3 Formulas for Riemann Zeta at odd number
Formulas for Zeta at odd number obtained in " 1 Zeta Generating Functions " were automorphisms which were
expressed by the lower zetas. In this chapter, removing the lower zetas, we obtain the explicit formulas.
3.1 Formulas of cot x family
Formula 3.1.1
When
B0=1, B2=1/6, B4=-1/30, B6=1/42,
Harmonic numbers, the following expressions hold for
s
are Bernoulli numbers and
0 < x < 2
Hs =Σ1/t
are
t=1
.
2s
22s-2B2s (rx) sin rx
1 n
s
(2n +1) = - ΣΣ(-1)
x r=1 s=0
(2s)!
r 2n+2
2s
2s
n
2 -2B2s H2n+1-2s
2 -2B2s
B2rx
+ΣΣ
Σ
2r
s=0 (2s )!(2n +1-2s ) !
r=1 s=0 (2s )!(2n +1+2r -2s ) !
n 2n
+(-1) x
x =
(2n +1) =
Especially when
(-1)
n
2r
,
2s
2s
2 -2B2s H2n+1-2s n
2 -2B2s
B2r
+ΣΣ
Σ
2r
s=0 (2s )!(2n +1-2s ) !
r=1 s=0 (2s )!(2n +1+2r -2s ) !
2n
n
n
2r
Proof
We obtained the following Riemann Zeta in Formula1.4.3 in 1.4 .
2r+2
B 2r x
1 sin rx x 2
(3) =
log x -H3+
3!
x r=1 r 4
r =1 2r(2r +3)!
Σ
Σ
1 sin rx x 4
(5) = Σ 6 +
log x -H5 -Σ
5!
x r=1 r
r =1
B2rx
2r+4
2r(2r +5)!
+
x2
(3)
3!
2r+6
B2r x
1 sin rx x 6
x2
x4
+
(7) = Σ 8 (5) (3)
log x -H7 +Σ
7!
3!
5!
x r=1 r
r =1 2r(2r +7)!
2r+8
B2rx
1 sin rx x 8
x4
x6
x2
(9) = Σ 10 + log x -H9 -Σ
+
(7)(5)+
(3)
x r=1 r
5!
7!
9!
3!
r =1 2r(2r +9) !
Substituting
(k)
for the below one by one, we obtain
1 n -1
sin rx
(-1)sCs x 2s 2n+2-2s
Σ
Σ
x r=1 s=0
r
n -1
Cs
- (-1)nx 2nΣ
log x -H2n+1-2s
s=0 (2n +1-2s)!
2r
Cs
n -1
B2rx
n 2n
+ (-1) x ΣΣ
2r
r =1 s=0 (2n +1+2r -2s)!
(2n +1) = -
Where,
Cs
are rational numberes as follows.
C0 = -1 , C1 =
1
1
1
1
, C2 =
, C3 =
3!
5! 3!3!
7!
-1-
1
1
1
,
+
+
3!3!3!
3!5! 5!3!
C4 =
1
9!
1
1
1
+
+
+
3!7! 5!5! 7!3!
1
1
1
1
+
+
3!3!3!3!
3!3!5! 3!5!3! 5!3!3!
In fact, these are the coefficients of Taylor series of csc x, and are given by
number as follows.
22s-2
Cs =
B
(2s)! 2s
22s , factorial and Bernoulli
s =0, 1, 2,
Substituting this for the above,
2s
22s-2B2s (rx ) sin rx
1 n -1
2n
s
(2n +1) = - ΣΣ(-1)
- (-1)nx
2n+2
x r=1 s=0
(2s)!
r
2s
1 sin rx
2
xΣ
r=1 r
2s
2s
n -1
2 -2B2s
2 -2B2s
B2sx
log x -H2n+1-2s-ΣΣ
Σ
2r
s =0 (2s )!(2n +1-2s ) !
r =1 s =0 (2s )!(2n +1+2r -2s ) !
n -1
The inside of the parenthesis of the right side can be transformed as follows.
2s
2s
n -1
2 -2B2s
2 -2B2s
B2sx
log x -H2n+1-2s -ΣΣ
Σ
2r
s =0 (2s )!(2n +1-2s ) !
r =1 s =0 (2s )!(2n +1+2r -2s ) !
n -1
n -1
=Σ
s=0
2s
2s
2s
n -1 2 -2B2s H2n+1-2s
2 -2B2s log x
(2s)!(2n +1-2s) ! Σ
s=0 (2s )!(2n +1-2s ) !
2s
2 -2B2s
B2rx
- ΣΣ
2r
r =1 s =0 (2s )!(2n +1+2r -2s ) !
n -1
2r
2r
2n
2 -2B2n B2rx
+
(2n )! Σ
r =1 2r(1+2r) !
