Exotic Branes, Double Bubbles, & Superstrata Masaki Shigemori (KMI Nagoya) Saclay, 15 Nov 2011 with Iosif Bena, Jan de Boer, Stefano Giusto & Nick Warner 1004.2521, 1107.2650, 1110.2781 Claim: Generic microstates of black holes involve exotic branes and thus are non-geometric. Exotic branes 3 Exotic branes “Forgotten” branes in string theory [9707217 Elitzur+Giveon+Kutasov+Rabinovici] [9712047 Blau+O’Loughlin] [9809039 Obers+Pioline] 3 Exotic branes 3 “Forgotten” branes in string theory Co-dimension 2 codim-2 hypersurface Exotic branes “Forgotten” branes in string theory Co-dimension 2 Charge = U-duality monodromy Jump by a U-duality as one goes around it Generalization of F-theory 7-branes 3 Exotic branes “Forgotten” branes in string theory Co-dimension 2 Charge = U-duality monodromy Non-geometric Even metric can jump! “U-fold” 3 Supertube effect — “bubbling” 4 Supertube effect — “bubbling” Spontaneous polarization phenomenon [Mateos+Townsend] puffs up F1(1) 𝑥 1 D0 D2(1ψ) 𝑥1 𝜓 New dipole charge created 4 Supertube effect — “bubbling” Spontaneous polarization phenomenon Exotic puff-ups F1 1 + D0 → D2(1𝜓) U-dual D4 6789 + D4 4589 → 522 (4567𝜓, 89) Ordinary branes can generate exotic ones! 4 standard brane exotic brane Supertube effect — “bubbling” 4 Spontaneous polarization phenomenon Exotic puff-ups Exotic branes: ubiquitous Important for generic non-perturbative physics of string theory! Notable example: black hole “Single bubbling” 2-charge system (“small” BH) D1(5) D5(56789) KKM(6789𝜓;5) puff up 𝜓 1-dim curve ∈ ℝ4 geometric microstates (Lunin-Mathur) 𝑆micro = 𝑆geom 5 “Double bubbling” 3-charge system: real BH M2(56) M2(78) M2(9A) 6 M5(789A𝜓) M5(569A𝜓) M5(5678𝜓) 53(789A𝜙,56𝜓) 53(569A𝜙,78𝜓) 53(5678𝜙,9A𝜓) 1-dim curve “supertube” 2-dim surface ∈ ℝ4 “superstratum” cf. black ring non-geometric microstates ? 𝑆micro = 𝑆nongeom Endless puffing-up?? ⋮ ? ⋮ Presumably, a black hole is made of an extremely complicated structure (fuzzball) of exotic branes. 7 ...Really? Susy in supertube [Bena+de Boer+Warner+MS 1107.2650] supertube F1+D0 Preserves 1 1 1 × = susy 2 2 4 F1+D0 +D2+P 1 2 Locally BPS 1 2 Which is preserved depends on local orientation Common susy preserved = 1 original susy 4 This is why supertube can be along an arbitrary curve. 8 Susy in superstratum superstratum 3-charge sys. Preserves 1 1 1 1 × × = susy 2 2 2 8 1 2 Locally BPS 1 Which is preserved 2 depends on local orientation Common susy preserved = 1 original susy 8 If true, superstratum can be along an arbitrary surface in principle! 9 Example: F1-P D2 F1 P Susy preserved by original config: Π𝐹1(𝑧) 𝒬 = Π𝑃(𝑧) 𝒬 = 0, 𝑄 𝒬= 𝑄 1 Π𝐹1(𝑧) = 1 + Γ 0𝑧 𝜎3 2 1 Π𝑃(𝑧) = 1 + Γ 0𝑧 2 10 Tilted and boosted F1-P Projector after puffing up: 1 Π = [1 − 𝑠 𝑐Γ 0𝜓 − 𝑠Γ 01 + 𝑐 𝑐Γ 01 + 𝑠Γ 0𝜓 𝜎3 ] 2 = 𝑐 𝑐 + 𝑠Γ 𝑧𝜓 Π𝐹1 𝑧 𝑐 = cos 𝛼, + 𝑠 𝑠 − 𝑐Γ 𝑧𝜓 𝜎3 Π𝑃 𝑠 = sin 𝛼. Same ¼ susy preserved 𝑧 , General formula for 12 puff-up Projectors before puffing up: 1 Π1 = 1 + 𝑃1 , 2 Projector after puffing up: 1 Π2 = 1 + 𝑃2 2 𝜓 1 Π = [1 + 𝑐 2 𝑃1 + 𝑠 2 𝑃2 − 𝑠𝑐Γ 0𝜓 + 𝑠𝑐Γ 0𝜓 𝑃1 𝑃2 ] 2 = 𝑐 𝑐 − 𝑠Γ 0𝜓 Π1 + 𝑠 𝑠 − 𝑐Γ 0𝜓 Π2 + 2𝑠𝑐Γ 0𝜓 Π1 Π2 11 D1-D5-P (1) D1 D5 P Original config. Infinite straight supertube = tilted and boosted D1-D5 puffs up just like D1-D5 KKM (LM geom.) 12 Infinite straight superstratum Special case; superstratum is purely geometric D1-D5-P (2) D1 D5 P 1 1 + Γ 0𝑧 𝜎1 2 1 Π2 = 1 + Γ 01234𝑧 𝜎1 2 1 Π3 = 1 + Γ 0𝑧 2 Π1 = Π𝑖 = 1 1 + 𝑃𝑖 2 𝑃1 = 𝑐1 𝑐2 Γ 0𝑧 𝜎1 + 𝑠1 𝑠2 Γ 01234𝑧 𝜎1 + 𝑐1 𝑠2 𝛤 0𝜃 − 𝑠1 𝑐2 𝛤 01234𝜃 𝑃2 = 𝑠1 𝑠2 Γ 0𝑧 𝜎1 + 𝑐1 𝑐2 Γ 01234𝑧 𝜎1 − 𝑠1 𝑐2 𝛤 0𝜃 + 𝑐1 𝑠2 𝛤 01234𝜃 Γ 𝑧 = 𝑐3 Γ 𝑧 + 𝑠3 Γ 𝜃 , Γ 𝜃 = 𝑐3 Γ 𝜃 − 𝑠3 Γ 𝑧 1 Π = (1 + 𝑠42 𝑃1 + 𝑐42 𝑃2 2 −𝑠4 𝑐4 Γ 0𝜓 + 𝑠4 𝑐4 Γ 0𝜓 𝑃1 𝑃2 ) Same 1/8 susy preserved 13 Toward backreacted strata Dynamics of superstrata Arbitrary surface possible? 6D sugra (D1-D5-P) Linear problem if solved in the right order [Gutowski+Martelli+Reall] [Cariglia+Mac Conamhna] [Bena+Giusto+Warner+MS 1110.2781] 𝑥 5 -dep 4D almost HK base, functions & forms on it Given superstrum data, should be possible to find solutions 𝑥 = 𝐹𝑖 𝑡 − 𝑥 5 E.g. D1-D5-Pd1-d5 supertube 14 More general superstrata Non-geometric (exotic) superstrata More general superstrata Locally geometric Generalize susy sol’n ansatz Generalized geometry, DFT [Berman, Hohm, Hull, Perry, Zwiebach, …] 15 Conjecture: Generic microstates of black holes involve non-geometric superstrata. Thanks!
© Copyright 2026 Paperzz