ScienceAsia 35 (2009): 203–210 R ESEARCH ARTICLE doi: 10.2306/scienceasia1513-1874.2009.35.203 On the normal approximation of the number of vertices in a random graph Kritsana Neammanee∗ , Angkana Suntadkarn Department of Mathematics, Faculty of Science, Chulalongkorn University, Phyathai Road, Patumwan, Bangkok 10330, Thailand ∗ Corresponding author, e-mail: [email protected] Received 22 Sep 2008 Accepted 9 May 2009 ABSTRACT: In this paper, we use Stein-Chen’s method to give a uniform bound on the normal approximation of the number of vertices of a fixed degree in a random graph. This work corrects our results published previously. KEYWORDS: Stein-Chen method, uniform bound, vertex INTRODUCTION AND MAIN RESULTS A random graph is a collection of points or vertices with lines or degrees connecting pairs of them at random. The study of random graphs has a long history. A systematic study of random graphs began with the influential work of Erdös and Rényi 1–3 and it has since developed into a significant area of study in modern discrete mathematics. There are many applications of random graphs (see Refs. 4–7). Let G(n, p) be a random graph on n labelled vertices {1, 2, . . . , n} with the edges added randomly such that each of the n2 possible edges exists with probability p, 0 < p < 1. In this study, the assumption has been made that the presence of an edge between two vertices is independent of the others. Let G = (V (G), E(G)) be a graph where V (G) and E(G) are the sets of vertices and edges of G, respectively. The degree of a vertex v in graph G, denoted by deg(v), is the number of edges incident to v, i.e., deg(v) = |{w ∈ V (G) | vw ∈ E(G)}|. Any vertex of degree zero is called an isolated vertex. Let Sn be the number of vertices of a fixed degree d > 0 in G(n, p). Then Sn = Y1 + Y2 + · · · + Yn where where q = 1 − p and E[Sn ] = nan . Also 8 , 2 n n−1 2 σn := Var(Sn ) = (d − (n − 1)p)2 n−1 d (E[Sn ])2 . × p2d−1 (1 − p)2(n−d)−3 + E[Sn ] − n Stein introduced a new powerful technique for obtaining the rate of convergence to the standard normal distribution 9 . His approach was subsequently extended to cover the convergence to the Poisson distribution 10 . Stein’s method was applied to random graphs by Barbour 11 . The Poisson convergence has since been widely taken up (see, e.g., Refs. 12–15). Barbour et al 16 proved that the distribution of Sn converges to the Poisson distribution with parameter λ = nan if either np → 0 and d > 2, or np is bounded away from 0 1 and (np)− 2 |d − np| → ∞. Later, Suntadkarn and