Here, from Lemma 3.4.1 and Lemma 3.4.2c ,
n -1
Σ
s=0
2s
2n
2 -2B2s
2 -2B2n
=(2s)!(2n +1-2s) !
(2n)!
B2rx
2r
Σ
r=1 2r(2r +1) !
= log x - 1 +
1 sin rx
xΣ
r=1
r2
Using these,
2s
2s
n -1
2 -2B2s
2 -2B2s
B2sx
log x -H2n+1-2s -ΣΣ
Σ
2r
s =0 (2s )!(2n +1-2s ) !
r =1 s =0 (2s )!(2n +1+2r -2s ) !
n -1
2s
2n
2s
n -1 2 -2B2s H2n+1-2s
2 -2B2n
log x - Σ
=(2n )!
s=0 (2s )!(2n +1-2s ) !
n
- ΣΣ
r =1 s=0
2s
2 -2B2s
B2rx
(2s)!(2n +1+2r -2s) ! 2r
2r
2n
2 -2B2n
+
(2n)!
log x -1+
i.e.
2s
2s
n -1
2 -2B2s
2 -2B2s
B2sx
log
x
-H
2n+1-2s ΣΣ
Σ
2r
s =0 (2s )!(2n +1-2s ) !
r =1 s =0 (2s )!(2n +1+2r -2s ) !
n -1
n
= -Σ
s=0
2s
2s
n
2 -2B2s H2n+1-2s
2 -2B2s
B2rx
- ΣΣ
2r
(2s)!(2n +1-2s) !
r =1 s=0 (2s)!(2n +1+2r -2s) !
2n
1 2 -2B2n sin rx
+
x
(2n )! Σ
r=1
r2
Substituting this in the above parenthesis
-2-
2r
2s
2s
22s-2B2s (rx )
1 n -1
s
(2n +1) = - ΣΣ(-1)
x r=1 s=0
(2s)!
-Σ
n
s=0
sin rx
r
2n+2
- (-1)nx
2n
2s
2s
n
2 -2B2s H2n+1-2s
2 -2B2s
B2rx
- ΣΣ
2r
(2s)!(2n +1-2s) !
r=1 s=0 (2s )!(2n +1+2r -2s ) !
2r
2n
1 2 -2B2n sin rx
+
x
(2n)! Σ
r=1
r2
2s
2n
2n
sin rx
22s-2B2s (rx) sin rx
1 n -1
(-1)n 2 -2B2n x
s
= - ΣΣ(-1)
Σ
x r=1 s=0
x
(2s)!
(2n )!
r=1
r 2n+2
r2
n 2n
+(-1) x
2s
2s
2 -2B2s H2n+1-2s n
2 -2B2s
B2rx
+
Σ
Σ
Σ
2r
s=0 (2s )!(2n +1-2s ) !
r=1 s=0 (2s )!(2n +1+2r -2s ) !
n
2r
2r
Here,
2n
2 -2B2n x
(-1)
Σ
(2n)!
r=1
2n
n
sin rx
r
2
2n
2n
2 -2B2n (rx )
= Σ(-1)
(2n)!
r=1
n
sin rx
r
2n+2
Thus,
2s
22s-2B2s (rx)
1 n
s
(2n +1) = - ΣΣ(-1)
x r=1 s=0
(2s)!
n 2n
+(-1) x
sin rx
r 2n+2
2s
2s
n
2 -2B2s H2n+1-2s
2 -2B2s
B2rx
+ΣΣ
Σ
2r
s=0 (2s )!(2n +1-2s ) !
r=1 s=0 (2s )!(2n +1+2r -2s ) !
n
Note
When
x = ,
the convergence speed of this formula is the fastest in the Trigonometric functions family.
Example 1
(5) =
4
1
1
7
269
+Σ +
21600 r=1 (2r +5)! 6(2r +3)! 360(2r +1)!
B2r
2r
2r
Example 2 (7)
According to the formula at
x =
this is calculated. As the result of calculating the series to the 12 th term,
the significant 10 digits were obtained.
Formula 3.1.2
s
Let
Hs =Σ1/t
be Harmonic number, and let Bernoulli numbers and Euler numbers are as follows.
t=1
B0=1, B2=1/6, B4=-1/30, B6=1/42, B8=-1/30,
-3-
E0=1, E2=-1,
E4=5,
Then, the following expression holds for
n
E2s(rx)
Σ
n
s=0
E8=1385,
.
cos rx
r 2n+1
(2s)!
r=1 s=0
-(-1) x
0 < x < 2
2s
(2n +1) = ΣΣ
n 2n
E6=-61,
2r
n
E2s H2n-2s
E2s
B2rx
+ Σ
2r
(2s)!(2n -2s) ! Σ
r=1 s=0 (2s )!(2n +2r -2s ) !
