The Sine Rule The Sine Rule is used for cases in which the Cosine Rule cannot be applied. It is used to find: 1. An unknown side, when we are given two angles and a side. 2. An unknown angle when we are given two sides and an angle that is not included. Cosine Rule 12 19 12 a2 = b2 + c2 – 2bcCosA 75o 18 18 Sine Rule 12 50o 29/07/2017 18 ? 12 75o 50o 1 The Sine Rule Consider a general triangle ABC. Deriving the rule C b a B P CP CP aSinB a CP also SinA CP bSinA b aSinB bSinA aSinB b SinA a b SinA SinB SinB c Draw CP perpendicular to BA A This can be extended to a b c 29/07/2017 SinA SinB SinC or equivalently SinA SinB SinC a b c 2 a b c SinA SinB SinC The Sine Rule To find an unknown side we need 2 angles and a side. 1. Not to scale 5.1 cm a 60o 15o 29/07/2017 145o m 45 m 85o m 12.7 Sin 63o Sin 85o Sin 63o x 12.7 m 11.4cm (1 dp) Sin 85o p p 63o 12.7cm 45o a 5.1 Sin 45o Sin 60o 5.1Sin 450 a 4.2 cm (1 dp) Sin 60o 3. 2. 45 Sin15o Sin145o 45Sin145o p 99.7m (1 dp) Sin15o 3 The Sine Rule a b c SinA SinB SinC To find an unknown angle we need 2 sides and an angle not included. 2. 1. 5.1 cm 4.2 cm 60o Sinx 4.2 x Sin 60 SinA SinB SinC a b c o 12.7cm yy Siny 5.1 12.7 4.2Sin 60o Sinx 5.1 29/07/2017 99.7 m 145o 11.4cm Sin 63o 11.4 y 83.0o (1 dp ) Sinz z Not to scale 12.7Sin 63o Siny 11.4 x 45.5o (1 dp ) 3. 63oo 45 m 45 Sin145o 99.7 45Sin145o Sinz 99.7 z 15o (1 dp ) 4 The Sine Rule a b c SinA SinB SinC The angle of elevation of the top of a building measured from point A is 25o. At point D which is 15m closer to the building, the angle of elevation is 35o Calculate the height of the building. Application Problems T 10o 36.5 35o B Angle TDA = 180 – 35 = 145o Angle DTA = 180 – 170 = 10o TD 15 Sin 25o Sin10o 15Sin 25o TD29/07/2017 36.5 m Sin10 145o 25o D 15 m Sin 35o A TB 36.5 TB 36.5Sin 35o 20.9 m 5 a b c SinA SinB SinC The Sine Rule The angle of elevation of the top of a column measured from point A, is 20o. The angle of elevation of the top of the statue is 25o. Find the height of the statue when the measurements are taken 50 m from its base Angle BCA = 180 – 110 = 70o Cos 20o 50 AC 50 Cos 20o 53.2 m (1dp ) AC Angle ACT = 180 – 70 = 110o TC 53.2 Sin 5o Sin 65o TC 53.2 Sin 5 5.1 m Sin 65o Angle ATC = T 180 – 115 = 65o 65o 110o C 70o 5o A 29/07/2017 20o 25o 50 m B 6 The Sine Rule. (Used for Non-Right Angled Triangles) Calculating a Length a = b Sin A Sin B b 7 cm 0 58 A The angles are OPPOSITE their sides. B0 39 x a Working Out a = 0 Sin 58 9.43 7Let ‘a’ stand 0 Sin for 39 the unknown length. a = 0 Sin 58 7 0 Sin 39 0 a = 7 Sin 58 0 Sin 39 a = 9.43 cm 7 Menu Calculate the Missing Lengths. (Answers to 2 d.p.) 3) 1) 0 x = 7.36 cm110 0 70 0 50 0 30 x x = 4.06 m 2) 4) 0 80 x 0 40 0 60 x x= 21.70 m 0 50 x= 4.57 m 20 m 8 Answers Menu The Sine Rule. (Used for Non-Right Angled Triangles) Calculating an Angle. b 6.5 cm a = b Sin A Sin B a 13.7 cm B 0 x 0 A 27 Working Out 13.7 = 6.5 0 Sin A Sin 27 0 -1 0 Sin0.9569 730.9569 13.7 Sin A = 13.7 Sin 27 = Sin A A 6.5 6.5 0 Sin 27 0.9569 = Sin A -1 Sin 0.9569 = A 0 73 = A 9 Menu Calculate The Missing Angles. (Answers to 1 d.p.) 1) 0 35.3 2) 80 48 31.7 0 x 0 15 cm 3) x 4) 0 48.9 70 x 0 40 0 x 0 78.2 0 25 cm 10 Answers Menu The Sine Rule The Sine Rule is used for cases in which the Cosine Rule cannot be applied. It is used to find: 1. An unknown side, when we are given two angles and a side. 2. An unknown angle when we are given two sides and an angle that is not included. Cosine Rule 12 19 12 a2 = b2 + c2 – 2bcCosA 75o 18 18 Sine Rule 12 50o 18 ? 