Neammanee 17 gave the rates of convergence in case of d > 1 and p = 1/nδ for some δ > 0. They showed that for A ⊂ {1, 2, . . . , n}, |P (Sn ∈ A) − Poiλ (A)|, where X e−λ λk Poiλ (A) = , k! k∈A −(δ−1)(d−1) ( 1, if vertex i has degree d in G(n, p), Yi = 0, otherwise, for i = 1, 2, . . . , n. Note that an := E[Yi ] is given by an = P (Yi = 1) = n − 1 d n−1−d p q d is O(n ) if δ > 1 and is O(n−d(1−δ) ) for 0 < δ < 1. For the normal approximation, Barbour et al 8 proved that the distribution function of Wn := Sn − nan σn converges to the standard normal distribution function Z z 2 1 Φ(z) = √ e−t /2 dt. 2π −∞ www.scienceasia.org 204 ScienceAsia 35 (2009) For E[Sn ] → ∞ they gave the rate of convergence expressed in terms of E[Sn ] with respect to the Wasserstein metric d1 which is defined by d1 (X, Y ) = sup{|E[h(X)] − E[h(Y )]| : 0 supx∈R |h(x)| + supx∈R |h (x)| 6 1 for all bounded test functions h with bounded derivative} for any random variables X and Y . They showed that C(d) d1 (Wn , N (0, 1)) 6 p E[Sn ] where N (0, 1) is the standard normal random variable and C(d) is a positive constant depending on d. In this article we consider the uniform distance δn := sup |P (Wn 6 z) − Φ(z)|. z∈R 1/2 Note that δn = O({d1 (Wn , N (0, 1))} ), in general 18 . In Barbour et al 8 the authors explicitly restricted their considerations to smooth test functions but Raič 19 used the Lipschitz test function to modify the proof of Barbour et al 8 for non-smooth test functions at the cost of a boundedness condition. In this paper, we use Stein’s method and a Lipschitz test function to correct the work on normal approximation of Neammanee and Suntadkarn 20 . We give a uniform bound of the normal approximation of the number of vertices of a fixed degree in a random graph. The following theorem is our main result. Theorem 1 For d > 0, 0 < β < 1, and a positive integer r0 > β/(1−β) there exists a positive constant C(d, r0 ) such that, for large n, sup |P (Wn 6 z) − Φ(z)| 6 z∈R + C(d, r0 )(1 + (np)r0 +1 ) σnβ √ C(d)(1 + (np)r0 +1 ) n r (1−β)+1 σn0 AUXILIARY RESULTS For each i ∈ {1, 2, . . . , n}, let Xi = and for any Λ ⊂ {1, 2, . . . , n} we define ( 1, if vertex i has degree d in G(n, p)−{Λ}, (Λ) Yi = 0, otherwise, where G(n, p) − {Λ} is the random graph obtained from G(n, p) by removing the vertices in Λ. For i, j = 1, 2, . . . , n, let ( Yi /σn , i = j, Zij = (i) (Yj − Yj )/σn , i 6= j, Zi = W (i) = n X l=1 l6=i (1) i = j, ; i 6= j, l6=i,j n X 1 (i,j) (i,j) (Y − E[Yl ]) − E[Vij ] − E[Zi ] Wij = σn l l=1 l6=i,j = W (i) − Vij (i) (2) ({i}) (i,j) ({i,j}) where Yj := Yj and Yl := Yl . Note (i) that W is independent of Xi , and Wij is independent of the pair (Xi , Zij ) (see Ref. 8) and . Wn = n X Xi . i=1 C(d, r0 )(1 + (np)r0 +1 ) σnβ . In the case of np = O(1) we have σn2 = O(n). Hence, for β > 12 and r0 > β/(1 − β), there exists a constant C(d, r0 ) such that δn = C(d, r0 )/σnβ . Here, and throughout the paper, C(c1 , c2 , . . . , ck ) stands for an absolute constant depending on c1 , c2 , . . . , ck . In the next section we prove auxiliary results and in the final section we introduce the Stein’s method for normal approximation which we use in the proof of main result in the last section. www.scienceasia.org 1 (i) (i) (Y − E[Yl ]) − E[Zi ] σn l = Wn − Zi , 0, n n o X 1 (i) (i) (i,j) Vij = Y + (Y − Y ) j l l σn l=1 Furthermore, if σ = O(n) then z∈R Zil , l=1 n X 2 sup |P (Wn 6 z)−Φ(z)| 6 Yi − E[Yi ] σn The following propositions improve the results of Propositions 2.1–2.3 in Ref. 20 for the case of arbitrary p. Proposition 1 For large n, we have σn2 > 12 nan . Proof : From Proposition 2.1 of Ref. 20 we know that σn2 > nan (1 − an ). If we can show that an 6 21 , then the proposition is proved. From the fact that 1 − p 6 e−p , we have 1 n − 1 d n−1−d e(1+d)p (np)d an = p q 6 · np 6 d d! e 2 for large n. 205 ScienceAsia 35 (2009) Proposition 2 For i, j ∈ {1, 2, . . . , n} and r1 , r2 , r3 ∈ N, there exists a positive constant C(d, r2 , r3 ) such that for large n, E[|Xir1 Zir2 Vijr3 |] 6 r2 +r2 −1 C(d, r2 , r3 )an (1 + (np) σ r1 +r2 +r3 ) Since (Yi − µ) 6 1 , |Xi | = σ n σn . we get Proof : We follow the proof of Proposition 2.2 of Ref. 20 to show that for r, r1 , r2 , . . . , rm ∈ N and for distinct j1 , j2 , . . . , jm which are not equal to i we have (i) (i) (i) E[|Yj1 − Yj1 |r1 |Yj2 − Yj2 |r2 · · · |Yjm − Yjm |rm ] pm−1 an h np i pm−1 an 6 d+ 6 C(d)(1 + np) (n − 1) q n (3) and r # " n X (i) E (Yj − Yj ) 1 E[|Zir2 Vijr3 |] σnr1 2 3 o r r+r n o r r+r 1 n 2 3 2 3 6 r1 E[|Zi |r2 +r3 ] E[|Vij |r2 +r3 ] σn an 6 C(d, r2 , r3 )(1 + (np)r2 +r3 −1 ) r1 +r2 +r3 σn E[|Xir1 Zir2 Vijr3 |] 6 = C(d)(1 + np)an 1 + np + · · · + (np)r−1 Proposition 3 For r1 ∈ N ∪ {0}, r2 , r3 ∈ N and i, j ∈ {1, 2, . . . , n}, there exists a positive constant C(d, r3 ) such that 2r−1 6 r σn an . nσnr1 +r2 +r3 Proof : From the proof of Proposition 2.3 of Ref. 20 we can see that (4) (i) (i) E[|(Yj )r1 (Yj − Yj )r2 |] 6 C(d)an p Hence 1 E[|Zir |] = r E σn from (5) and (6). r2 r3 E[|Xir1 Zij Vij |] 6 C(d, r3 )(1+(np)r3 ) j=1 j6=i 6 C(d, r)(1 + (np)r−1 )an . (7) and # " n X (i) r (Yj − Yj )) (Yi + r #) " n X (i) E[|Yir |] + E (Yj − Yj ) j=1 j6=i 2r−1 r−1 E[Y ] + C(d, r)(1 + (np) )a i n σnr an = C(d, r)(1 + (np)r−1 ) r . (5) σn 6 Again for distinct l1 , l2 , . . . , lm which are not equal to i, j, we have # " m Y pm−1 an (i) (i,j) |Ylk − Ylk |rk 6 C(d)(1+np) E n k=1 and # " n X (i) (i,j) r E (Yl −Yl ) 6 C(d, r)(1+(np)r−1 )an . l=1 l6=i,j (i) (i) E[|Vijr |] 6 C(d, r)(1 + (np)r−1 ) an . σnr (i,j) r2 (i) = 1) 6 (6) (i) (i,j) r3 ) (Yl2 − Yl2 ) m (i,j) · · · (Ylm − Ylm )rm+1 |] 6 C(d)(1 + np) ( From this and the fact that E[Yj ] = P (Yj C(d)an (see Ref. 20) we have, (i) (i) E[|(Yj − Yj )r1 (Yl1 − Yl1 j=1 j6=i p an . n Hence r2 r3 E[|Xir1 Zij Vij |] " 1 (i) 6 r1 +r2 +r3 E (Yj − Yj )r2 σn # n n or3 X (i) (i) (i,j) Yj + (Yl − Yl ) l=1 l6=i,j ( 6 C(d, r3 ) (i) (i) E[|(Yj − Yj )r2 (Yj )r3 |] σnr1 +r2 +r3 #) " n X (i) r2 (i) (i,j) r3 + E (Yj − Yj ) [ (Yl − Yl )] l=1 l6=i,j C(d, r3 ) an 6 r1 +r2 +r3 an p + (1 + (np)r3 ) n σn an r3 6 C(d, r3 )(1 + (np) ) r1 +r2 +r3 . nσn www.scienceasia.org 206 ScienceAsia 35 (2009) where STEIN’S METHOD FOR NORMAL APPROXIMATION Stein’s method 9 relies on the elementary differential equation 0 f (w) − wf (w) = h(w) − N h In order to use (8) to obtain the bound of normal approximation, many authors 20–22 , choose the test function h = Iz where ( 1, w 6 z, Iz (w) = 0, w > z. Hence (8) becomes f 0 (w) − wf (w) = Iz (w) − Φ(z) and the unique solution fz of (9) is (√ 2 2πew /2 Φ(w)[1 − Φ(z)], fz (w) = √ 2 2πew /2 Φ(z)[1 − Φ(w)], (9) w 6 z, w > z. (10) Substituting any random variable W for w in (9), we get Z 1 2ε Z 0 fz,ε (w) = z+ε ft (w) dt z−ε and (8) where f : R → R is a continuous and piecewise continuously differentiable function, h is a bounded test function with bounded derivative, and Z ∞ 2 1 h(t)e−t /2 dt. N h := √ 2π −∞ 1 fz,ε (w) = 2ε z+ε ft0 (w) dt. z−ε Note that 19 √ sup |fz,ε (x)| 6 x∈R ε>0 2π , 4 f (x) − f (y) z,ε z,ε sup 6 1. x−y x,y∈R x6=y ε>0 Raič 19 used a test function Iz,ε to give a bound in the following theorem. However, his work cannot be applied to a random graph since our Vij is not bounded. Theorem 2 (Raič 19 ) Let Wn be a decomposed random variable defined by X Wn = Xi , i∈I E[Xi ] = 0, i ∈ I, E[Wn2 ] = 1, Wn = W (i) + Zi , where W (i) is independent of Xi , and X Zi = Zij , i ∈ I, Ki ⊂ I j∈Ki E[fz0 (W ) − W fz (W )] = P (W 6 z) − Φ(z). Hence, to bound |P (W 6 z) − Φ(z)|, it suffices to bound E[fz0 (W ) − W fz (W )]. But in our work, we choose the Lipschitz test function 1, w < z − ε, w−z−ε Iz,ε (w) = − , z − ε 6 w < z + ε, 2ε 0, w > z + ε, where