Proof
We obtained the following Riemann Zeta in Formula1.4.3 in 1.4 .
(3) = Σ
r=1
(5) = Σ
r=1
(7) = Σ
r=1
(9) = Σ
r=1
2r+2
B2r x
cosrx x 2
log x -H2 +Σ
2!
r =1 2r(2r +2)!
r3
2r+4
B2r x
cosrx x 4
x2
+
+
(3)
log x H4 Σ
4!
2!
r =1 2r(2r +4)!
r5
cosrx x 6
+
log
x
H
Σ
6
6!
r =1
r7
cosrx x 8
+
log
x
H
Σ
8
8!
r =1
r9
B2rx
2r+6
2r(2r +6)!
+
x2
x4
(5) (3)
2!
4!
2r+8
x4
x6
x2
+
(7)(5)+
(3)
4!
6!
2r(2r +8) ! 2!
B2rx
Substituting
(k)
(2n +1)
for the below one by one, we obtain
2s
n -1
n -1 C s x
n 2n
+
-1
=
(
)
cosrx
x
2n+1-2s
r=1 s=0
s=0
ΣΣ
Σ
r
n 2n
- (-1) x
Where,
Cs
(-1)sCs
log x -H2n-2s
(2n -2s)!
n -1
Σ
Σ
r =1 s=0
2r
(-1)sCs
B2rx
2r
(2n +2r -2s)!
are rational numberes as follows.
1
1
1
1
1
1
1
1
, C1 =
, C2 = , C3 =
,
+
+
+
0!
2!2!2!
2!
4! 2!2!
6!
4!2! 2!4!
1
1
1
1
1
1
1
1
C4 = +
+
+
+
+
+
8!
2!2!2!2!
6!2! 4!4! 2!6!
4!2!2! 2!4!2! 2!2!4!
C0 =
According to Mr. Sugimoto , these are given by the following expression.
Cs = (-1)s
E2s
E2s
=
(2s)!
(2s)!
s =0, 1, 2,
Substituting this for the above,
n -1
(2n +1) = ΣΣ
r=1 s=0
Σ
n -1
s=0
2s
E2s(rx)
(2s)!
cos rx
r
2n+1
+ (-1)nx
2n
2r
n -1
E2s log x -H2n-2s
E2s
B2rx
-ΣΣ
2r
(2s)!(2n -2s) !
r=1 s=0 (2s )!(2n +2r -2s ) !
The inside of the parenthesis of the right side can be transformed as follows.
-4-
n -1
Σ
s=0
n -1
E2s log x -H2n-2s
E2s
B2rx
-ΣΣ
2r
(2s)!(2n -2s) !
r=1 s=0 (2s )!(2n +2r -2s ) !
n -1
n -1
E2s log x
E2s H2n-2s
=Σ
-Σ
s=0 (2s )!(2n -2s ) !
s=0 (2s )!(2n -2s ) !
E2s
B2rx
2r
(2s)!(2n +2r -2s) !
n
- ΣΣ
r =1 s=0
2r
2r
2r
E2n B2rx
+
(2n)! Σ
r =1 2r(2r) !
Here, from Lemma 3.4.1 and Lemma 3.4.2c ,
n -1
Σ
s=0
E2s
E2n
=(2s)!(2n -2s) !
(2n )!
B2rx
2r
Σ
r=1 2r(2r ) !
= log x + Σ
r=1
cos rx
r
Using these,
n -1
Σ
s=0
n -1
E2s log x -H2n-2s
E2s
B2rx
-ΣΣ
2r
(2s)!(2n -2s) !
r=1 s=0 (2s )!(2n +2r -2s ) !
-1
n
E2s H2n-2s
E2n
log x - Σ
=(2n)!
s=0 (2s )!(2n -2s ) !
2r
cos rx
E2n
E2s
B2rx
log x + Σ
+
r
2r
(2n)!
(2s)!(2n +2r -2s) !
r=1
n
- ΣΣ
r =1 s=0
Since
n -1
Σ
s=0
2r
H2n-2n = 0 ,
n -1
E2s log x -H2n-2s
E2s
B2rx
-ΣΣ
2r
(2s)!(2n -2s) !
r=1 s=0 (2s )!(2n +2r -2s ) !