12 75o 50o The Sine Rule Consider a general triangle ABC. Deriving the rule C b a B P CP CP aSinB a CP also SinA CP bSinA b aSinB bSinA aSinB b SinA a b SinA SinB SinB c Draw CP perpendicular to BA A This can be extended to a b c SinA SinB SinC or equivalently SinA SinB SinC a b c a b c SinA SinB SinC The Sine Rule To find an unknown side we need 2 angles and a side. 1. Not to scale 5.1 cm a 60o 15o 145o m 45 m 85o m 12.7 Sin 63o Sin 85o Sin 63o x 12.7 m 11.4cm (1 dp) Sin 85o p p 63o 12.7cm 45o a 5.1 Sin 45o Sin 60o 5.1Sin 450 a 4.2 cm (1 dp) Sin 60o 3. 2. 45 Sin15o Sin145o 45Sin145o p 99.7m (1 dp) Sin15o The Sine Rule a b c SinA SinB SinC To find an unknown angle we need 2 sides and an angle not included. 2. 1. 5.1 cm 4.2 cm 60o Sinx 4.2 x Sin 60 SinA SinB SinC a b c o yy 12.7 4.2Sin 60o Sinx 5.1 99.7 m 145o 11.4 y 83.0o (1 dp ) Sinz z 11.4cm Sin 63o 12.7Sin 63o Siny 11.4 x 45.5o (1 dp ) 3. 12.7cm Siny 5.1 63oo 45 m 45 Sin145o 99.7 45Sin145o Sinz 99.7 z 15o (1 dp ) Not to scale The Sine Rule a b c SinA SinB SinC The angle of elevation of the top of a building measured from point A is 25o. At point D which is 15m closer to the building, the angle of elevation is 35o Calculate the height of the building. Application Problems T 10o 36.5 35o B Angle TDA = 180 – 35 = 145o Angle DTA = 180 – 170 = 10o TD 15 Sin 25o Sin10o 15Sin 25o TD 36.5 m Sin10 145o 25o D 15 m Sin 35o A TB 36.5 TB 36.5Sin 35o 20.9 m a b c SinA SinB SinC The Sine Rule The angle of elevation of the top of a column measured from point A, is 20o. The angle of elevation of the top of the statue is 25o. Find the height of the statue when the measurements are taken 50 m from its base Angle BCA = 180 – 110 = 70o Cos 20o 50 AC 50 Cos 20o 53.2 m (1dp ) AC Angle ACT = 180 – 70 = 110o TC 53.2 Sin 5o Sin 65o TC 53.2 Sin 5 5.1 m Sin 65o Angle ATC = T 180 – 115 = 65o 65o 110o C 70o 5o A 20o 25o 50 m B The Sine Rule The Sine Rule is used for cases in which the Cosine Rule cannot be applied. It is used to find: 1. An unknown side, when we are given two angles and a side. 2. An unknown angle when we are given two sides and an angle that is not included. Cosine Rule 12 19 12 a2 = b2 + c2 – 2bcCosA 75o 18 18 Sine Rule 12 50o 29/07/2017 18 ? 12 75o 50o 17 The Sine Rule Consider a general triangle ABC. Deriving the rule C b a B P CP CP aSinB a CP also SinA CP bSinA b aSinB bSinA aSinB b SinA a b SinA SinB SinB c Draw CP perpendicular to BA A This can be extended to a b c 29/07/2017 SinA SinB SinC or equivalently SinA SinB SinC a b c 18 a b c SinA SinB SinC The Sine Rule To find an unknown side we need 2 angles and a side. 1. Not to scale 5.1 cm a 60o 15o 29/07/2017 145o m 45 m 85o m 12.7 Sin 63o Sin 85o Sin 63o x 12.7 m 11.4cm (1 dp) Sin 85o p p 63o 12.7cm 45o a 5.1 Sin 45o Sin 60o 5.1Sin 450 a 4.2 cm (1 dp) Sin 60o 3. 2. 45 Sin15o Sin145o 45Sin145o p 99.7m (1 dp) Sin15o 19 The Sine Rule a b c SinA SinB SinC To find an unknown angle we need 2 sides and an angle not included. 2. 1. 5.1 cm 4.2 cm 60o Sinx 4.2 x Sin 60 SinA SinB SinC a b c o 12.7cm yy Siny 5.1 12.7 4.2Sin 60o Sinx 5.1 29/07/2017 99.7 m 145o 11.4cm Sin 63o 11.4 y 83.0o (1 dp ) Sinz z Not to scale 12.7Sin 63o Siny 11.4 x 45.5o (1 dp ) 3. 