TESTS FOR ROBUST VERSUS LEAST SQUARES FACTOR MODEL FITS R. Douglas Martin* Computational Finance Program Director Departments of Applied Mathematics and Statistics University of Washington [email protected] R-Finance 2014 May 16, 2014, Chicago * Joint work with Tatiana Maravina (PhD, Boeing Company) and Kjell Konis, Department of Applied Mathematics University of Washington. 1 Time Series Factor Models rt ft β t , t 1, 2, , T Robust M-Estimates r f β βˆ argminβ t t sˆo t=1 T r f β ft t t 0 sˆo t=1 T Use lmRob in package robust 2 Favorite Rho and Psi Functions Bisquare Optimal 8 RHO(x) 4 6 2 -5 0 x 5 -5 0 x 5 0 x 5 85 % 90 % 95 % 99 % PSI(x) 0 -1 -2 -2 -1 PSI(x) 0 1 2 85 % 90 % 95 % 99 % 1 2 85 % 90 % 95 % 99 % 0 0 2 RHO(x) 4 6 8 85 % 90 % 95 % 99 % -5 0 x 5 -5 Optimal bias robust: Svarc, M., Yohai, V. J., & Zamar, R. H. (2002). 3 Test Statistic T1 (Hausman-type) H1: Errors have a normal distribution K1: Errors have a symmetric or skewed non-normal distribution K2: Joint distribution of asset and factor returns is bias producing V βˆ M βˆ LS VM VLS (1 EFFM ) VM Efficient under H1 (see Hausman, 1978) Test Statistic T2 (Wald-type) H2: Errors have a normal distribution or a non-normal distribution K2: Joint distribution of asset and factor returns is bias producing −1 2 𝑛 𝜷𝐿𝑆 − 𝜷𝑀𝑀 ) → 𝑵(𝟎, 𝛿𝐿𝑆 𝑪 ,𝑀𝑀 𝐟 4 R-Implementation New functions in package robust (Kjell Konis), to be submitted to CRAN by Sunday 5/18: lsRobTest > args(lsRobTest) function (object, test = c("T2", "T1"), ...) Object = 5 an lmRob fitted model object 10 15 20 0 5 ^ Robust: 1.8 0.09 ^ OLS: 1.5 0.1 -10 -5 MER Returns, % MER -10 -5 0 5 10 Market Returns, % 6 > lsRobTest(fit.mm, test="T1") Test for least squares bias H0: normal regression error distribution Individual coefficient tests: LS Robust Delta Std. Error Stat p-value x 1.497 1.798 -0.3009 0.009612 -31.31 3.889e-215 > lsRobTest(fit.mm, test="T2") Test for least squares bias H0: composite normal/non-normal regression error distribution Individual coefficient tests: LS Robust Delta Std. Error Stat p-value x 1.497 1.798 -0.3009 0.08383 -3.589 0.0003315 7 DD -5 -15 -25 DD Returns, % 0 5 ^ Robust: 1.2 0.128 ^ OLS: 1.19 0.076 20-Oct-1987 -25 -20 -15 -10 -5 0 5 Market Returns, % T1 p-value = .65 T2 p-values = .82 8 References Bailer, Maravina and Martin (2011). “Robust betas in asset management”, Handbook of Quantitative Asset Management, Oxford University Press. Maravina and Martin (2014). “A Hausman type test of robust versus least-squares regression fits”, submitted to SSRN on 5/18/2014. Maravina and Martin (2014). “A Wald type test of robust versus leastsquares regression fits”, in preparation. 9 Appendix: Test Statistics T1 and T2 T1: 𝑇1𝑖 = T2: 𝑇2𝑖 = 10 n βˆ M βˆ LS N 0, Vdiff 𝛽𝑀𝑀,𝑖 − 𝛽𝐿𝑆,𝑖 1 − 𝐸𝐹𝐹 ⋅ 𝑠𝑒 𝛽𝑀𝑀,𝑖 Vdiff (1 EFFM ) 2 Cf 𝑠𝑒 𝛽𝑀𝑀,𝑖 = E 2 ( ) E 2 ( ) 1 −1 𝜏𝜎1 2 𝐶𝑥,𝑖𝑖 𝑛 −1 2 𝑛 𝜷𝐿𝑆 − 𝜷𝑀𝑀 ) → 𝑵(𝟎, 𝛿𝐿𝑆 𝑪 ,𝑀𝑀 𝐟 𝛽𝑀𝑀,𝑖 − 𝛽𝐿𝑆,𝑖 1 2 −1 𝛿𝐿𝑆,𝑀𝑀 𝐶𝑥,𝑖𝑖 𝑛 2 𝛿𝐿𝑆 ,𝑀𝑀 =𝐸 𝑢𝐿𝑆 − 𝜎𝜓2 𝐸𝜓2′ 𝑢𝑀𝑀 𝜎 𝑢𝑀𝑀 𝜎 2
© Copyright 2026 Paperzz