2r
2r
n
E2s H2n-2s
E2s
E2n cos rx
B2rx
= -Σ
-ΣΣ
+
r
2r
(2n )!Σ
s=0 (2s )!(2n -2s ) !
r=1
r =1 s=0 (2s )!(2n +2r -2s) !
n
Substituting this in the above parenthesis
2s
E2s(rx)
n -1
(2n +1) = ΣΣ
(2s)!
r=1 s=0
n 2n
- (-1) x
Σ
n
s=0
cos rx
r 2n+1
2n
cos rx
(-1)nE2n x
+
Σ
r
(2n)!
r=1
2r
n
E2s H2n-2s
E2s
B2rx
+ Σ
2r
(2s)!(2n -2s) ! Σ
r=1 s=0 (2s )!(2n +2r -2s ) !
Here,
(-1)nE2n x
(2n )!
2n
Σ
r=1
2n
cos rx
cos rx
E2n(rx )
=
Σ
2n+1
r
(2n)!
r=1 r
Thus,
2s
n
(2n +1) = ΣΣ
E2s(rx)
r=1 s=0
n 2n
-(-1) x
Σ
n
s=0
(2s)!
cos rx
r
2n+1
n
E2s H2n-2s
E2s
B2rx
+ΣΣ
2r
(2s)!(2n -2s) ! r=1 s=0 (2s)!(2n +2r -2s) !
2r
Example (7)
When x =1/64, this is calculated according to the formula. As the result of calculating the series to the 24 th
term, the significant 10 digits were obtained.
-5-
-6-
3.2 Formulas of tan x family
Formula 3.2.1
Let Bernoulli numbers and Tangent numbers are as follows.
B0=1, B2=1/6, B4=-1/30, B6=1/42, B8=-1/30,
T1=1, T3=2,
Then, the following expression holds for
22n
(2n +1) =
22n-1
- (-1) x
x =
(2n +1) =
0< x
.
2s
2s
s
1 n (-1) B2s 2 -2(rx) (-1)rsin rx
Σ
(2s)!
xΣ
r=1 s=0
r 2n+2
n 2n
Especially when
T7=272 , T9=7936 ,
T5=16,
n
Σ
Σ
r =1 s=0
22s-2B2s
22r-1B2rx 2r
2r
(2s)!(2n +1+2r -2s)!
,
2n
(-1)n-1(2)
22n-1
n
Σ
Σ
r =1 s =0
22s-2B2s
(2s)!(2n +1+2r -2s)!
T
2r-1
2
2r
Proof
We obtained the following Riemann Zeta in Formula1.5.3 in 1.5 .
2r
2 -1B 2r
1
r-1 sin rx
+
(1) =
(-1)
2
2r(2r +1)!
x
Σ
r=1
r
Σ
r=1
x 2r
2r
2 -1B 2r
1
x2
r-1 sin rx
2r+2
-Σ
+
(3) = Σ(-1)
(1)
x
3!
2r(2r +3)!
x r=1
r=1
r4
2r
2 -1B 2r
1
x2
x4
r-1 sin rx
2r+4
+Σ
+
(5) = Σ(-1)
(3)(1)
x
3!
2r(2r +5)!
5!
x r=1
r=1
r6
(7) =
2r
2
4
6
2 -1B2r
1
x
x
x
2r+6
r-1 sin rx
x
(5)(3)+
(1)
-Σ
+
(-1)
8
xΣ
5!
7!
3!
r=1
r=1 2r(2r +7) !
r
Substituting
(k)
for the below one by one, we obtain
r-1
1 n
sin rx
2s (-1)
s
(2n +1) = - ΣΣ(-1) Cs x
x r=1 s=0
r 2n+2-2s
n 2n
- (-1) x
n
Σ
Σ
r =1 s=0
22r-1B2rx 2r
Cs
2r
(2n +1+2r -2s)!
Where, Cs is the same as the coefficient in Formula 3.1.1 and is given by
Cs =
22s-2
B . Then ,
(2s)! 2s
2s
2s
s
1 n (-1) B2s 2 -2(rx) (-1)rsin rx
(2n +1) = ΣΣ
(2s)!
x r=1 s=0
r 2n+2
-7-
n 2n
Σ
Σ
r =1 s=0
- (-1) x
And using
n
22r22r-1B2r
22s-2B2s
2r
(2s)!(2n +1+2r -2s)!
22r22r-1B2r
22n
(2n +1) = 2n
(2n +1) , T2r-1 =
2r
2 -1
2
2r
, we obtain the desired
expression.
Example1
16
(5) = 15
4
Σ
r=1
1
1
7
+
(2r +5)! 6(2r +3)! 360(2r +1)!
2r
2 -1B2r
2r
2r
Example2 (7)
According to the formula at
x =
this is calculated. As the result of calculating the 3000 terms,
the significant 4 digits were obtained.
As seen in Example2, the convergence of the formula at
Σ
r=1
T2r-1
(2r +1)!
If the formula at
x =
2
2r
x =
22r-1B2r
=Σ
2r(2r +1)!
r=1
is vary slow. Then, from Lemma 3.4.2t ,
2r
= log 2
is transformed as follows using this, the convergence is faster.
