a22 c11 Twin 1 Phenotype 1 e11 P1 c11 P2 c21 Twin 1 Phenotype 2 c2 0 c22 e21 e22 1 e1 1 E E 1 2 March 7, 2012 P1 e11 P2 e21 M. de Moor, Twin Workshop Boulder e2 0 e22 4 Adding more phenotypes… a1 1 1 A A C1 1 1 1 1 A C2 a21 a11 e11 Twin 1 Phenotype 2 e21 e31 1 a11 0 0 P2 a21 a22 0 P3 a31 a32 a33 c1 c2 c3 c33 Twin 1 Phenotype 3 P1 c11 0 0 P2 c21 c22 0 P3 c31 c32 c33 e1 e2 e3 P1 e11 0 0 P2 e21 e22 0 P3 e31 e32 e33 e32 e33 e22 1 P1 c32 a22 c11 a3 c22 c31 a31 Twin 1 Phenotype 1 a33 a32 c21 C3 3 2 a2 1 E E E 1 2 3 Adding more phenotypes… a1 1 1 A A C1 1 1 1 A C2 a21 a11 Twin 1 Phenotype 1 e11 Twin 1 Phenotype 2 e21 e31 e22 1 1 a4 P1 a11 0 0 0 P2 a21 a22 0 0 P3 a31 a32 a33 0 a41 a42 a43 a44 c1 c2 c3 P4 c32 a22 c11 c44 a44 a3 c22 c31 a31 C4 4 c33 a33 a32 A C3 3 2 c21 1 1 a2 Twin 1 Phenotype 3 Twin 1 Phenotype 4 e41 e32 e33 e43 e42 P1 c11 0 0 0 P2 c21 c22 0 0 P3 c31 c32 c33 0 P4 c41 c42 c43 c44 e44 e1 1 1 c4 E E E E 1 2 3 4 e2 e3 e4 P1 e11 0 0 0 P2 e21 e22 0 0 P3 e31 e32 e33 0 P4 e41 e42 e43 e44 Trivariate Cholesky 1/0.5 1/0.5 1/0.5 1 1 1 1 A A C1 1 1 1 1 C2 a21 a11 Twin 1 Phenotype 1 e11 Twin 1 Phenotype 2 e21 e31 Twin 1 Phenotype 3 1 1 C2 a21 a11 c32 Twin 2 Phenotype 2 e21 e33 e31 Twin 2 Phenotype 3 e32 e33 e22 1 1 c33 c22 a22 c11 Twin 2 Phenotype 1 a33 c31 a31 C3 3 a32 c21 e11 1 1 A 2 e32 e22 1 1 A C1 c33 c32 a22 c11 A c22 c31 1 1 a33 a32 a31 C3 3 1 1 1 A 2 c21 1 1 E E E E E E 1 2 3 1 2 3 What to change in OpenMx script? OpenMx Vars <- c(’varx', ’vary’, ‘varz’) nv <- 3 # or, even more efficiently: nv <- length(Vars) … # Matrices a, c, and e to store a, c, and e path coefficients mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=.6, name="a" ), mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=.6, name="c" ), mxMatrix( type="Lower", nrow=nv, ncol=nv, free=TRUE, values=.6, name="e" ), Standardized solution – 3 pheno’s 1/0.5 1/0.5 1/0.5 1 1 1 A C1 1 1 1 A a11 1 C2 a22 c11 Twin 1 Phenotype 1 e11 1 1 a33 Twin 1 Phenotype 3 2 C1 c33 a11 A c11 Twin 2 Phenotype 1 1 A C2 a22 1 C3 3 c22 Twin 2 Phenotype 2 e11 1 E M.Ede Moor, Twin Workshop Boulder 3 1 1 2 e33 1 E A 1 e22 1 E 7, 2012 March C3 1 1 1 3 c22 Twin 1 Phenotype 2 1 A 2 1 a33 Twin 2 Phenotype 3 e22 1 c33 e33 1 E E 2 3 9 Genetic correlations OpenMx corA <- mxAlgebra(name ="rA", expression = solve(sqrt(I*A))%*%A%*%solve(sqrt(I*A))) 2x2 1 rG ,12 rG ,13 3x3 rg ,12 1 rG , 23 1 a21a11 a * (a a ) 2 11 2 21 March 7, 2012 2 22 1 2 a11 0 0 1 2 2 a11 a11a 21 a11a31 a11 2 2 0 a 21 a 22 a 21a31 a 22a32 * 0 * a11a 21 a11a31 a 21a31 a 22a32 a312 a32 2 a332 1 0 2 a31 a32 2 a332 0 0 1 a 212 a 22 2 rg ,13 0 a31a11 a * (a a a ) 2 11 2 31 2 32 2 33 rg , 23 M. de Moor, Twin Workshop Boulder 0 1 a 212 a 22 2 0 0 1 a312 a32 2 a332 0 a21a31 a22 a32 2 2 2 2 2 (a31 a32 a33 ) * (a21 a22 ) 10 The order of variables • Order of variables does not matter for the solution! – Fit is identical, just different parameterization – Standardized solutions are identical in terms of fit and parameter estimates! • But interpretation of A/C/E variance components is different! – Where A2 refers to those genetic factors that are not shared with phenotype 1 • Sometimes there is natural ordering: – Temporal ordering (IQ at 2 time points) – Neuroticism and MDD symptoms March 7, 2012 M. de Moor, Twin