اعداد أيام جبار جهاد Lagrange multiper methods :- Necessary conditions for ageneral probem ♦ The general non –linear programming Problem can be converted to a Problem that contains only equality constraints as follows:- Example -2- Solve the problem by using Lagrange multiplier method . Zmax = x1+x24 3 x1+2 x22 ≤ 9 solution : first :- Zmax = x1+x24 -Zmin = - x1- x24 Second :- 3 x1+2 x22 ≤ 9 -3 x1-2 x22 ≥ -9 L(X,W,σ) = - x1- x24 + w(-3 x1-2 x22+9 - σ2) 𝜕𝐿 𝑋1 = −1 − 3𝑊 = 0 … … … … … … … (1) 𝜕𝐿 𝜕𝑋2 = −4𝑋23 − 4𝑊𝑋2 = 0 … … … … . (2) 𝜕𝐿 𝜕𝜎 = −2𝑊𝜎 = 0 … … … … … … . . … . (3) 𝜕𝐿 𝜕𝑊 = −3 x1−2 x22+9 − σ2 … … . . . . (4) From eq (1) → 1 − 3𝑤 = 0 From eq (3)→ 𝜎=0 From eq (2) −4 𝑥23 → 𝑤= 1 → −4𝑥23 − 4(− 3)𝑥2=0 4 + 𝑥2=0 3 1 4 𝑥2 (−𝑥22 + ) = 0 3 −1 3 1 1 3 √3 𝑥2 = 0 𝑜𝑟 (−𝑥22 + ) = 0 → 𝑥2 =− + 1 When 𝑥2 = √3 sub in eq (4) 1 −3𝑥1 − 2( )2 + 9 − 0 = 0 √3 2 25 3 9 −3𝑥1 − + 9 = 0 → 𝑥1 = When 𝑥2 = 𝑥1 = −1 √3 → 𝑠𝑢𝑏 𝑖𝑛 𝑒𝑞 (4)𝑤𝑒 𝑔𝑒𝑡 25 9 When x2 = 0 𝑠𝑢𝑏 𝑖𝑛 𝑒𝑞 (4)𝑤𝑒 𝑔𝑒𝑡 −3𝑥1 − 2(0)2 + 9 + 0 = 0 -3x1+9=0→ 𝑥1 = +3 -Z = - x1 - x24 = − -Z = - 25 9 − 1 9 25 9 1 − ( 3)4 √ = −2.88 → -Zmin = -2.88 → ∴ 𝑍𝑚𝑖𝑛 = 2.88 When X2 = 0 → 𝑋1 = 3 -Zmin= -3 – 0 ∴ solution Zmin = 2.88 -Zmin = -3 → ∴ 𝑍𝑚𝑖𝑛 = 3 Example -3Find the dimensions of cylindrial tin (with top and bottom made up of sheet metal to maximize its volume such that the total surface area is equal to Ao =24π . Solution :assume x1: radius of the cylindrical x2: length of the cylindrical Maximize volume = 𝜋𝑥12 ∗ 𝑥2 Ao = 2𝜋𝑥12 + 2𝜋𝑥1 𝑥2 Subject to Ao :- total surface area Ao = 24π (given in eq ) ∴ −𝑓(𝑥1, , 𝑥2 ) = −𝜋𝑥1 ∗ 𝑥2 L(X1 , X2 , W) = - π X12 . X2 + W (2𝜋X12+2π x1.x2-Ao ) 𝜕𝑙 𝜕𝑥1 𝜕𝑙 𝜕𝑥2 𝜕𝑙 𝜕𝑤 = −2𝜋𝑥1 . 𝑥2 + 4𝜋𝑥1 𝑤 + 2𝜋𝑥2 𝑤 = 0 … … … . (1) = −𝜋𝑥12 + 2𝜋𝑥1 𝑤 = 0 … … … . (2) = 2𝜋𝑥12 + 2𝜋𝑥1 . 𝑥2 − 𝐴𝑜 = 0 … … … . (3) 𝑤= From eq (1) From eq (2) : Equal eq 𝑤= 2𝜋𝑥1 𝑥2 2𝜋 (2𝑥1+ 𝑥2 ) 𝜋𝑥12 2𝜋𝑥1 = 𝑥1 2 (4) and eq (5) we get →𝑤= 𝑥1 𝑥2 2𝑥1 +𝑥2 ……………………(5) … … … … . . (4) 𝑥1 𝑥2 2𝑥1 +𝑥2 = 𝑥1 → 𝑥1 = 2 𝑥 𝑥 2 2 𝑥2 2 Sub in eq (3) we get 2𝜋( 2 )2 + 2𝜋 ( 2 ) . 