Formula 3.2.1'
2
(2n +1) =(-1)n-1 2n
2n
2 -1
n-1
ΣΣ
r =1s =0
2s
2r
2 -2B2s
2 -1B2r
2r
(2s)!(2n +1+2r -2s)!
2r
2n
2 -2B2n
log 2
+
(2n )!
Example2' (7)
The same calculation as Example2 was performed by this formula . As the result of calculating the 55 terms,
the significant 6 digits were obtained.
-8-
Formula 3.2.2
Let Bernoulli numbers and Euler numbers are as follows.
B0=1, B2=1/6, B4=-1/30, B6=1/42, B8=-1/30,
E0=1, E2=-1, E4=5,
E6=-61, E8=1385,
0< x
Then, the following expression holds for
(2n +1) = -
22n
ΣΣ
22n-1
n
2s
E2s(rx)
- (-1) x
2n
(-1)rcosrx
(2s)!
r=1 s=0
n
.
n
Σ
Σ
r =1 s=0
r 2n+1
22r-1B2rx 2r
E2s
2r
(2s)!(2n +2r -2s)!
Proof
We obtained the following Riemann Zeta in Formula1.5.3 in 1.5 .
2r
2 -1B 2r
r-1 cosrx
+
(1) = (-1)
x 2r
1
2r(2r)!
Σ
r=1
Σ
r=1
r
(3) = Σ(-1)
r=1
r-1
(5) = Σ(-1)r-1
r=1
(7) = Σ(-1)
r=1
r-1
2r
2 -1B 2r
cosrx
x2
2r+2
-Σ
+
(1)
x
2!
2r(2r +2)!
r=1
r3
2r
2 -1B 2r
cosrx
x2
x4
2r+4
+Σ
+
(3)(1)
x
2!
2r(2r +4)!
4!
r=1
r5
cos rx
r
7
-Σ
r=1
2r
4
6
2 -1B2r 2r+6 x 2
x
x
x
(5)(3)+
(1)
+
4!
6!
2!
2r(2r +6) !
Substituting
(k)
for the below one by one, we obtain
r-1
cosrx
2s (-1)
(2n +1) =
Cs x
2n+1-2s
r=1 s=0
n
ΣΣ
Where,
Cs
r
22r-1B2rx 2r
+(-1) x ΣΣ(-1) Cs
2r(2r +2n -2s)!
r =1 s=0
n
n 2n
s
is the same as the coefficient in the Formula 3.1.2 and is given by
Cs = (-1)s
E2s
E2s
=
(2s)!
(2s)!
Then,
2s
n
(2n +1) = -ΣΣ
r=1 s=0
E2s(rx)
n 2n
+ (-1) x
And using
(2n +1) =
(2s)!
n
Σ
Σ
r =1 s=0
(-1)rcosrx
r 2n+1
22r-1B2rx 2r
E2s
2r
(2s)!(2n +2r -2s)!
22n
(2n +1) ,
22n - 1
we obtain the desired expression.
-9-
3.3 Formulas of csc x family
Formula 3.3.1
When
B0=1, B2=1/6, B4=-1/30, B6=1/42,
Harmonic numbers, the following expressions hold for
s
Hs =Σ1/t
are Bernoulli numbers and
0< x
are
t=1
.
2s
2s
s
1 n (-1) 2 -2B2s (2r -1) x sin(2r -1) x
(2n +1) = - 2n+1
ΣΣ
2n+2
(2s)!
-1 x r=1 s=0
2
(2r -1)
22n+1
+
(-1)n(2x)
22n+1-1
x =
(2n +1) =
Especially when
2s
2s
2r
2 -2B2s H2n+1-2s n 2 -2B2s 2 -2B2r x 2r
-ΣΣ
Σ
s=0 (2s )!(2n +1-2s ) !
r=1 s=0 (2s )!(2n +1+2r -2s ) ! 2r
2s
2s
2r
2 -2B2s H2n+1-2s n 2 -2B2s 2 -2B2r 2r
-ΣΣ
Σ
s=0 (2s )!(2n +1-2s ) !
r=1 s=0 (2s )!(2n +1+2r -2s ) ! 2r
2n
n
,
(-1)n(2 )
2n
22n+1 - 1
n
Proof
Originally, this should be derived from Formula1.6.3 in 1.6 . However, since it is complicated, we derive this
from the previous two sections. From Formula3.1.1 and Formula3.2.1 ,
2s
22s-2B2s (rx)
1 n
s
(2n +1) = - ΣΣ(-1)
x r=1 s=0
(2s)!
n 2n
+(-1) x
sin rx
r 2n+2
2s
2s
n
2 -2B2s H2n+1-2s
2 -2B2s
B2rx
+ΣΣ
Σ
2r
s=0 (2s )!(2n +1-2s ) !
r=1 s=0 (2s )!(2n +1+2r -2s ) !
n
2s
2s
s
1 n (-1) B2s 2 -2(rx)
(2n +1) = ΣΣ
x r=1 s=0
(2s)!
n 2n
n
Σ
Σ
r =1 s=0
- (-1) x
2r
(-1)rsin rx
r
2n+2
2s
2r
2 -2B2s
2 -1B2rx
2r
(2s)!(2n +1+2r -2s) !
