Non-equilibrium ensembles and thermodynamic functions

Indian Journal of Pure & App li ed Ph ys ics
Vol. 37. September 1999. pp . 647-651
Non-equilibrium ensembles and thermodynamic functions
*A Maghari & B Haghi ghi
Department of Chemi stry. Universit y of Tehran. Tehran. Iran
Recei ved 2 Jun e 1997: revised 28 M ay 1998: accepted 10 June 1999
A IlIJll -equili hrium ense mble is formul ated and th e part iti on fun ction of a system in non -equilibrium transient state is
derived hy a meth od based upon th e max imi zation of the Boltzman n's entropy co nstrain ed by non linear Boltzmannkineti c equation . We co nsici er a logica l th eorem which ex presses that th e characteri stic fun cti on in a non-equ ilihri um
ensemhle has a form simil ar to th e equilibrium one. Th e connecti on hetween th e N-part iele to one-parti cl e non-equilibrium
p;lrtiti on functi on is oh tain ed and th e ti me dependent thermodyn amic fun cti ons as we ll as tran sport ki neti c CCle lTi cient s ca n
th en he G;l lcu lated.
the class of th e loca l integral s o f moti on on w hi ch the
stati sti cal operator can depend . He max imi zes an
The co nce pt or an equilibrium cla ss ica l
entropy co nstrained by th e Fouri er transform s of the
ensembl e in pha se space wa s introd uced by JW
co nservati on laws o f energy. momentum, and the
Gi bbs'. O n the basis o f th e prin cipl e of equal a priori
parti cle number.
pro/)({bilily, a ce rtain number o f equilibrium
On th e oth er hand several auth ors max imi ze the
ense mbles, can be co nstructed . ft is show n that
normali za ti on co nstant, th at i s, th e partiti on non-equilibrium entropy'rI .I.2.1. 27.2"-II, and recentl y a non-
I Introduction
function (Zustands summe from the German word
mea ns "su tl1 over stat es") co rres pond i ng to the
equilibrium ensembl e co ntain s all the informati on
necess ary ror th e cal culati on o f th e th ermodynami c
quantiti es. Hence. th e ce ntral prob lem o f equilibrium
statistical mechanics is reduced to the co mputat ion o f
the partiti on function.
Several authors try fo r co nstru ctin g th e
systemati c meth ods parall el to equilibrium stati sti ca l
ensembl e in order to stud y th e systems which are not
in e quilibrium ~7 T hese meth ods naturall y open th e
ways for th e stud y or the time evoluti on of th e
th ermody nami c quantiti es. From thi s ense mbl e, one
can defin e not th e th ermodynami c state but rath er th e
time evo luti on of any non-equilibriutl1 macros tate.
Z ubarev' proposed a meth od w hi ch he ca ll ed th e
'n on-equilihrium stati sti cal ensembl e' in order to
ex tend th e idea or G ibb sian stati sti ca l ensembl e to
include th c non-equ ili brium case. In thi s meth od a
non-eq uilibriull1 stati sti cal operator (N ESO) was
constru cted ror stati onary process by generali zati on
': '1'0 whom correspondencc shou ld hc addresseci . e- lll;lil :
Illagh;l ri @kha yam.ut.ac. ir
equilibrium stati sti ca l ensembl e for a class ica l case
was formulated by ma x imi zin g a time integrated
entropy co nstrained by Li ou vi li e equati on. T he
reason for thi s procedure is that th e co nser vati on of
energy, momentum, and pa rti cle numbers are
co nsequence of Li ouvill e's equati on. Thi s approach.
however, has two diffi culties , despite o f very vas t
properti es o f Li ouville equati on that have been
studi ed '-l 22 : (i) requires th e so luti on o f Li ouvi lle
equ ati on w hi ch in vo l ves 6N variabl es in th e N-body
prob lem ( ii ) The non-equilibrium partiti on f uncti on
drops to th e time independent partiti on functi on,
because Gibbs entropy is an integral o f moti on.
