!"#$"%!&
'()*+,-./+(&)+&0123415++,&
63)5+,7&8+*&9:6&
;<**3=&:>&?>&@A*(37&
B(1C3*71)A&+8&6<77<.5-73=7&@+7)+(&
D5A&)53&0123415++,&EFF*+<.5G&
• H13.3I173&JK(L&17&M3N1O43P&O-)P&,+37&(+)&
<..+QQ+,<)3&8-44&*<(L3&+8&9:6&.+QF43N1)A&
• R+&4<)3()&C<*1<O437&
!!"!#"$&
E&01234A&U-)41(3&
%> D5<)&17&,1V3*3()&<O+-)&JK(L&-71(L&
4123415++,&<(,&.+C<*1<(.3&Q<)*1.37G&
#> ',3(/J<O141)A&
• R+&(+(S*3.-*71C3&*34</+(751F7&
• T<((+)&.+QF<*3&I1,3&*<(L3&+8&.+QF3/(L&
Q+,347&71QF4A&
W+I&,+37&60&:7/Q</+(&D+*2G&
)'*+,-./01.2!3+2.4!
%&!
'(!
'&!
#.=
!> '()*+,-./+(&)+&4<C<<(&
I:7:J.,.7!
E/GJ:,./!
56/.78.2!9+8:70:;<.!3:,70%!
H!
!
$!
G+; 0-++2
4
J:
./G J!40M.
F
:%0J
K=L!J
C!
=
compare
3+2.4!D0,!
E8:4F:G+;/!
P!
N!
X& Y&
&=>!
=(?!!=?&!
=@&!!A=B!!&(=>!
Z&
X& Y&
!""#
!"$#!$$#
!"%#!$%#!%%#
OJ*40.2!9+8:70:;<.!3:,70%!
%&
!"#$"%!&
[53&6<N1Q-Q&0123415++,&\1K(L&
\-(./+(&
ˆ + tr S"
ˆ #1 # log S # ( p + q)
FML = log "
(
!
)
9&Z&9<QF43&.+C<*1<(.3&Q<)*1N&
!&Z&\1)&.+C<*1<(.3&Q<)*1N&
F&Z&3(,+L3(+-7&C<*1<O437&
]&Z&3N+L3(+-7&C<*1<O437&
E77-QF/+(7&@351(,&\Q4&
• 6-4/C<*1<)3&(+*Q<41)A&
– [37)&I1)5&Q-4/C<*1<)3&95<F1*+SD142^7&[37)&_41O*<*A&QC(+*Q)37)`&
– '(&F<*/.-4<*P&(+&723I&
– a1+4</+(7&O1<737&F<*<Q3)3*&3**+*&<(,&)37)7&+8&Q+,34&J)&
• R+&Q1771(L&,<)<&1(&.<4.-4</+(&+8&9&
– D144&O1<7&A+-*&37/Q<)37&
• R+&*3,-(,<()&C<*1<O437&
– 9&Q-7)&O3&F+71/C3&,3J(1)3&
• 9<QF43&71b3&17&4<*L3&
Q-.;!C!:;2!!!:7.!.RF:4L!,.7J/!&!:;2!>!"!@!:;2!,.7J/!(!:;2!?!"!@=!!
S-F/L!*.7T.<,!J+2.4!U,!'0.42/!:!8:4F.!+T!&'(!+T!@=!
D5A&\60G&E4)3*(</C37G&
D3V!17&-(O1<73,P&7.<43&1(C<*1<()P&O37)&37/Q<)+*&
DWVC"@=XY,7Z#C[!!#"$&$(\!
!S&E>?>E>&)53&B09&.*1)3*1+(&
&S&03<7)&7]-<*37g
&S&93(71/C3&)+&7.<43&+8&C<*1<O437&
!
DQVC"@=XY,7Z]#C[!!#"$&$Q[&^($\!