2r
Adding both,
2s
2s
s
1 n (-1) 2 -2B2s (rx) sin rx -(-1)rsin rx
(2n +1) +(2n +1) = - ΣΣ
x r=1 s=0
(2s)!
r 2n+2
+ (-1) x
n
Σ
s=0
n 2n
2s
2 -2B2s H2n+1-2s
(2s)!(2n +1-2s) !
n 2n
- (-1) x
n
Σ
Σ
r =1 s=0
2s
2r
2 -2B2s
2 -2B2rx
2r
(2s)!(2n +1+2r -2s) !
2r
Here,
22n -1
22n+1 - 1
2n
+1
=
(2n +1)
(
)
22n
22n
2s
(-1)s 22s-2B2s (rx ) sin rx -(-1)rsin rx
(2s)!
r 2n+2
(2n +1) +(2n +1) = 1+
n
Σ
Σ
r=1 s=0
n
= 2ΣΣ
r=1 s=0
(-1)s 22s-2B2s (2r -1) x
(2s)!
- 10 -
2s
sin(2r -1) x
(2r -1)
2n+2
Thus,
2s
2s
s
1 n (-1) 2 -2B2s (2r -1) x sin(2r -1) x
(2n +1) = - 2n+1
ΣΣ
2n+2
(2s)!
-1 x r=1 s=0
2
(2r -1)
2s
2s
2r
2n
n 2 -2B2s H2n+1-2s
n 2 -2B2s 2 -2B2r x 2r
(-1)n(2x)
+
-ΣΣ
Σ
s=0 (2s )!(2n +1-2s ) !
r=1 s=0 (2s )!(2n +1+2r -2s ) ! 2r
22n+1-1
22n+1
Note
As seen in the proof, these are the weighted averages of Formula3.1.1 and Formula3.2.1 and are not original
formulas. These are only complicated, and there is not much value.
Formula 3.3.2
s
Let
Hs =Σ1/t
be Harmonic number, and let Bernoulli numbers and Euler numbers are as follows.
t=1
B0=1, B2=1/6, B4=-1/30, B6=1/42, B8=-1/30,
E0=1, E2=-1, E4=5,
E6=-61, E8=1385,
Then, the following expression holds for
22n+1
(2n +1) =
0< x
E2s(2r -1)x
n
ΣΣ
22n+1-1 r=1 s=0
(-1)n (2x )2n
22n+1-1
-
.
(2s)!
2s
cos(2r -1)x
(2r -1)
2n+1
n
E2s H2n-2s
E2s 22r-2B2r x 2r
Σ
Σ
Σ
s =0 (2 s)!(2 n -2 s) !
r =1 s =0 (2 s)!(2 n +2 r -2 s) ! 2 r
n
x = /2 ,
(2n +1) =
Especially when
(-1)n-1 2n
22n+1-1
n
E2s H2n-2s
E2s 22r-2B2r 1
Σ
Σ
Σ
s =0 (2 s)!(2 n -2 s) !
r =1 s =0 (2 s)!(2 n +2 r -2 s) ! 2 r
n
2
2r
Proof
From Formula3.1.2 and Formula3.2.2 ,
2s
n
(2n +1) = ΣΣ
E2s(rx )
(2s)!
r=1 s=0
n 2n
-(-1) x
Σ
n
s=0
cos rx
n
(2n +1) = -ΣΣ
r=1 s=0
2n+1
2r
n
E2s H2n-2s
E2s
B2rx
+ Σ
2r
(2s)!(2n -2s) ! Σ
r=1 s=0 (2s )!(2n +2r -2s ) !
2s
E2s(rx)
(2s)!
n 2n
+ (-1) x
r
n
Σ
Σ
r =1 s=0
(-1)rcos rx
r 2n+1
2r
2r
E2s
2 -1B2rx
2r
(2s)!(2n +2r -2s) !
