Finite Elements in Electromagnetics 2. Static fields Oszkár Bíró IGTE, TU Graz Kopernikusgasse 24Graz, Austria email: [email protected] Overview • • • • Maxwell‘s equations for static fields Static current field Electrostatic field Magnetostatic field Maxwell‘s equations for static fields curlH J divJ 0 curlE 0 divB 0 divD B H, H B; J E, E J; D E Static current field (1) curlE 0 divJ 0 J E or E J n voltages between the electrodes are given: En n J In 0 Un J Ei J E dl U i Ci Ii Ui I2 E2 0 U2 J or Cn Ci C2 C1 I1 E1 U1 J E0 I0=I1+I2+...+Ii+...+In n currents through the electrodes are given: J n d I i Ei i = 1, 2, ..., n En 0 on n+1 electrodes E E0+E1+E2+ ...+ Ei+ ...+ En J n 0 on the interface J to the nonconducting region Static current field (2) Symmetry E0 may be a symmetry plane A part of J may be a symmetry plane E0 I1 J 2I1 I1 2U1 U2- U1 I2 U1 I2 U2- U1 U2 U1 U2 I2 2(I1+I2) I2 Static current field (3) Interface conditions E1 n E2 n Tangential E is continuous J1 n J 2 n Normal J is continuous 2>1 2>1 1 J2 n J 1 E2 1 n E1 Static current field (4) Network parameters (n>0) U1 n=1: R U1 is prescribed and I1 J nd I1 E 1 I1 is prescribed and U1 E dl or C1 n n j 1 j 1 n>1: U r I or I g U i = 1, 2, ..., n i ij j i ij j Ui rij Ij I k 0 , k j Ii g ij Uj U i = 1, 2, ..., n k 0 , k j Static current field (5) Scalar potential V curlE 0 E gradV divJ 0, J E div(gradV ) 0 in En 0 J n 0 V constant on Ei 0 auf E 0 , V V U 0 on E U i auf Ei . V gradV n 0 on J n Static current field (6) Boundary value problem for the scalar potential V div (gradV ) 0 in , (1) V U0 on E, (2) on J. (3) gradV n V 0 n V VD V VD U 0 on E , otherwise arbitrary div (gradV ) div (gradV D ) in , V0 auf E, V V D n n auf J. Static current field (7) Operator for the scalar potential V A div (grad ) n J DA V DA :V 0 on E VD AV div (gradVD ) n J Static current field (8) Finite element Galerkin equations for V n V (r ) V ( n ) (r ) VD (r ) Vk N k (r ) k 1 VD (r ) nn V N k n 1 k n V gradN gradN d gradN gradV k 1 k i k i D k (r ) d, i = 1, 2, ..., n AV b A is positive definite High power bus bar Finite element discretization Current density represented by arrows Magnitude of current density represented by colors Static current field (9) Current vector potential T divJ 0 J curlT curlE 0, E J curl ( curlT) 0 in J n 0 curlT n 0 n T t on J divt 0 divn T n curlT 0 (t n) dl I i Ei En 0 curlT n 0 on E Static current field (10) Boundary value problem for the vector potential T curl ( curlT) 0 in , (1) nT t on J, (2) curlT n 0 on E. (3) T TD T n TD t on J , otherwise arbitrary curl ( curlT) curl ( curlTD ) in , n T 0 on J, curlT n curlTD n on E. Static current field (11) Operator for the vector potential T A curl ( curl) E curl n DA T DA : n T 0 on J AT curl ( curlTD ) E curlTD n Static current field (12) Finite element Galerkin equations forT n T(r ) T( n ) (r ) TD (r ) tk N k (r ) k 1 TD (r ) ne t N k n 1 k k (r ) n t curlN curlN d curlN curlT d k 1 k i k i D i = 1, 2, ..., n AT b A is positive semi definite Current density represented by arrows Magnitude of current density represented by colors Electrostatic field (1) curlE 0 divD D E n voltages between the electrodes are given: En n D Un Ui Ci D Q2 E2 C2 C1 U2 D or Cn i Ci Qi Ei E dl U D Qn Q1 E1 U1 E0 Q0=-Q1-Q2-...-Qi-...-Qn D n charges on the electrodes are given: D n d Q i Ei i = 1, 2, ..., n En 0 on n+1 electrodes E E0+E1+E2+ ...+ Ei+ ...+ En D n on the boundary D Electrostatic field (2) Symmetry E0 may be a symmetry plane A part of D (=0) may be a symmetry plane E0 -Q1 -Q2 2U1 U2- U1 U2- U1 D 2Q1 Q1 Q2 U2 U1 U1 U2 Q2 -2(Q1+Q2) Q2 Electrostatic field (3) Interface conditions E1 n E2 n Tangential E is continuous D2 n D1 n Special case =0: D1 n D2 n Normal D is continuous 1 =0 D2 n D 1 2>1 2>1 1 =0 E2 n E1 0 D1 D2 n Electrostatic field (4) Network parameters (n>0) U1 is prescribed and Q1 D nd Q1 n=1: C U1 E 1 Q1 is prescribed and U1 E dl or C1 n n j 1 j 1 n>1: U p Q or Q c U i = 1, 2, ..., n i ij j i ij j Ui pij Q j Q 0 , k j k Qi cij UjU i = 1, 2, ..., n k 0 , k j Electrostatic field (5) Scalar potential V curlE 0 E gradV divD , D E div (gradV ) En 0 D n in V constant on Ei 0 auf E 0 , V V U 0 on E U i auf Ei . V gradV n on D n Electrostatic