𝑥2 − 𝐴𝑜 = 0 ∴ 𝑥2 = √ ∴ 𝑥2 = √ 𝐴0 𝑤ℎ𝑒𝑟𝑒 𝐴𝑜 = 24𝜋 (𝑔𝑖𝑣𝑒𝑛) 1.5𝜋 24𝜋 1.5𝜋 =4 ∴ X1= 2 ∴ −𝑓 (𝑥1 , 𝑥2 ) = −𝜋. (2)2 = 4 -Z = -16𝜋 Zmin= 16𝜋 Example -4Minimize f(x1,x2)= x1-x2 g(x1,x2) = 3x12-2x1x2+x22-1 ≤ 0 Solution : n> 𝑚 𝑜. 𝑘 3x12-2x1x2+x22-1 ≤ 0 -3x12+2x1x2-x22+1 L(x1,x2,w,𝜎) =x1-x2 +w(-3x12+2x1x2-x22+1- σ2) 𝜕𝑙 𝜕𝑥1 = 1 − 6𝑥1 𝑤 + 2𝑥2 𝑤 = 0 … … … … . . . (1) 𝜕𝑙 = −1 + 2𝑥1 𝑤 − 2𝑥2 𝑤 = 0 … … … . . (2) 𝜕𝑥2 𝜕𝑙 = −3𝑥12 + 2𝑥1 𝑥2 − 𝑥22 + 1 − 𝜎 2 = 0 … … … . . (3) 𝜕𝑤 𝜕𝑙 = −2𝑤𝜎 = 0 … … … . . (4) 𝜕𝜎 From eq (1) → 𝑤 = −1 −6𝑥1 +2𝑥2 →𝑤= From eq (2) … … … … (5) 1 2𝑥1 −2𝑥2 … … … . . (6) Equal eq (1) and eq (2) we get : −1 −6𝑥1 +2𝑥2 = 1 2𝑥1 −2𝑥2 -2x1+2x2=-6x1+2x2 4x1=2x2-2x2 x1=0 Sub x1=0 and 𝜎 =0 in eq (3) we get : -3(0)+2(0.x2) - x22+1-0 = 0 -x22+1=0→ x22=1 When x2=1 → ∴ 𝑥2 = and x1=0 F(x1,x2)min = 0 – 1 = -1 When + −1 o.k x2=-1 F(x1,x2)min =0-(-1) = +1 ∴ The optimum minimize solution F(x1,x2)min = -1 when (x1=0 , x2=1) Example-5Find the maximum of the function f(x) = 2x1+x2+10 subject to g(x) . g(x)=𝑥1 + 2𝑥22 = 3 Using the lagrange multiplier method . Solution : -f(x) = -2x1-x2-10 L(x1,x,w) = f(x)+wg(x) = -2x1-x2-10+w( 𝑥1 + 2𝑥22 -3) 𝜕𝑙 𝜕𝑥1 𝜕𝑙 𝜕𝑥2 𝜕𝑙 𝜕𝑤 = −2 + 𝑤 = 0 … … … (1) = −1 + 4𝑥2 𝑤 = 0 … … … (2) = 𝑥1 + 2𝑥22 − 3 = 0 … … … (3) From eq(1) → 𝑤 = 2 sub in eq (2) we get 𝑥2 = 𝑥1 = 1 8 sub in eq(3) we get 95 32 ∴ - F(x) = -2x1-x2-10 = -2* 95 32 1 − − 10 8 - F(x) = - 16.0625 F(x)= 16.0625 Example-6Solve the following Problem by the Lagrange multiplier Example-7Zmin = x12+x22 Subject to g(x) = x1x2-9=0 Solve the problem by using lagrange multipliers Solution:L(x1,x2,w) = x12+x22+w(x1x2-9) 𝜕𝐿 𝜕𝑥1 𝜕𝐿 𝜕𝑥2 𝜕𝐿 𝜕𝑊 = 2𝑥1 + 𝑥2 𝑤 = 0 → 𝑤 = = 2𝑥2 + 𝑥1 𝑊 = 0 → 𝑤 = 𝑥2 −2𝑥2 𝑥1 … … … … . (1) … … … … (2) = 𝑥1 𝑥2 − 9 = 0 … … . . (3) −2𝑥1 𝑥2 −2𝑥1 = −2𝑥2 𝑥1 X22=X12 X2=x1 sub in eq (3) we get X1.x1-9=0 X12=9→ 𝑥1 = − +3 X1 +3 -3 X2 +3 -3 w -2 -2 Zmin 18 18 Min Z Example-8min f (x) = x1+2x2-x23 x1+x2 ≤ 1 Subject to Solution:f (x) = x1+2x2-x23 - x1-x2 ≥ 1 ∴ 𝐿(𝑥, 𝑤, 𝜎) = 𝑥1 + 2𝑥2 − 𝑥23 + 𝑤(−𝑥1 − 𝑥2 + 1 − 𝜎 2 ) 𝜕𝐿 𝜕𝑥1 𝜕𝐿 𝜕𝑥2 = 1 − 𝑤 = 0 … … … … . . (1) = 2 − 3𝑋22 − 𝑊 = 0 … . . (2) 𝜕𝐿 2 = −𝑥 − 𝑥 + 1 − 𝜎 = 0 … … . . (3) 1 2 𝜕𝑊 𝜕𝐿 𝜕𝜎 = −2𝑊. 