ε > 0 is fixed. Observe that Z z+ε 1 Iz,ε (w) = It (w) dt 2ε z−ε N Iz,ε Z z+ε z−ε 1 N It dt = 2ε Z www.scienceasia.org i ∈ I, j ∈ Ki , where Wij is independent of the pair (Xi , Zij ). Suppose that |Xi | 6 Ai , |Zik | 6 Bik , |Vik | 6 Cik , 0 |Zi + Vik | 6 Cik for some constants Ai , Bik , Cik , 0 and Cik . Then sup |P (Wn 6 z) − Φ(z)| z∈R X X X 0 6 13.7 Ai Bi2 + Ai Bik (6.8Cik +9.3Cik ) where Bi := i∈I k∈Ki X Bik . k∈Ki z+ε Φ(t) dt. To prove this theorem, Raič 19 showed that for all ε > 0, z−ε |P (Wn 6 z) − Φ(z)| From (8) we have E[Iz,ε (W ) − N Iz,ε ] = = Wij + Vij , i∈I and 1 = 2ε W (i) 0 E[fz,ε (W ) − W fz,ε (W )] ε 6 A1 + A2 + A3 + B1 + B2 + B3 + √ , (11) 2π 207 ScienceAsia 35 (2009) where A1 := A3 6 C X E[|gz,ε (W (i) + θ1 Zi ) − gz,ε (W (i) )| n X n X i∈I + E[|Zi + Vij ||Wn |]E[|Xi Zij |] . |Xi Zi |] , X X E[|gz,ε (W (i) ) − gz,ε (Wik )| A2 := From (1), (5), (7), and the facts that Wij is independent of (Xi , Zij ) and that σn2 E[Xi2 ] = E[(Yi − an )2 ] 6 an , we have i∈I k∈Ki |Xi Zik |] , A3 := X X E[|Wn Xi |Zi2 ] = E[|(W (i) + Zi )Xi |Zi2 ] E[|gz,ε (Wn ) − gz,ε (Wik )| i∈I k∈Ki 6 E[|W (i) Xi |Zi2 ] + E[|Xi Zi3 |] o 12 n o 21 n 6 E[(W (i) )2 Xi2 ] E[Zi4 ] E[|Xi Zik |]] , B1 := X E[|Iz,ε (W (i) ) − Iz,ε (W (i) + θ1 Zi )| C(d)(1 + (np)2 )an σn4 n o 12 n o 12 = E[(W (i) )2 ]E[Xi2 ] E[Zi4 ] i∈I + |Xi Zi |] , X X B2 := E[|Iz,ε (Wij ) − Iz,ε (Wik + Vik )| i∈I k∈Ki C(d)(1 + (np)2 )an σn4 n o 12 n o 12 6 C E[Wn2 + Zi2 ]E[Xi2 ] E[Zi4 ] |Xi Zik |] , B3 := X X + E[|Iz,ε (Wn ) − Iz,ε (Wik )| i∈I k∈Ki E[|Xi Zik |]] , in which gz,ε (x) = fz,ε (x)x, and θ1 is a random variable whose value is in [0, 1]. Then he used the boundness of Xi , Zik , Vik and Zi + Vik to complete his result. In our work, we also prove our result by using (11). C(d)(1 + (np)2 )an σn4 C(d)(1 + (np)2 )an 6 . σn3 + Hence, by (5) and (7), PROOF OF MAIN RESULT A1 6 In this section, we give the proof of Theorem 1. Using the argument of Raič 19 , we can show that (11) holds. Step 1 We will show that A1 + A2 + A3 6 n X √ C(d)(1 + (np)r0 +1 ) n r (1−β)+1 σn0 . E[|Xi |Zi2 ] + E[|Wn Xi |Zi2 ] , From (1) and (5), we have E[|Wij |] 6 E[|Wn |] + E[|Vij |] + E[|Zi |] 6 C(d). Therefore, + E[|Wij Xi Zij Vij I(|Vij | > 1/σnβ )|] 1 6 β E[|Wij |]E[|Xi Zij |] + σnr0 β E[|Wij Xi Zij Vijr0 +1 |] σn C(d)an 6 nσn2+β n o 12 n o 12 2 2(r0 +1) + σnr0 β E[Wij2 ]E[Xi2 ] E[|Zij Vij |] i=1 6 A2 6 C n X n X E[|Xi Zij Vij |] i=1 j=1 j6=i √ + (12) 6E[|Wij Xi Zij Vij I(|Vij | 6 1/σnβ )|] σnβ Following the argument of equations (5.17) and (5.18) of Raič 19 , we can show that