Chapter 07.02 Trapezoidal Rule for Integration-More Examples Mechanical Engineering Example 1 A trunnion of diameter 12.363 has to be cooled from a room temperature of 80F before it is shrink fit into a steel hub (Figure 1). Figure 1 Trunnion to be slid through the hub after contracting. The equation that gives the diametric contraction, in inches of the trunnion in dry-ice/alcohol (boiling temperature is 108F ) is given by: 108 D 12.363 1.2278 10 11 T 2 6.1946 10 9 T 6.015 10 6 dT 80 a) Use single segment Trapezoidal rule to find the contraction. b) Find the true error, E t , for part (a). c) Find the absolute relative true error for part (a). Solution a) f a f b I b a , where 2 a 80 b 108 f T 12.363 1.2278 10 11T 2 6.1946 10 9 T 6.015 10 6 f 80 12.363 1.2278 10 11 80 2 6.1946 10 9 80 6.015 10 6 7.9519 10 5 2 f 108 12.363 1.2278 10 11 108 6.1946 10 9 108 6.015 10 6 07.02.1 07.02.2 Chapter 07.02 6.4322 10 5 7.9519 10 5 6.4322 10 5 I 108 80 2 0.013521 in b) The exact value of the above integral is 108 D 12.363 1.2278 10 11 T 2 6.1946 10 9 T 6.015 10 6 dT 80 0.013689 in so the true error is Et True Value Approximat e Value 0.013689 0.013521 0.00016810 c) The absolute relative true error, t , would then be True Error 100 % True Value 0.00016810 100 % 0.013689 1.2280 % t Example 2 A trunnion of diameter 12.363 has to be cooled from a room temperature of 80F before it is shrink fit into a steel hub (Figure 1). The equation that gives the diametric contraction, in inches of the trunnion in dry-ice/alcohol (boiling temperature is 108F ) is given by: 108 D 12.363 1.2278 10 11 T 2 6.1946 10 9 T 6.015 10 6 dT 80 Use two segment Trapezoidal rule to find the contraction. a) Find the true error, E t , for part (a). b) Find the absolute relative true error for part (a). Solution a) The solution using 2-segment Trapezoidal rule is ba n1 I f ( a ) 2 f (a ih ) f (b) 2n i 1 n2 a 80 b 108 ba h n 108 80 2 Trapezoidal Rule for Integration-More Examples: Mechanical Engineering 94 108 80 21 I f 80 2 f a ih f 108 22 i 1 188 f 80 2 f 80 1 94 f 108 4 188 f 80 2 f 14 f 108 4 47 7.9519 10 5 27.3262 10 5 6.4322 10 5 0.013647 in b) The exact value of the above integral is 108 D 12.363 1.2278 10 11 07.02.3 T 2 6.1946 10 9 T 6.015 10 6 dT 80 0.013689 in so the true error is Et True Value Approximat e Value 0.013689 0.013647 0.000042026 in c) The absolute relative true error, t , would then be True Error 100 % True Value 0.000042026 100 % 0.013689 0.30700 % t Table 1 Values obtained using multiple-segment Trapezoidal rule for 108 D 12.363 1.2278 10 11 T 2 6.1946 10 9 T 6.015 10 6 dT 80 n Value Et 1 2 3 4 5 6 7 8 0.013521 0.013647 0.013670 0.013679 0.013682 0.013684 0.013686 0.013687 0.00016810 4.2026 10 5 1.8678 10 5 1.0506 10 5 6.7241 10 6 4.6695 10 6 3.4307 10 6 2.6266 10 6 t % 1.2280 0.30700 0.13644 0.076750 0.049120 0.034111 0.025061 0.019188 a % --0.92328 0.16825 0.059740 0.027644 0.015014 0.0090522 0.0058749
© Copyright 2025 Paperzz