In th e present wo rk , we describe a new
formulati on of th e mcth od in th e theory o r nonequilibrium ense mbl e int rod uced by Sobouti 'vv ith the
purpose or makin g hi s idea morc appli c;tbl e and
co mputabl e ror a non-equilibrium sys tem. W e deri ve
an ex pres sion for one-parti c le non-equilibriutll
partiti on fun cti on by max imizin g the B o ltzmann ' s
entropy co nstrain ed by th e Bolt zmann kin etic
equati on and the co nncc ti on between N -parti c le to
one-parti cle partiti on fun cti on is ex hibited in terms o f
th e U rse ll run cti ons. Thi s prov id es a moti vati on for
INDI AN J PURE APPL PHY S. VOL 37 . SEPTEM BER 1999
648
relatin g non-eg ui I ibriu m th ermodynamic fun cti on
and one particl e partiti on fun cti on. Essenti al to th e
approach tak en here is th e noti on that the general
form of th e characteri sti c fun cti on in a non- w here
equilibrium stati sti ca l ensembl e is th e sa me as to th e
equilibrium one.
F
2 Non-Equilibrium Ensemble Method
In 1877
functi on as1'
Bo ltzmann
introd uced
...(6)
= k, j, lnf, - 1..(1)1, - y(p, .q,.r{ ;:; - J(j;. f,))
... (7)
the entropy
and usin g the Euler-Lagran ge equati on in ca lculu s of
va ri ati on
51! =-k/J ffdq ,dP J,( q " p ,,t) ln I ,
l
(q l, PI J ) +Nk /l ln(f./h: )
... ( I )
where E is th e intern al energy for parti cle, q and p are
pha se vari abl es, N is the parti c le number of th e
system, k Ba nd h stand t or th e Bo lt zmann and
Planck
co nstant s,
res pec ti ve ly .
Th e
functi on
f, (q " p " t) is onc- parti cle di stri buti on functi on
... (8)
th en we obtain
... (9)
dcfined as
·
N! J J1' (N )d I
d
w here A and ya re Lagrange multip liers. For a
.I l (q l ,PI, I ) = (N- I)! ....
1 2 ( 1 , . .... 1 N ···(2 ) co nve ni ent definiti ons
.. .( l Oa)
f ( I) is N -Parti cle di stributi on fun cti on. Th e
functi on f, (q l ,PI' t) is normali zed to N and sati sfi es
w here
... ( I Db)
th e Bo lt zmann kineti c equati on:
...(3)
the one- particle di strib uti on fun cti on then beco mes
... ( II )
...(4)
where H
I
is th e one-parti c le Ha milt oni an,
1.. . )
denotes a class ical Po isson bracket, J ( f, ' f , ) IS a
w here
q Il~ ( t ) is
non-equilibrium
one
parti cle
bin ary co lli sion term . In a time interva l ( t l , t 2 ) we partiti on f uncti on and pl ays a central ro le In nonequilibrium
stati sti ca l
th ermodynami cs.
On
ca n def ine a ti me integrated 9\- fun cti on.
substitutin g Eq.( II ) into th e integral in Eq.(3), we get
91= f :: 5/1(t) dt =-k" f :: d1
ff dq Idp I [l l I n I I - N In (c/ /7 ' )]
... (5)
To determin e G
It ca n be postul ated that 9\ - fun cti on is referred
dQ =0
as th e ac tio n integral and sati sfies the L agrangian
cit
forn llli ati on o f mechani cs . As a res ult , we must
max imi ze Eq.(S) sub ject to th e constraint s of Eqs (3) w here
and (4) . In oth er word , we can define a functi on
10
I'
one fin d
... ( 13)
64<)
MAGHARI & HAGHIGHI : THERMODYNAMIC FUNCTIONS
Q==G I +k 13 Tln(q ll ,, (t)/q,, )+
(
f J (II"/I ) cit
... ( 14)
II
q nc ( t)
A(t)
I
= exPll- ~ )
... (20)
and from Eq. (20) we find
On the other hand, it can be shown that the NParticl e di stribution function can be written as
( I)
qne
A(O)
= --k-
.. .(2 1)
qc
13
... ( 15)
where "-(0) sati sfies the following equati on
A(O) - k n
= -k J) Inq e
wh ere Qnc (t) is N-particle partition function and in
Now we can defin e a
both Eqs ( I I) and ( 15) ~ has its usual meanlll g. characteristic function as foll ow
47
Using th e Ursell functions, we ca n write
.. .(22)
non-equilibrium
... (23)
Thi s definition exhibits a logical notion since at
a limitation , when time goes to infinity, the nonexp(-BG; )ITU ~;)
equilibrium
partition fun ction goes to the equilibrium
11/ = 0 r ..\ IiI \
i.k Ef'
partition functi on and definiti on (23) beco mes an
He re s is a li stin g of free particl es, r is a listin g usual equati on in equilibrium statistical mec hani cs.