A1 6 C C(d)(1 + (np)2 ) . σn E[|Wij Xi Zij Vij |] C(d)(1 + (np)2 ) + E[|Zi + Vij |]E[|Xi Zij |] i=1 j=1 j6=i 2π E[|Wij + Vij ||Xi Zij Vij |] 2 C(d)an nσn2+β + C(d)(1 + (np)r0 +1 )an . √ r0 (1−β)+3 nσn Hence, A2 6 C(d)(1 + (np)2 ) σnβ + √ C(d)(1 + (np)r0 +1 ) n r (1−β)+1 σn0 . (13) www.scienceasia.org 208 ScienceAsia 35 (2009) From (3), (5), (6), (7), and E[Wn2 ] = 1, A3 6 C(d)(1 + (np)2 ) . σn (14) From (12–14), A1 + A2 + A3 6 side by B11 and B12 , respectively. By Proposition 2, " n σnr0 β X B11 6 E |Xi Zi2 Vijr0 | 2ε i=1 Z # 1 × I[Ξi (θ),|Vij |> 1β ] dθ 0 σn C(d)(1 + (np)2 ) + σnβ √ C(d)(1 + (np)r0 +1 ) n r (1−β)+1 σn0 6 6 . 6 In the remainder of the proof we let ε > 0. C(d, r0 )(1 + (np)r0 +1 )nan r (1−β)+3 εσn0 C(d, r0 )(1 + (np)r0 +1 ) εσnβ+1 . (16) To bound B12 we use the concentration inequality Step 2 We will show that C(d, r0 )(1 + (np)r0 +1 ) B1 6 εσn C(d)(1 + np) + σn n σnr0 β X E[|Xi Zi2 Vijr0 |] 2ε i=1 δn + 1 σnβ b−a P (a 6 Wn 6 b) 6 2δn + √ 2π (17) (see Raič 19 ). Note that from (1), (2), (17) and Chebyshev’s inequality we have P (a 6 Wij 6 b) where δn = supz∈R |P (Wn 6 z) − Φ(z)|. From the fact that 19 , Z y−x 1 Iz,ε (x) − Iz,ε (y) = I[z−ε6(1−θ)x+θy6z+ε] dθ 2ε 0 (15) + P (a 6 Wn − (Zi + Vij ) 6 b, |Zi + Vij | > 6 P (a − 1 σnβ 6 Wn 6 b + + P (|Zi + Vij | > where ( 1, w ∈ A IA (w) = 0, otherwise we have B1 = = P (a 6 Wn − (Zi + Vij ) 6 b, |Zi + Vij | 6 n X E[|Iz,ε (W (i) ) − Iz,ε (W (i) + θ1 Zi )||Xi Zi |] i=1 " Z # n 1 1 X 2 6 E I[Ξi (θ)] dθ|Xi Zi | 0 2ε i=1 Z # " n 1 1 X 6 E |Xi Zi2 | I[Ξi (θ),|Vij |> 1β ] dθ 0 2ε i=1 σn Z # " n 1 1 X 2 + E |Xi Zi | I[Ξi (θ),|Vij |6 1β ] dθ 0 2ε σn i=1 where Ξi (θ) denotes z − ε 6 W (i) + θθ1 Zi 6 z + ε, and we denote the two terms on the last right-hand www.scienceasia.org 1 σnβ 2 1 σnβ 1 σnβ 1 σnβ ) ) ) ) b−a 6 2δn + √ +√ + E|Zi + Vij |r0 σnr0 β 2π 2πσnβ b−a 2 6 2δn + √ +√ 2π 2πσnβ an + C(d, r0 )(1 + (np)r0 −1 ) β σn b − a C(d, r0 )(1 + (np)r0 −1 ) 6 2δn + √ + . (18) 2π σnβ From (5), (7), (18), and the fact that Wij is independent of (Xi , Zij ), we have " n 1 X B12 = E |Xi Zi2 | 2ε i=1 Z 1 × I[z−ε6Wij +Vij +θθ1 Zi 6z+ε,|Zi |6 1β ,|Vij |6 1β ] dθ 0 σn σn # Z 1 + I[z−ε6Wij +Vij +θθ1 Zi 6z+ε,|Zi |> 1β ,|Vij |6 1β ] dθ σ σ n n 0 209 ScienceAsia 35 (2009) " # Z 1 n 1 X 2 6 E |Xi Zi | I[z−ε− 2β 6Wij 6z+ε+ 2β ] dθ 2ε i=1 σn σn 0 " n n 1 XX E Xi Zij Vij + 2ε i=1 j=1 j6=i n σnr0 β X E[|Xi Zir0 +2 |] 2ε i=1 " n 1 X 6 E |Xi Zi2 | 2ε i=1 + ×P z−ε− 2 × 0 6 6 Wij 6 z + ε + σnβ 2 # I[z−ε6Wij +θVij 6z+ε,|Vij |6 + B1 6 C(d, r0 )(1 + (np) εσn C(d)(1 + np) . + σn δn + 1 σnβ Step 