𝜎 = 0 … … . (4) From eq. (1): w=1 From eq (2) : 2-3𝑥22 -1=0 → 𝑥2 = −1 + √3 From eq (4) : −2(1). 𝜎 = 0 → 𝜎 = 0 From eq (3) : if → 𝑥2 = + −𝑥1 − 1 √3 1 √3 + 1 − 0 = 0 → 𝑥1 = 0.423 ∴ 𝑓 = 0.423 + 2 ∗ 1 1 √ √ 3 − ( ) = 1.385 3 3 𝑖𝑓 𝑥2 = − −𝑥1 + 1 √3 1 √3 + 1 − 0 = 0 → 𝑥1 = 1.577 −1 −1 √ √ ∴ 𝑓 = (1.577) + 2 ∗ ( 3) − ( 3)3 = 0.614 Example-9min Z= (x1-1)2+(x2-2)2 St. g(x) = -x1+2x2 =2 Solution:F= (x1-1)2+(x2-2)2+w(-x1+2x2-2) 𝜕𝐹 𝜕𝑥1 𝜕𝐹 𝜕𝑥2 𝜕𝐹 𝜕𝑊 = 2(𝑋1 − 1) − 𝑊 = 0 … . . (1) = 2(𝑋2 -1)+2𝑊 = 0 … … (2) = −𝑋1 + 2𝑋2 − 2 = 0 … . . (3) From eq (1) → 𝑥1 = 𝑤 2 +1 From eq (2) → 𝑥2 = 2 − 𝑤 Eq. (3) becomes :𝑤 − ( 2 + 1) + 2(2 − 𝑤) − 2 = 0 → 𝑤 = 0.4 𝑎𝑛𝑠. ∴ 𝑥1 = 0.4 2 + 1 = 1.2 𝑥2 = 2 − 0.4 = 1.6 ∴ 𝑍𝑚𝑖𝑛 = (1.2 − 1)2 + (1.6 − 2)2 Example-10Max (z)= 𝑥12 +𝑥22 +𝑥32 Subject to g1(x)=𝑥1 +𝑥2 +3𝑥3 -2=0 g2(x)=5𝑥1 +2𝑥2 +𝑥3 -5=0 Solution:min Z=-𝑥12 -𝑥22 -𝑥32 L(x,w)=- 𝑥12 -𝑥22 -𝑥32 +w1(𝑥1 +𝑥2 +3𝑥3 -2)+w2(5𝑥1 +2𝑥2 +𝑥3 -5) 𝜕𝐿 𝜕𝑥1 𝜕𝐿 𝜕𝑥2 𝜕𝐿 𝜕𝑥3 𝜕𝐿 𝜕𝑤1 𝜕𝐿 𝜕𝑤2 = −2𝑥1 + 𝑊1 + 5𝑊2 = 0 𝑥1 = = −2𝑥2 + 𝑊1 + 2𝑊2 = 0 𝑥2 = = −2𝑥3 + 3𝑊1 + 𝑊2 = 0 𝑥3 = 𝑤1+5𝑤2 2 𝑤1+2𝑤2 2 3𝑤1+𝑤2 2 = 𝑋1 + 𝑋2 + 3𝑋3 − 2 = 0 … … … … … . . (4) = 5𝑋1 + 2𝑋2 + 𝑋3 − 5 5.5𝑤1 +5w2=2 5w1+15w2=5 w1=0.087 X1=0.8043 X2=0.3478 X3=2826 Example-11- w2= 0.3043 H.w 1- Ans. 2Ans. 3- find the solution of problem using the lagrange multipier method . Minimize f(x,y)= 8x2-24x y +y2 g(x,y) = 8x2+y2 =0 ans : 4- 5- 6- 7- Min f(x,y)= -3.24 REFERENCES:- 1- Singiresus .Raw - 2009 Engineering optimizaton :theory and practice – forth Edition by John wiley and sons ,Inc 2- A.Raindran ,k.M. Ragsdell,G.V. Reklaitis – 2006 Engineering optimization:Method and applications-second Edition by by John wiley and sons ,Inc :978-0-471-55814-9 3- Constraind optimization .pdf . from internt (the method of lagrange multipiers : chapter 7 ) 4- Lecture of( prof. Dr. Saleh I .Khassaf )
© Copyright 2026 Paperzz