Self-Ruled Fuzzy Logic Based Controller K. Oytun Yapıcı Istanbul Technical University Mechanical Engineering System Dynamics and Control Laboratory Presentation Outline CONTROLLER STRUCTURE 1 – Mapping of Inputs to the Interval [0 1] 2 – Mapping of Outputs to the Interval [0 1] 3 – Obtaining the Output from the Controller 4 – The Rules Consisted Inherently in the Structure 5 – Weighting Filter 6 – Tuning of the Controller APPLICATION EXAMPLE 1 – QUADROTOR APPLICATION EXAMPLE 2 – INVERTED PENDULUM APPLICATION EXAMPLE 3 – BIPEDAL WALKING INTRODUCTION Mapping of concept temperature to the interval [0 1] with membership functions very cold cold warm hot very hot 1 0 45 60 70 75 85 95 105 115 (°C) Mapping of Inputs to the Interval [0 1] Mapping of concept temperature to the interval [0 1] very hot very cold 1 1 cold hot warm warm 0.5 0.5 cold hot very hot 0 0 45 60 70 75 85 95 105 115 (°C) very cold 45 60 70 75 85 95 105 115 (°C) • Concepts are modelled as a whole with one curve. • Logical 0 and logical 1 are assigned to the poles of the concepts, hence there can be two possible mappings. • The shape of the curves will be in the form of increasing or decreasing. 1 Mapping of Outputs to the Interval [0 1] Mapping of voltage to the interval [0 1] PB 1 PM 0.5 P N NM 0 NB -12 0 12 (V) • There are not any horizontal lines at the output curve hence the controller output will be unique. 2 Obtaining the Output from the Controller 1 a 0.5 0 2 Output Input 2 1 0.5 (a+b)/2 b 0 1 Input 1 U1 U U2 Output • Every input is intersected with the curve assigned to it and obtained values are conciliated by taking the arithmetic average. • Obtained single logical value is intersected with the output curve which will yield the corresponding output value assigned to this logical value. 3 • The procedure is same in case of there are more than two inputs. The Rules Consisted Inherently in the Structure PB 1 Z PM NM 0.5 P 1 NM 0.5 PM NB 0 -90 -60 -40 0 40 60 90 1 N 0 N -1 0 1 Output Error 1 Z 0.5 0.5 P 0 0 -20 0 20 Change in Error 4 -1 0 Output • If the error is PB [1] and the change in error is N [1] then the output will be P [1] • If the error is NB [0] and the change in error is N [1] then the output will be Z [0.5] • If the error is Z [0.5] and the change in error is Z [0.5] then the output will be Z [0.5] • If the error is Z [0.5] and the change in error is N [1] then the output will be PM [0.75] 1 Weighting Filter PB 1 Z 1 PM 0.8 0.5 NM 0.5 NB 0 0 -90 -60 -40 0 40 60 90 -1 0 Error U1 1 Output Input 1 N 1 1 Z 0 0.1 1 1 (0.1*0.8+0.4)/(1+0.1) 0.5 0.4 P 0 0 -20 0 Change in Error Input 2 0 20 -1 Weighting Filter U2 U 0 U1 1 Output IF the change in error is POSITIVE THEN reduce the importance of the error 5 Tuning of the Controller Tuning of the Inputs Proposed FLC Conventional FLC P N 1 N 0 10 10 0 N NM Z PM P PM N -10 0 10 10 0 N NM Z PM P Z 0.5 NM N 0 10 0 5 -5 0 5 0.5 0.5 0 -10 -5 1 1 PM 5 0 0 -10 P 1 0 0.5 0.5 NM -5 1 1 0.5 -10 0 0 -10 P Z 6 1 0.5 1 0 P Z -10 0 Z 1 0.5 0 Tuning of the Output 0 0 10 Application Example 1 - Quadrotor Z Fz Total Thrust θ Fx X Y • Angular motions will be controlled with 3 SRFLCs, X and Y motion will be controlled through the angles θ and