3 We will show that B2 6 C(d, r0 )(1 + (np)r0 +1 ) + εσnβ C(d)(1 + np) σnβ δn + 1 σnβ . B2 = 2εσnβ n E[|Iz,ε (Wij ) − Iz,ε (Wij + Vij )||Xi Zij |] n × I[z−ε− 0 0 # 1 I[z−ε6Wij +θVij 6z+ε] dθ " n n 1 XX 6 E |Xi Zij Vij | 2ε i=1 j=1 j6=i Z × 0 1 β σn 6Wij 6z+ε+ 1 β σn ] dθ C(d, r0 )(1 + (np)r0 +1 ) + 1 2εσnβ εσnβ+1 " n X n X E |Xi Zij | i=1 j=1 j6=i ×P z−ε− 1 1 # 6 Wij 6 z + ε + β σnβ σn h C(d)(1 + np) C(d, r0 )(1 + (np)r0 ) i 6 δn + ε + β εσn σnβ C(d, r0 )(1 + (np)r0 +1 ) 1 δn + β 6 β εσn σn C(d)(1 + np) + . σnβ B3 6 C(d)(1 + np) εσnβ δn + ε + C(d, r0 ) σnβ . n X n X E[|Xi Zij |] 6 C(d)(1 + np). (20) By (5), (6), (15) and (17) we have j6=i × # i=1 j=1 j6=i " 1 XX E |Xi Zij Vij | 2ε i=1 j=1 Z E Xi Zij i=1 j=1 j6=i 1 Z 6 " From Proposition 1 we have i=1 j=1 j6=i 6 dθ Step 4 We will show that By using (15), Proposition 1, Proposition 3 and (18) we have n X n X n X n X 1 From (16) and (19) we have ) ] n n σnr0 β X X E[|Xi Zij Vijr0 +1 |] 2ε i=1 j=1 + r0 +1 1 β σn j6=i σnβ C(d, r0 )(1 + (np)r0 +1 )σnr0 β nan εσnr0 +3 h C(d)(1 + np) C(d, r0 )(1 + (np)r0 ) i 6 δn + ε + εσn σnβ C(d, r0 )(1 + (np)r0 +1 ) 1 6 δn + β εσn σn C(d)(1 + np) . (19) + σn # 1 Z # 1 I[z−ε6Wij +θVij 6z+ε,|Vij |> 1 β σn ] dθ E[|Iz,ε (Wn ) − Iz,ε (Wij )|] " # Z 1 1 6 E |Zi + Vij | I[z−ε6Wn −θ(Zi +Vij )6z+ε] dθ 2ε 0 " 1 6 E |Zi + Vij | 2ε # Z 1 × I[z−ε6Wn −θ(Zi +Vij )6z+ε,|Zi +Vij |6 1β ] dθ 0 σn www.scienceasia.org 210 ScienceAsia 35 (2009) " 1 + E |Zi + Vij | 2ε Z 1 × I[z−ε6Wn −θ(Zi +Vij )6z+ε,|Zi +Vij |> 0 6 "Z 1 2εσnβ 1 β σn dθ ] # 1 E # I[z−ε− 0 1 β σn 6Wn 6z+ε+ 1 β σn ] dθ σnr0 β E[|Zi + Vij |r0 +1 ] 2ε 1 1 1 = P z − ε − 6 W 6 z + ε + n 2εσnβ σnβ σnβ C(d, r0 ) + εσnβ+1 C 1 C(d, r0 ) 6 β δn + ε + β + εσn σn εσnβ+1 C C(d, r0 ) 6 β δn + ε + . εσn σnβ + From this fact, and (20) we have B3 6 C(d)(1 + np) εσnβ δn + ε + C(d, r0 ) σnβ . We now deduce our main result. From (11) and Steps 1–4 we have δn = sup |P (Wn 6 z) − Φ(z)| z∈R 6 C(d, r0 )(1 + (np)r0 +1 ) + εσnβ C(d)(1 + (np)2 ) σnβ δn + 1 σnβ C ε + β +√ . 2π σn for all ε > 0. Hence we can choose ε = C(d, r0 )(1 + (np)r0 +1 )/2σnβ such that for large n, B1 + B2 + B3 6 C(d, r0 )(1 + (np)r0 +1 ) σnβ . This fact and Step 1 complete the proof. Acknowledgements: The authors would like to thank the referee for many helpful remarks which have led us to improve the presentation and the Thailand Research Fund for financial support (RGJ2550). REFERENCES 1. Erdös P, Rény A (1959) On random graphs. I. Publ Math Debrecen 6, 290–7. 2. Erdös P, Rény A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5, 17–61. 