Workshop Boulder 11 Cholesky decomposition is not a model… • • • • No constraints on covariance matrices Just reparameterization… …But very useful to explore the data! Observed statistics = Number of parameters March 7, 2012 M. de Moor, Twin Workshop Boulder 12 Cholesky decomposition is not a model… • Bivariate constrained saturated model: – – – – – 2 2 1 2 1 variances, 1 within-twin covariance MZ=DZ within-trait cross-twin covariances MZ cross-trait cross-twin covariance MZ within-trait cross-twin covariances DZ cross-trait cross-twin covariance DZ 9 observed statistics • Bivariate Cholesky decomposition – a11, a21, a22 – c11, c21, c22 – e11, e21, e22 March 7, 2012 9 parameters M. de Moor, Twin Workshop Boulder 13 Comparison with other models Cholesky decomposition models Principal component analysis Sanja, now Genetic factor models Hermine, after coffee break Confirmatory factor models Dorret, Sanja, Michel, this morning March 7, 2012 M. de Moor, Twin Workshop Boulder 14 Further reading Three classic papers: • Martin NG, Eaves LJ: The genetical analysis of covariance structure. Heredity 38:79-95, 1977 • Carey, G. Inference About Genetic Correlations, BG, 1988 • Loehlin, J. The Cholesky Approach: A Cautionary Note, BG, 1996 • Carey, G. Cholesky Problems, BG, 2005 SEE ALSO: http://genepi.qimr.edu.au/staff/classicpapers/ March 7, 2012 M. de Moor, Twin Workshop Boulder 15 Outline • 11.00-12.30 – Lecture Bivariate Cholesky Decomposition – Practical Bivariate analysis of IQ and attention problems • 12.30-13.30 LUNCH • 13.30-15.00 – Lecture Multivariate Cholesky Decomposition – PCA versus Cholesky – Practical Tri- and Four-variate analysis of IQ, educational attainment and attention problems March 7, 2012 M. de Moor, Twin Workshop Boulder 16 Practical • Trivariate ACE Cholesky model • 126 MZ and 126 DZ twin pairs from Netherlands Twin Register • Age 12 • Educational achievement (EA) • FSIQ • Attention Problems (AP) [mother-report] March 7, 2012 M. de Moor, Twin Workshop Boulder 17 Practical • Script CholeskyTrivariate.R • Dataset Cholesky.dat March 7, 2012 M. de Moor, Twin Workshop Boulder 18 Exercise • Add Educational Achievement as the first of the 3 variables • Run the saturated model, ACE model and AE model • Question: Can we drop C? -2LL ACE model df chi2 ∆df P-value - - - AE model March 7, 2012 M. de Moor, Twin Workshop Boulder 19 Exercise • Run 4 submodels – – – – Submodel Submodel Submodel Submodel 1: 2: 3: 4: drop drop drop drop rg rg re re between between between between EA and AP FSIQ and AP EA and AP FSIQ and AP • Compare fit of each submodel with full AE model March 7, 2012 M. de Moor, Twin Workshop Boulder 20 Exercise • Questions: – – – – Can Can Can Can we we we we drop drop drop drop -2LL AE model rg rg re re between between between between df EA and AP? FSIQ and AP? EA and AP? FSIQ and AP? chi2 ∆df P-value - - - No a31 No a32 No e31 No e32 March 7, 2012 M. de Moor, Twin Workshop Boulder 21 March 7, 2012 M. de Moor, Twin Workshop Boulder 22 Extra exercise • Replace FSIQ by VIQ and PIQ, and run a fourvariate Cholesky model. • Questions: – Is AP differentially related to VIQ and PIQ, phenotypically and genotypically? March 7, 2012 M. de Moor, Twin Workshop Boulder 23
© Copyright 2026 Paperzz