ψ with 2 SRFLCs, Z motion will be controlled with 1 SRFLC. Force to moment scaling factor : Propeller Forces 1 x 2 y z 4 3 7 Rotate Left Rotate Right Move Right Going Up Application Example 1 - Quadrotor e Signal 1 fcn U 1 de e theta fcn de X desired X FLC Y desired Signal 1 Phi desired fcn U 2 Y FLC U2 Z psi e fcn U 3 In1 de de Y Theta FLC e fcn psi eY , deY de eT , deT e In1 de e de In1 de eX , deX e Signal 1 Saturation Z FLC e e In1 U1 de eZ, deZ Z desired Signal 1 X e In1 ePsi, dePsi de Psi FLC e e de de fcn U 1 In1 ePhi , dePhi U3 theta U4 phi Phi FLC Quadrotor Model 8 Z Controller Structure INPUTS OUTPUT Error CONTROL SURFACE 50 U1 0 -50 2 1 0.5 0 9 Change in Error 0 de -0.5 -2 -1 e X and Y Controller Structure INPUTS OUTPUT Error CONTROL SURFACE 1 0.5 theta ,psi 0 -0.5 -1 2 1 1 0.5 0 0 10 Change in Error de -1 -0.5 -2 -1 e θ and ψ Controller Structure INPUTS OUTPUT Error CONTROL SURFACE 500 U2 ,U3 0 -500 4 2 2 0 0 11 Change in Error de -2 -2 -4 e Φ Controller Structure INPUTS OUTPUT Error CONTROL SURFACE 2000 U4 0 -2000 2 1 0.5 0 0 de 12 Change in Error -0.5 -2 -1 e Rule Bases 1 500 50 2000 0.5 U1 0 theta ,psi 0 U2 ,U3 0 U4 -0.5 -1 -50 2 2 4 1 1 1 0.5 de -0.5 -2 de -1 e -0.5 0.5 de 0 -2 -2 -2 -1 de e -0.5 0.5 -1 10 2 -500 50004 1 2 0 0 -1 -2 -0.5 0.5 -1 0 1 2 0 0 -2 -2 -2 -1 -0.5 0 0.5 1 -4 -1 -0.5 0 0.5 1 -2 e White – Strictly PB output Black – Strictly NB output Gray – Strictly Z output 13 e -1 2 de -0.5 -2 -4 -1 -50 500 0 0 e 1 2 0 0 0 2 2 0.5 0 0 U1 0 -2000 -500 0 2 -1 -0.5 0 0.5 1 Quadrotor Simulation 1 14 z y x Quadrotor Simulation 2 15 z y x Application Example 2 – Inverted Pendulum Negative Positive Region Region Negative Positive 0.5 Region Region F 0-1 • There is a logical switch point at angle ±pi which must be considered. • Logical 1 and Logical 0 are assigned to the same angle of the pendulum. Hence the controller will lock up at the angle ±pi. x Cart -9 Reference Add du /dt xdot FLC output U theta Pendulum Saturation du /dt thetadot Self -Ruled Fuzzy Logic Controller Inverted Pendulum out 16 PA in Logical Switching Application Example 2 – Inverted Pendulum INPUTS WEIGHTING FILTERS OUTPUT Distance error Velocity error IF the pendulum angle or angular velocity is PB-NB THEN reduce the importance of the distance error and velocity error Pendulum angle error 17 Pendulum angular velocity error distance weight velocity weight Inverted Pendulum Simulation 1 θ0=0.9rad , Xd=-9m , Fmax=10N 18 Inverted Pendulum Simulation 2 θ0=3rad , Xd=-9m , Fmax=10N 19 Inverted Pendulum Simulation 3 Xd=Sinusoidal Amp=9m , Fmax=10N , Disturbance(±1N) , Noise(±0.1rad) 20 Application Example 3 – Bipedal Walking du Angle error 21 Angular velocity error SRFLC 1/s u + + Torque CONCLUSION • Obtaining the output from the controller is computationally efficient. • The controller has guaranteed continuity at the output. • Due to the simple and systematic nature of the structure applications with multi-input controllers will be easier. • The structure may not be as flexible as conventional FLCs. • The controller can be tuned with a trial and error method however there is a need to make the controller adaptive. THANKS FOR YOUR ATTENTION
© Copyright 2026 Paperzz