of pair partic les and U (i~ ) is Ursell function defined With simpl e manipulati on one ca n show
NI?
... ( 16)
IIIT
as
A (t)
= A c + TA(O) bt
... (24)
u \~) == exp(-BG \~» ) -exp[-B ( G \ I ) +G~I » )] ... ( 17) where A e is equilibrium part of He lmholtz free
energy.
Co mbinations of Eqs ( II ), ( 15) and ( 16) with
Now define the flu ctu ati on ex In the following
Eq. (2) yie ld s th e connecti on between the N-particl e
mann
er
to one- particle non-equilibrium partition function ,
that is
ex = A(t) - A e = TA(O) bt
.. .(25)
I
Q(I)=-
'"
I
N!
N!
1
~c' v, dr
e- '
r
N'•
~ m! (N _ 211l)!2
Nt"
===
In
( j il l '
(I)
f
flux
II
r
termin ology
, we have
= eX =n co)
of
irrevers ibl e
.. .(26)
12 (.
... ( 18)
where
usual
th e rmod y nami cs4"4~
[U J
Ir
N -2 111
II I
th e
is the ele ment of phase space .
and th e force is defined as derivative of e ntropy
res pect to flu ctuations
force
= af,S = ~ ( aM I
ria
3 Calculation of Onsager Coefficients
a
()/
)
.. .(27 )
Co nsi J e r a sys te m is tak en from an equilibrium where
state at t = () to a non-equilibrium state. If the sys tem
.. .( 28)
deviates onl y sli ghtl y from equilibrium, th e nonequi Ii bri um one-part ic le partiti on function ca n be with So is equilibrium part of entropy. Then
expa nded in powers of small time Ot, and it ca n be
dropped after two terms as
... (29)
.
q nc ( t)
= q c + q '''' bt
(I)
From Eqs ( lOa) and ( II ), we ha ve
... ( 19)
Based upon aforementioned te rminology, one
phenomenological coefficient is defineJ as
65()
INDIA
T 2A? (0)
L===---
as B/at
J PURE APPL PHYS . VOL 37, SEPTEMBER 1999
Acknowledgment
.. .(30)
The financial support of the Research Council of
University of T ehran is acknow ledged.
4 Conclusion
By combining th e ph enomenological theory of
irreversibl e processes and th e re~ ult s of the kin eti c
th eory of irreversibl e processes obtained from th e
Bolt zmann-kinetic equation for a dilute gas, a noneq uilibrium ensembl e method has been fo rmul ated
fo r dilute gase~; as a parall el ex tension to the Gibbs
ensembl e
meth od
in
equi librium
stati sti ca l
mechanics. This meth od is di stinct from those of
McLennan" 1<1 , Zubarev' and Sobouti 13 . The main
di stin gui shin g feature is. the use of an irreversibl e
kinetic equati on (i .e . th e Boltzmann-kineti c equation)
in stead of the time reversa l in va riant Liouvill e
equation .