3. Erdös P, Rény A (1961) On the strength of connectedness of a random graph. Acta Math Hung 12, 261–7. www.scienceasia.org 4. Foster CC, Rapoport A, Orwant C (1963) A study of large sociogram: Elimination of free parameters. Behav Sci 8, 56–65. 5. Heckatorn DD (1997) Respondent-driven sampling: A new approach to the study of hidden population. Soc Probl 44, 174–99. 6. Bernard HR, Kilworth P, Evans M, McCarty C, Selley G (1998) Studying social relations crossculturally. Ethnology 2, 155–79. 7. Fararo TJ, Sunshine M (1964) A study of a biased friendship network, Syracuse Univ Press. 8. Barbour AD, Karoński M, Rucińsk A (1989) A central limit theorem for decomposable random variables with application to random graphs. J Combin Theor B 47, 125–45. 9. Stein CM (1972) A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In: Proceedings of the 6th Berkeley Symposium on Mathematical Statistics and Probability, vol 3, 583-602. 10. Chen LHY (1975) Poisson approximation for dependent trials. Ann Probab 3, 534–45. 11. Barbour AD (1982) Poisson convergence and random graphs. Math Proc Camb Phil Soc 92, 349–59. 12. Karoński M (1984) Balanced subgraphs of large random graphs, Adam Mickiewicz, Univ. Press, Poznan. 13. Karoński M, Ruciński A (1987) Poisson convergence and semi-induced properties random graphs. Math Proc Camb Phil Soc 101, 291–300. 14. Nowicki K (1988) Asymtotic Poisson distributions with applications to statistical analysis of graphs. Adv Appl Probab 20, 315–30. 15. Janson S (1987) Poisson convergence and Poisson processes with applications to random graphs. Stoch Process Appl 26, 1–30. 16. Barbour AD, Holst L, Janson S (1992) Poisson Approximation, Clarendon Press, Oxford. 17. Neammanee K, Santadkarn A (2008) Poisson approximation of the number of vertices in a random graph. Int Math Forum 3, 331–40. 18. Barbour AD, Hall P (1985) On bounds to the rate of convergence in the central limit theorem. Bull Lond Math Soc 17, 151–6. 19. Raič M (2003) Normal approximation by Stein’s method. In: Proceedings of the 7th Young Statisticians Meeting, pp 71–97. 20. Neammanee K, Suntadkarn A (2007) A bound on normal approximation of number of vertices of a fixed degree in a random graph. Int J Pure Appl Math 2, 241–55. 21. Chen LHY, Shao QM (2001) A non-uniform BerryEsseen bound via Stein’s method. Probab Theor Relat Field 120, 236–54. 22. Chen LHY, Shao Q-M (2005) Stein’s method for normal approximation. In: Barbour AD, Chen LHY (eds) An Introduction to Stein’s Method, World Scientific, pp 1–59.
© Copyright 2026 Paperzz