field (6) Boundary value problem for the scalar potential V div (gradV ) in , (1) V U0 on E, (2) (3) gradV n V n on D. V VD V VD U 0 on E , otherwise arbitrary div (gradV ) div (gradVD ) in , V0 on E, V V D n n on D. Electrostatic field (7) Operator for the scalar potential V A div (grad ) n D DA V DA :V 0 on E VD AV [ div(gradVD )] ( ) n D Electrostatic field (8) Finite element Galerkin equations for V n V (r ) V ( n ) (r ) VD (r ) Vk N k (r ) k 1 VD (r ) nn V N k n 1 k k (r ) n V gradN gradN d N d N d k 1 k i k i i D gradNi gradVD d, i = 1, 2, ..., n AV b A is positive definite 380 kV transmisson line 380 kV transmisson line, E on ground 380 kV transmisson line, E on ground in presence of a hill Magnetostatic field (1) curlH J divB 0 B H or H B n magnetic voltages between magnetic walls are given: Hn n Umn B Hi H dl U B n i Umi J Ci or Cn Ci B/T B 2.0 1.8 2 Iron 1.6 1.4 H2 1.2 1.0 Um2 B C2 C1 1 H1 Um1 mi H0 n fluxes through the magnetic walls are given: 0=1+2+...+i+...+n B 0.8 0.6 B n d i Hi 0.4 0.2 0.0 0 Air 20 40 60 80 100 120 140 -1 H/Am i = 1, 2, ..., n H n K on n+1 magn. walls E E0+E1+E2+ ...+ Ei+ ...+ En B n b on the boundary B Magnetostatic field (2) Symmetry H0 (K=0) may be a symmetry plane A part of B (b=0) may be a symmetry plane H0 1 Um2- Um1 2 1 2Um1 Jx Jz Jz Jx Jy Jy Um2- Um1 2 Um2 2 B 21 Um1 Um1 Jy Jz 2 Jx Jx Jz Jy Um2 2( 1+ 2) Magnetostatic field (3) Interface conditions H1 n H 2 n K Special case K=0: H1 n H 2 n Tangential H is continuous B1 n B 2 n Normal B is continuous 1 =0 B2 n B 1 2>1 2>1 1 =0 H2 n H1 H2 K 0 n H1 Magnetostatic field (4) Network parameters (n>0), J=0 U m1 n=1: Rm Um1 is prescribed and 1 B nd 1 H 1 1 is prescribed and U m1 H dl or C1 n n j 1 j 1 n>1: U r or g U i = 1, 2, ..., n mi mij j i mij mj rmij U mi i g mij j 0 , k j U mj U k i = 1, 2, ..., n mk 0 , k j Magnetostatic field (5) Network parameter (n=0), b=0, K=0, J0 Inductance: 1 1 2 2 L 2 H d 2 B d I I Magnetostatic field (6) Scalar potential F, differential equation curlH J H T0 gradF T0 : curlT0 J, otherwise arbitrary 1 J (Q) eQP e.g. : T0 ( P) H S ( P) dQ 2 4 rQP divB 0, B H div( gradF) div( T0 ) Magnetostatic field (7) Scalar potential F, boundary conditions Hn K F F 0 on H F 0 P Fi n K T n ds on 0 CP 0 on H 0 , Fi U mi on Hi . B n b F b T0 n on B n Hi Magnetostatic field (8) Boundary value problem for the scalar potential F div ( gradF ) div ( T0 ) in , (1) F F0 on H, (2) on B. (3) gradF n F b T0 n n Full analogy with the electrostatic field , F V , F0 U0 , div( T0 ) , b T0 n , Magnetostatic field (9) Finite element Galerkin equations for F n F (r ) F ( n ) (r ) F D (r ) F k N k (r ) F D (r ) k 1 nn F k n 1 k N k (r ) n F gradN gradN d gradN T d bN d k 1 k i k i 0 i B gradNi gradF D d, i = 1, 2, ..., n AF b A is positive definite Magnetostatic field (10) In order to avoid cancellation errors in computing H T0 gradF (n ) T0 should be represented by means of edge elements: ne T0 ti N i ti T dl 0 edgei i 1 ne since gradN i cik N k and hence T0 and gradF (n) k 1 are in the same function space Magnetostatic field (11) Magnetic vector potential A divB 0 B curlA curlH J, H B curl (curlA) J in B n b curlA n b n A a on B diva b divn A n curlA b (a n) dl i Hi H n K curlA n K on H Magnetostatic field (12) Boundary value problem for the vector potential A curl (curlA ) J in , (1) n A a on B, (2) curlA n K on H. (3) A A D A n A D a on B , otherwise arbitrary curl (curlA) J curl (curlA D ) in , n A 0 on B, curlA n K curlA D n on H. Magnetostatic current field (13) Operator for the vector potential A A curl (curl) Hcurl n DA A DA : n A 0 on B AA (J curl (curlA D ) E (K curlA D n) Magnetostatic field (14) Finite element Galerkin equations for A n A (r ) A ( n ) (r ) A D (r ) ak N k (r ) A D (r ) k 1 ne a N k n 1 k k (r ) n a curlN curlN d N Jd N Kd k 1 k i k i i H curlN i curlA D d i = 1, 2, ..., n AA b A is positive semi definite Magnetostatic field (15) Consistence of the right hand side of the Galerkin equations Introduce T0 as curlT0 J in , T0 n K on H . bi N i curlT0 d N i (T0 n ) d H n Ni 0 on B curlN i curlA D d N (T i H 0 n) d (n Ni ) T0d ( Ni T0 ) nd H div (Ni T0 )d T0 curlN i d N i curlT0 d . bi T0 curlN i d curlN i rotA D d
© Copyright 2026 Paperzz