Adding both,
n
(2n +1) +(2n +1) = ΣΣ
r=1 s=0
n 2n
-(-1) x
2s
E2s(rx)
(2s)!
cos rx -(-1)rcos rx
r
2n+1
2r
2r
n
E2s H2n-2s
E2s
2 -2B2rx
-ΣΣ
Σ
2r
s=0 (2s )!(2n -2s ) !
r=1 s=0 (2s )!(2n +2r -2s ) !
n
- 11 -
Here,
22n+1 - 1
(2n +1)
22n
(2n +1) +(2n +1) =
n
Σ
Σ
r=1 s=0
2s
E2s(rx)
cos rx -(-1)rcos rx
(2s)!
r
2n+1
n
= 2ΣΣ
r=1 s=0
2s
E2s{(2r -1)x}
cos {(2r -1)x}
(2s)!
(2r -1)
2n+1
Thus,
(2n +1) =
22n+1
n
ΣΣ
-1 r=1 s=0
E2s(2r -1)x
2n+1
2
(-1)n (2x )2n
22n+1-1
(2s)!
2s
cos(2r -1)x
(2r -1)
2n+1
n
E2s H2n-2s
E2s 22r-2B2r x 2r
-ΣΣ
Σ
s =0 (2 s)!(2 n -2 s) !
r =1 s =0 (2 s)!(2 n +2 r -2 s) ! 2 r
n
Note
These are also the weighted averages of Formula3.1.2 and Formula3.2.2 . However, the formula at
x = /2
is original and is worthy.
Example1
(5)=
4
31
1
1
83
5
+Σ
+
288 r =1 (4+2r) ! 2(2+2r) ! 24(2r)!
2r
2 -2B2r
2r
2
2r
Example 2 (7)
According to the formula at
x = /2
this is calculated. As the result of calculating the series to the 13 th
term, the significant 10 digits were obtained.
- 12 -
3.4 Lemmas
Lemma 3.4.1
Let Bernoulli numbers and Euler numbers are as follows.
B0=1, B2=1/6, B4=-1/30, B6=1/42, B8=-1/30,
E0=1, E2=-1, E4=5,
E6=-61, E8=1385,
Then, the following expressions hold.
22s-2B2s
n
Σ
s=0 (2s)!(2n +1-2s)!
E2s
n
Σ
s=0 (2s)!(2n -2s)!
=0
=0
Proof
x csch x = 1 -Σ
s=1
22s-2B2s 2s
x
(2s)!
|x|<
i.e.
0
2
4
2 -2B0
2 -2B2 2 2 -2B4 4
2x
=x x -
0!
2!
4!
e x - e -x
Here, let
C2s = -22s-2B2s .
Then
C 2 2 C 4 4 C6 6
C0
2x
=
+
x +
x +
x +
2!
4!
6!
0!
e x - e -x
1
1 2 1 4 1 6 1 8
e x - e -x
=
+
x +
x +
x +
x +
2x
1! 3!
5!
7!
9!
The Cauchy product is
1 = C0 +
C2
C0
+
x2 +
0!3! 2!1!
In order to hold this for arbitrary
x
C2
C4
C0
+
+
x4 +
0!5! 2!3! 4!1!
, the followings are necessary.
C2
C2
C4
C0
C0
= 0,
= 0 ,
+
+
+
0!5! 2!3! 4!1!
0!3! 2!1!
C0 =1 ,
That is,
n
Σ
s=0
-22s-2B2s
C2s
n
=
=0
(2s)!(2n +1-2s)! Σ
s=0 (2s)!(2n +1-2s)!
Next,
sech x =Σ
s=0
E2s 2s
x
(2s)!
|x|<
2
i.e.
2
e x + e -x
E 1 1 E2 2 E3 3 E4 4
E0
+
x +
x +
x +
x +
2!
3!
4!
0! 1!
=
1 1 1 2 1 3 1 4
1
e x + e -x
=
+
x +
x +
x +
x +
2!
3!
4!
2
0! 1!
The Cauchy product is
1 = E0 +
E0
E1
+
x1 +
0!1! 1!0!
E0
E1
E2
+
+
x 2 +
0!2! 1!1! 2!0!
- 13 -
In order to hold this for arbitrary
x
, the followings are necessary.
E1
E0
E1
E2
E0
= 0,
= 0 ,
+
+
+
0!2! 1!1! 2!0!
0!1! 1!0!
E0 =1 ,
That is,
n
Σ
s=0
Since
Es
=0
s !(n -s)!
E1 = E3 = E5 = 0 ,
we obtain
E2s
n
Σ
s=0 (2s)!(2n -2s)!
=0
Lemma 3.4.2c
When
for
B0=1, B2=1/6, B4=-1/30, B6=1/42,
0 < x < 2
.
B2rx
2r
Σ
r=1 2r(2r)!
B2rx
=Σ
r=1
2r
Σ
r=1 2r(2r +1)!