Non-equi li brium processes In th e sys tem
inherently require th e sy stem to interact with its
surroundings which perturb th e former by heat, mass ,
and momentum tran sfers (stresses). Therefore, a
microcanonica ! ensembl e is not an appreciate
ensemble to use f or non-equi librium form the
co nce ptual standpoint. Th e eq uilibrium so luti on of
th e Boltzmann-kineti c eq uati on namely, th e Maxwell
distributi on function. is a ca noni ca l di stributi on
function. and it reflects the fact that the Boltzmannkinetic th eory is suitab le for a ca nonica l ensembl e.
Based upon aforementi oned reason. we postul ate th at
in a non-equilibrium system, th e Helmholtz free
energy, which is a characte ri stic function , has a form
similar to equilibrium one IEq. (23) I· T hi s can be
seen if we exa mine th e Boltzmann co lli sion term
w hi ch describes interaction of th e system, a single
particle in thi s case, with th e rest of th e world which
is represent ed by an other parti cle ullcorrelated to the
oth er subunit s co mpri sing the rest of th e world . Thi s
res t or th e wor ld ma y be viewed as th e surroundings
of th e system. and in thi s interpretati on, we have a
canon ica l ense mble interacting w ith surroundings.
This interpretation IS co nsi stent w ith Maxwel l
distributi on functi on for th e equilibriulll so luti on of
the Boltzmann-kinetic eq uati on. It is log ica l to look
for the non-eq uilibrium di stributi on functio n for th e
B o lt z lll~lnnjiln sys tem in terms of non-equilibrium
canonical form as has been done in th e present nonequilib riulll ense mbl e meth od.
References
Gibbs J W. L'lelllelllrllT I'rill ci/Jie.l' ill sWlislica l 1l1.eClwll ir ·.I·
( Yal c Un ivcrsity Pres~. 'ew Havcn. Connccticut). 1l)()2:
(Dovcr rcp rint. Ncw York ) 19(,().
2
Willi s CR.PiIrs i?e!'(USA). 127( 1%2) 1405 .
3
Zwanzig R . .1 Cilelll Pln's (USA). 33 ( 1960) 133 8.
4
Harri s R. Hurl ey J & Garrod C. PhI'S Rei' (USA). 35A
( 1987) 1350.
5
Bergmann P G & Lcbowitz .I L. PiIrs Rei' ( USA). 99 ( 1955 )
578.
6
Es pan ol J & G<llTigos I. PiIrs L I'II (Nel iIi'l'lanr/s). A 146
( 1990) 2 1.
7
Esp;lI1ol.l & Dc La Rubia F .I . PiIysim (Nelhnlollds). A 171
( 199 1) 120.
8
Zubarcv D
& K<llashnikov V P. Phrsim (Ne liIl'rl(l1 ltlsJ.
46 ( 1970) 5S0.
9
10
McLcnnan J A. PiIrs/lliids (USA ). 4 (1% 1) 13 19.
McLcnnan J A. Ad" Chelll PiIys (USA). 5 ( 1%3) 26 1.
II
Drcycr W . .1 Phrs A: M(l/iI Cell (UK ). 20 (19,7) 6505 .
12
OnyzckicwiC7, Z. PhvsiCll (Ne ilIerlallds). A 143 ( 1987) 287 .
13
14
Soholili Y . Phrsica (Net herlallds). A 168 ( 1990) 102 1.
I-I ob~o n
A & L oomis D N. PiIrs Nt'!' (USA ). 173 ( I %S)
285.
15
Sa lllillli J & Sobou ti. Asl/'{) ASlm/l/n·.I· (Ce m w IH). 297
( 1995) 707 .
16
Dchghani M 1-1 & Sohou ti Y. ASlm !\st/'(/jJh.".I· (Ceml(lllr j.
299( 1995 )293
17
Sobouli Y. ASlro ASl ro/liIys (Ce ml{/nI·). 2 1() ( 1989) I X.
IS
Sobouli Y. A.l'lm A.I·lrojJhrs (Ceml(l/n-j. 2 14 ( 19R9) 83.
19
Sobouli Y. Samimi .I . Aslro A.I·lmph." s (Ce m/{lll." ). 2 14
(1989) 92.
20
SobOUli Y. Dchghani M H. Astro ASlrojJlns (C l'ml(lnr ). 25lJ
( 1992) 128.
