Mathematics for Computer Science MIT 6.042J/18.062J Asymptotic Notation Albert R Meyer, November 6, 2009 lec 9F.1 Closed form for n! n n! ::= 1 2 3 (n -1) n = i i=1 Turn product into a sum taking logs: ln(n!) = ln( 1·2·3···(n – 1)·n ) = ln 1 + ln 2 + · · · + ln(n – 1) + ln(n) n = ln(i) i=1 Albert R Meyer, November 6, 2009 lec 9F.2 Closed form for n! n ln(i) Integral Method to bound i=1 ln n … ln 5 ln 4 ln 3 ln(x) ln(x+1) ln 2 ln 2 1 2 ln 3 ln 4 3 ln 5 4 … 5 Albert R Meyer, November 6, 2009 ln ln n n-1 n–2 n–1 n lec 9F.3 n Closed form for n! n ln(x) dx ln(i) n ln +1 1 e i=1 i=1 nn n +1 (n +1)ln + 0.6 ln(x +1) dx 1 e n reminder: x ln x dx = x ln e Albert R Meyer, November 6, 2009 lec 9F.5 Closed form for n! 1 n ln(i) (n + )ln 2 e i=1 n exponentiating: n n n! n / e e Albert R Meyer, November 6, 2009 lec 9F.6 Stirling’s Formula A precise approximation: n! ~ n 2š n e Albert R Meyer, November 6, 2009 n lec 9F.7 Little Oh: o(∙) Oh Little Asymptotically smaller : Def: f(n) = o(g(n)) iff f(n) lim =0 n g(n) Albert R Meyer, November 6, 2009 lec 9F.13 Little Oh: o(∙) n = o(n ) 2 because 3 n 1 lim 3 = lim = 0 n• n n n 2 Albert R Meyer, November 6, 2009 lec 9F.14 O(∙) Big Big Oh: Oh Asymptotic Order of Growth: f(n) = O(g(n)) f(n) limsup • g(n) n a technicality -- ignore now Albert R Meyer, November 6, 2009 lec 9F.15 Big Oh: O(∙) 3n = O(n ) 2 because 2 3n lim 2 3 n• n 2 Albert R Meyer, November 6, 2009 lec 9F.16 Theta: Θ(∙) Same Order of Growth: f(n) = Θ(g(n)) Def: f(n)=O(g(n)) and g(n)=O(f(n)) Albert R Meyer, November 6, 2009 lec 9F.17 Asymptotics: Intuitive Summary f ~ g: f = o(g): f = O(g): f & g nearly equal f much less than g f roughly g f = Θ(g): f & g roughly equal Albert R Meyer, November 6, 2009 lec 9F.18 The Oh’s lemma: If f = o(g) or f ~ g, then f = O(g) lim = 0 or lim = 1 IMPLIES lim Albert R Meyer, November 6, 2009 lec 9F.19 The Oh’s If f = o(g), then g O(f) f lim = 0 g IMPLIES g lim = f Albert R Meyer, November 6, 2009 lec 9F.21 Big Oh: O(∙) Equivalent definition: f(n) = O(g(n)) c,n0 f(n) n n 0. c·g(n) Albert R Meyer, November 6, 2009 lec 9F.22 Big Oh: O(∙) f(x) = O(g(x)) ↑ log scale ↓ green stays below purple from here on c· g(x) ln c f(x) no Albert R Meyer, November 6, 2009 lec 9F.23 Little Oh: Lemma: Proof: o(∙) xa = o(xb) for a < b x 1 and b - a > 0 = b b-a x x a so as x 1 , 0 b-a x Albert R Meyer, November 6, 2009 lec 9F.24 Little Oh: Lemma: ln x = for ε > 0. o(∙) ε o(x ) Albert R Meyer, November 6, 2009 lec 9F.25 Little Oh: Lemma: n x = for a > 1. o(∙) x o(a ) Albert R Meyer, November 6, 2009 lec 9F.29 Little Oh: o(∙) proofs: L’Hopital’s Rule, McLaurin Series (see a Calculus text) Albert R Meyer, November 6, 2009 lec 9F.30 Big Oh Mistakes “∙ = O(∙)” defines a relation Don’t write O(g) = f. Otherwise: x = O(x), so O(x) = x. But 2x = O(x), so 2x = O(x) = x, therefore 2x = x. Nonsense! Albert R Meyer, November 6, 2009 lec 9F.31 Team Problems Problems 1-4 Albert R Meyer, November 6, 2009 lec 9F.35
© Copyright 2026 Paperzz