Electromagnetic waves: Multiple beam Interference Wed. Nov. 13, 2002 1 Multiple beam interference Let 12 = 21= ’ 12= 21= ’ ’’ Eo Eo (’)5’Eo (’)3’Eo (’)7’Eo n1 n2 n1 ’ A B C D ’ Eo (’)2’Eo (’)4’Eo (’)6’Eo 2 Multiple beam interference Evaluate 1 1 1 * 2 * 1 r 1 r 1 r r r r 2 ' 4 r r * ' e i e i 2 ' cos 2 Thus, 1 1 * 1 r 1 r 1 '2 2 2 1 2 ' cos 1 2 1 ' 2 2 2 ' 1 cos 2 3 Multiple beam interference 1 1 * 1 r 1 r Now, 1 1 ' 2 2 2 4 ' 1 2 1 ' 2 sin 2 2 '2 2 R and , E E T 2 P o 2 A 2 1 R 2 1 1 4 R sin 2 1 R 2 2 4 Multiple beam interference Now recall the definition of the intensity of an electromagnetic wave 1 I P v E Po 2 1 I o v E Ao 2 2 Thus, 2 T2 2 1 R IP Io 4R 2 1 sin 2 1 R 2 is the intensity distribution in the focal plane of the lens. 5 Multiple beam interference Fringe pattern ' 2n2 k o d 2n1k o d tan ' sin cos ' 2n2 ko d cos ' 6 Multiple beam interference Maximum intensity when, sin 2 2 0 or 2m or , 4n2 o d cos ' 2m 2n2 d cos ' m 7 Multiple beam interference Thus maxima are circles in focal plane of lens – or rings The maximum intensity 2 I max T Io 1 R And intensity distribution is, IP I max 4R 2 1 sin 2 1 R 2 8 Multiple beam interference Minima intensity when, sin Intensity distribution, If R > 0.9 2 2 1 I min 1 R 2 I max 1 R 2 Imin<<Imax 9 Multiple beam interference Let the contrast, or co-efficient of finesse be defined by, 4R F 1 R 2 IT IM Then the transmitted light is described by and Airy function, The same analysis for the reflected light gives IR 1 1 F sin 2 2 2 1 F sin 2 F sin 2 IM 2 10 Multiple beam interference: Transmission curves IR 1 I M 1 F sin 2 2 IT/II 1.0 F=0.2 R=0.046 F=1 R=0.18 F=200 R=0.87 0.5 0.0 -2 -1 0 1 2 3 4 11 Multiple beam interference: Reflectivity curves 2 F sin 2 IR 2 I M 1 F sin 2 1.0 R=0.87 IR/II F=200 0.5 0.0 -2 -1 0 1 2 F=1 R=0.18 F=0.2 R=0.046 3 4 12 Observation of fringe patterns Screen or eye source f1 f2 Bright circles 13 Typical parameters in an experiment Consider a quartz slab (n2=1.5) of thickness d ~ 0.5 cm The condition for constructive interference requires, 2n d cos ' m 2 For light of wavelength o = 500 nm, incident at a small angle , i.e. ’ also small, and m is large: 2 2n2 d cos ' 2 1.5 0.5 10 m 1 4 m 3 10 9 500 10 m 14 Spectroscopy applications: Fabry- Perot Interferometer Assume we have a monochromatic light source and we obtain a fringe pattern in the focal plane of a lens Now plot IT along any radial direction Let IMAX=IM The fringes have a finite width as we scan IM I m m-1 m-2 m-3 order 15 Fabry-Perot Interferometer Full width at half maximum = FWHM, is defined as the width of the fringe at I=(½)IM Now we need to specify units for our application Let us first find such that I = ½ IM 16 Fabry-Perot Interferometer We want, 1 IM I IM 2 1 F sin 2 2 This gives, 2 1 F sin 2 17 Fabry-Perot Interferometer IM m m-1 I I= ½ IM = 2m = 2(m-1) = 2(m-Δm) 18 Fabry Perot Interferometer Thus at I = ½ IM sin(/2) = sin (m – Δm) sin Δm Assume Δm is small and sin Δm Δm Thus 1 F m 2 or m 1 F FWHM ~ Fraction of an order occupied by fringe 1 R FWHM 2m R 19 Fabry-Perot Interferometer The inverse of the FWHM is a measure of the quality of the instrument. This quality index is called the finesse R 1 Finesse 1 R 2m It is the ratio of the separation between the fringes to the fringe width 20 Fabry-Perot Interferometer Not that is determined by the reflectivity If R ~ 0.90 = 30 R ~ 0.95 R ~ 0.97 = 60 = 100 In practive, can’t get much better than 100 since the reflectivity is limited by the flatness of the plates (and other factors of course) 21 Fabry-Perot Interferometer Now consider the case of two wavelengths (1, 2) m m-2 present in the beam m-1 Assume 1 2 and 1< 2 2 1 2 1 2 1 Increase 2, dashed lines shrink e.g. order m-1 of 2 moves toward mth order of 1 Eventually (m-1) 2=m 1 This defines the free spectral range 22 Fabry-Perot Interferometer m(2-1)= 2 or mΔ = ΔFSR = /m Now since 2 nd cos ' 2 nd m We have, FSR 2 2 nd e.g. =500 nm, d = 5mm, n=1 ΔFSR= 25(10-2)mm = 0.25Å 23
© Copyright 2026 Paperzz