Especially, when
x =
B2r
=
cosrx
+ log x
r
1 sin rx
+ log x - 1
xΣ
r=1
r2
,
2r
Σ
r=1 2r(2r)!
B2r
are Bernoulli numbers, the following expressions hold
= log
2
2r
Σ
r=1 2r(2r +1)!
= log - 1
Proof
The 1st order integrals of Taylor series and Fourier series of
x
cot x dx = log x -Σ
r=1
2
x
were as follows. (See " 5 Termwise Higher Integral ")
2 B2r 2r
x
2r(2r)!
0< x <
1
1 1
2rx 0 Σ 1 sin
2
2 r=1 r
cot x dx =
cot x
2r
- log 2
0< x <
2
From these,
Σ
r=1
Replacing
22rB2r 2r
1
x = Σ 1 cos(2rx) + log 2x
2r(2r)!
r=1 r
x
with
x /2 ,
B2rx
2r
Σ
r=1 2r(2r)!
=Σ
r=1
cosrx
+ log x
r
Next, the 2nd order integrals of Taylor series and Fourier series of cot x were as follows.
22rB2r 2r+1
x x
2
cot x dx
2
2
= x(log x -1) -Σ
r=1
-
2
log
2
2r (2r +1)!
-1
-Σ
r=1
- 14 -
x
22rB2r
2r(2r +1)!
2
2r+1
x
x
2
2
cot x dx 2 =
1 1
2
2rx 1 Σ 2 sin
2
2 r=1 r
- x - 2 log 2
From these,
22rB2r
2r+1
x
2r (2r +1) !
x(log x -1) -Σ
r=1
=Giving
x =0
22rB2r
2r(2r +1) !
r=1
2
2r+1
1 1
2
- xlog 2
2 sin( rx)
2
2Σ
r=1 r
to this,
2 log 2 -1 -Σ
-
2 log 2 -1 -Σ
r=1
22rB2r
2r (2r +1)!
2
=
2r+1
2
log 2
Therefore,
x(log x -1) -Σ
r=1
22rB2r 2r+1
1 1
= - Σ 2 sin(2rx) - x log 2
x
2r(2r +1)!
2 r=1 r
From this,
Σ
r=1
Replacing
22rB2rx 2r
1 1
= log(2 x) - 1 +
2
2 sin( rx)
2r(2r +1)!
2x Σ
r=1 r
x
with
x /2 ,
B2rx
2r
Σ
r=1 2r(2r +1)!
= log x - 1 +
1 sin(rx)
xΣ
r=1
r2
Lemma 3.4.2t
When
for
B0=1, B2=1/6, B4=-1/30, B6=1/42,
are Bernoulli numbers, the following expressions hold
x .
Σ
r=1
22r-1B2rx 2r
=
2r(2r)!
Σ
r=1
(-1)r
r
cosrx + log 2
22r-1B2rx 2r
1 (-1)r
= Σ 2 sin rx + log 2
Σ
2r(2r +1)!
x r=1 r
r=1
Especially, when x = ,
Σ
r=1
2r
22r-1B2r
= log 2
2r(2r +1)!
Proof
The 1st order integrals of Taylor series and Fourier series of
r=1
0
x
r-1
0
0
were as follows. (See " 5 Termwise Higher Integral ")
22r22r-1B2rx 2r
2r(2r)!
tan x dx = Σ
1
(-1)
tan x dx = 2 Σ r
x
tan x
r=1
1
sin 2r x -
|x|<
1
2
+ log 2
From these,
Σ
r=1
22r22r-1B2rx 2r
(-1)r-1
= -Σ
cos(2rx) + log 2
2r(2r)!
r
r=1
- 15 -
|x|<
2
2
Replacing
Σ
r=1
x
with
2r
x /2 ,
2 -1B2rx 2r
(-1)r
=Σ
cosrx + log 2
2r(2r)!
r
r=1
Next, the 2nd order integrals of Taylor series and Fourier series of
2r
2r
x x
2 2 -1B 2r
2
2r+1
tan x dx
tan x dx
=Σ
r=1
0 0
x x
2
0 0
=
2r(2r +1)!
tan x
were as follows.
x
2
1 (-1)r-1
2
sin
r
x
Σ
2
21 r=1 r 2
+ x log 2
From these,
Σ
r=1
Replacing
Σ
r=1
22r22r-1B2rx 2r
1 (-1)r-1
=sin(2rx) + log 2
2x Σ
2r(2r +1)!
r=1
r2
x
with
2r
x /2 ,
2 -1B2rx 2r
1 (-1)r
= Σ 2 sin rx + log 2
2r(2r +1)!
x r=1 r
2012.04.08
2012.12.05 Renewal
K. Kono
Alien's Mathematics
- 16 -
© Copyright 2026 Paperzz