21
Dchghani M H & Sobou ti Y. ASlm A.I·lm/ l/n's (Ce nll(1ln-j.
275 ( 1993 ) 9 1
22
Cand y J. .1 COlll/JIIIIJ/n ·.I· ( UK ). 129 ( I l)%) IW.
23
Nettl cton R E & Frcidk in E S. Phrsicll (N(' I/lI' rl(fllds ). A 15X
( 19S9) 672.
24
NCli lcton R E. .I Pln's A: Mllih Cell ( U K!. I (i ( 19X6 ) 1295 &
I ( 1988 ) 3939
~
25
Karkh cck J & Stcl l G. PiI.".1 N" I' (USA ). A 25 11982) 3302.
26
Slcll G. Karkh cck J & va n Bcijcrcn II. .I CiIelll Ph,'s (USA ).
7() ( 1983) 31(,6
27
Karkh cc k J . va n Bcijcrcn H. dc Scl!cppcr I & Stcll G. Pln's
Ne\' ( USA). 32 ( 1985) 2517.
MAGHARI & HAGHIGHI : TH ERMODYNAMI C FUNCTIONS
2X
Balescu R. 1~'qLlilibriltlll alld l/ oll- eq uilibriulI/ sta tistica l
lII ec //{/lIics. (Wil ey Interseience. New York ) 1975: (Kreiger
38
65 1
Bi alas- Borgiel K. Paw li kowski A & Z ipper E. Pitrs Lell
(Netiter/antis ), A49 (974) 225.
re[lri nl. J'Jew Yo rk). 19')0.
39
29
Hol ian B L. /Jitn Rei' (USA ), A33 ( 19R6) 1152.
40
30
M on tan ero J M & Santos A . Pitrsica (Netiter/wuls ). A225
(19'.16)7.
41
Hoover Will G. PitvsiCil (Net iterlal/cls), A 194 ( 1993) 150.
42
Res ibois P. .I Stat Pitys (USA), 19 ( 1978) 593.
31
Zanette D l-I & Garibotti C R. Pitrs ica (Netit erlands ), AI49
( I lJX8) 63X .
43
44
Al exand rowcz Z . .I Sta t Pitys (USA), 16 ( 1977) 139.
45
46
Robi n W A . .I Pitys A: Matit C el/ ( U K ), 23 ( 1990) 2065.
47
Snider R F. .I Stat Pitys (USA). 61 ( 1990) 443.
KlirnonlOvi ch Yu L. Pitrsico (Ne titer/al/tis), A 142 ( 19R7)
4~
Omager L. Phi'S Rev (USA), 37( 193 1)405: 3X ( 193 1) 1265 .
3 ()() .
49
de Groot S R & MaZlir P. NOI/-equilihriwlI titel'lll (){lrl/{//lIics
(North - Holl and. Allles terd alll ). 1962. (Dover editio n. New
York ) 1984.
32
Pri gog ine I. in Tit" !3 o /t ~lI/al/l/ equatiol/ (tit eory al/ d
a/J/Jlicat iol/ ). Eel Co hen E G D & Thirrin g W (Springer.
Berl in ) 1973 . p. 40 1.
Lehowitz J L. Pitrs im (Ne titer/({flds ). A 194 ( 1993) I .
LihnlT R L. .I Pin's A: Matit Cel/ (UK ), 20 ( 19R7) 5607 .
36
Wehrl A. Rei ' Mod PhI'S (USA), 50 ( 1(87) 22 1.
37
Majewsk i W A . IJitrsim (Nc titer/al/ds), A I 19 ( 1983) 639
Dufour C G. J St[l/ PhI's (USA), 17 ( 1977) 6 1.
Evans D J• .1 Stat Pitys (USA ). 57 ( / 989) 745.
Dela le Can F. .I S/ot Pitys (USA ), 37 ( 1984) 45 I ,
Lindbl ael G, Non-equ i l i hriwlI el/tm!i.V ({nd irreve rsih ility (D.
Reidel. Holl and) 1983 .