63oo 45 m 45 Sin145o 99.7 45Sin145o Sinz 99.7 z 15o (1 dp ) 20 The Sine Rule a b c SinA SinB SinC The angle of elevation of the top of a building measured from point A is 25o. At point D which is 15m closer to the building, the angle of elevation is 35o Calculate the height of the building. Application Problems T 10o 36.5 35o B Angle TDA = 180 – 35 = 145o Angle DTA = 180 – 170 = 10o TD 15 Sin 25o Sin10o 15Sin 25o TD29/07/2017 36.5 m Sin10 145o 25o D 15 m Sin 35o A TB 36.5 TB 36.5Sin 35o 20.9 m 21 a b c SinA SinB SinC The Sine Rule The angle of elevation of the top of a column measured from point A, is 20o. The angle of elevation of the top of the statue is 25o. Find the height of the statue when the measurements are taken 50 m from its base Angle BCA = 180 – 110 = 70o Cos 20o 50 AC 50 Cos 20o 53.2 m (1dp ) AC Angle ACT = 180 – 70 = 110o TC 53.2 Sin 5o Sin 65o TC 53.2 Sin 5 5.1 m Sin 65o Angle ATC = T 180 – 115 = 65o 65o 110o C 70o 5o A 29/07/2017 20o 25o 50 m B 22 Trigonometry 5: Sine, cosine and tangent for any angle y P (x,y) 1 O x y A x As the Point P moves in an anti-clockwise direction around the circumference of the circle, the angle changes from 0o to 360o. Consider the right-angled triangle formed by the vertical line PA. In this triangle the distance OA = x. The distance OP = y. y So point P has co-ordinates (x,y). P(cos ,sin ) 1 O sin x cos A In triangle OAP, cos x y and sin 1 1 Therefore x = cos and y = sin . So the co-ordinates of P are (cos , sin ). 29/07/2017 23 The Sine Rule C. McMinn SOH/CAH/TOA can only be used for right-angled triangles. The Sine Rule can be used for any triangle: C b The sides are labelled to match their opposite angles A The Sine Rule: a = sinA a B c b = sinB c sinC A Example 1: Find the length of BC 76º c 7cm b 63º C a a B c = sinA sin76º × x sinC 7 sides to the Drawxarrows from the = × sin76º opposite help decide sin76º angles tosin63º which parts of the sine rule to use. 7 x = × sin76º sin63º x = 7.6 cm P Example 2: Find the length of PR 82º x r 43º q 55º Q p p 15cm R q = sinP sinQ Draw15 arrows from thexsides to the sin43º × opposite angles = to help decide× sin43º sin43º sin82º which parts of the sine rule to use. 15 = x sin43º × sin82º x = 10.33 cm B 1. 3. G 2. F 53º A 41º x 5.5 62º 28º D 130º E x 8.0 63º 76º H 26 mm C 4. P 10.7 x 5. 37º 66º 35.3 x 61º R 6. 57º x 5.2 77º 35º 62º Q 85º 7. 65º x 6.6 86º x 6.9 I Remember: • • • • Draw a diagram Label the sides Set out your working exactly as you have been shown Check your answers regularly and ask for help if you need it Finding an Angle The Sine Rule can also be used to find an angle, but it is easier to use if the rule is written upside-down! Alternative form of the Sine Rule: sinA a = sinB = b sinC c C Example 1: b Find the size of angle ABC 6cm a 4cm xº 72º A B c sinA sinB = a 4× 4× b sin72º sin xº Draw arrows from the sides = × 4 to the 6 opposite angles 4to help decide which parts of the sine rule to use. sin72º = sin xº 6 sin xº = 0.634 x = sin-1 0.634 = 39.3º P Example 2: Find the size of angle PRQ 85º q r xº R p 8.2cm sinP sinR = p sin85º 7× Q sin xº = 8.2 r 7 ×7 sin85º 7× = 8.2 sin xº sin xº = 0.850 x = sin-1 0.850 = 58.3º 1. 2. 3. 82º 47º 105º 66.6 xº 37.6 xº 45.5 xº 6 cm 5. 4. xº 31.0 27º 3.5 km xº 51.1 33º 6. 7. xº 57.7 74º 70º 92.1 xº 52.3º (←Be careful!→) 22.9º Remember: • • • • Draw a diagram Label the sides Set out your working exactly as you have been shown Check your answers regularly and ask for help if you need it
© Copyright 2026 Paperzz