!S&E>?>E>&)53&Eh\&.*1)3*1+(&c&(+&(+*Q<41)A&<77-QF/+(&
– E,C1.3&C<*137&c&)<23&5+Q3P&L3)&<7&Q-.5&,<)<&<7&F+771O43&
– %dS#d&7<QF437&F3*&F<*<QP&(ZFe!"#P&3).f&
E&01234A&U-)41(3&
%> D5<)&17&,1V3*3()&<O+-)&JK(L&-71(L&
4123415++,&<(,&.+C<*1<(.3&Q<)*1.37G&
#> ',3(/J<O141)A&
!> '()*+,-./+(&)+&4<C<<(&
&S&D31L5)3,i&M3N1O43&!
&S&9.<43&8*33&
&S&E7AQF)+/.<44A&##&,17)*1O-)3,&
&S&93(71/C3&)+&8<)&+*&)51(&)<143,&,<)<&
&S&93(71/C3&)+&7<QF43&71b3&_(j%ddd`&
#&
!"#$"%!&
D51)53*&)53&[Sk-43&
!"#$"%&'&()*)'+",-".#,&'/&01)"2&*'/3&
',3(/J<O141)A&k3C171)3,&
%>&\+*&)53&Q+,34&F<*<Q3)3*7&)+&O3&37/Q<)3,&I1)5&-(1]-3&C<4-37P&)53A&
Q-7)&O3&1,3(/J3,>&D3&(33,&<7&Q<(A&2(+I(&F13.37&+8&1(8+*Q</+(&
<7&I3&,+&-(2(+I(&F<*<Q3)3*7>&
#>&93C3*<4&8<.)+*7&.<(&F*3C3()&1,3(/J.</+(P&1(.4-,1(Li&
&<>&)++&Q<(A&F<)57&
&O>&.3*)<1(&21(,7&+8&Q+,34&7F3.1J.</+(7&.<(&Q<23&&
&&&&&F<*<Q3)3*7&-(1,3(/J3,&
&.>&Q-4/.+441(3<*1)A&
&,>&.+QO1(</+(&+8&<&.+QF43N&Q+,34&<(,&<&7Q<44&7<QF43&
!>&9+Q3&7+lI<*3&.53.27&8+*&1,3(/J.</+(&_1(&7+Q3)51(L&.<443,&)53&
1(8+*Q</+(&Q<)*1N`&<(,&43)7&A+-&2(+I&I51.5&F<*<Q3)3*7&<*3&(+)&
1,3(/J3,>&
%&!
p37P&)53*3&17&<&C<*1<(.3&53*3&
&%#&
%&!
'&!
T+C_NPA%PA#`Z&
'(!
'(!
o&!
'8&C<*1<(.3&<(,&.+C<*1<(.37&<Q+(L&3N+L3(+-7&C<*1<O437&17&(+)&75+I(&
[S*-43i&)&$&_Fn]`_Fn]n%`"#S]_]n%`"#&
y1
0.7
0.5
y2
0.2
0.8
0.3
o(!
%&!
%(!
%(!
%&!
'&!
%(!
'&!
%&!
'(!
'(!
%(!
%(!
0.5
p+-&I144&733&F<)5&,1<L*<Q7&,*<I(&Q<(A&
I<A7f&
'&!
%&!
x1
y2
• &m&H<*<Q3)3*7&$&m&B(1]-3&:()*137&1(&<&T+C<*1<(.3&6<)*1N&
• &_.<.//:7'!.+(,1/+(&8+*&1,3(/J.</+(&
• &[S*-43i&)&$&_Fn]`_Fn]n%`"#&
• &)Zm&F<*<Q7P&FZm&3(,+L3(+-7&C<*1<O437P&]Zm&3N+L3(+-7&C<*1<O437&
• 6+,34&h\Z)Q<NS)&
%&!
&%#&
y1
%(!
%&!
'%#&
x1
'&!
W+I&h+&'&T+-()&)53&R-QO3*&+8&
H<*<Q3)3*7G&&&
%&!
o(!
'%#&
%&!
'(!
%(!
%(!
T53.2&I5<)&*373<*.53*&17&,+1(L&I1)5&3N+L3(+-7&C<*1<O437g&
h\&+8&<44&+8&)5373&Q+,347&Z&qr$"#&c&s&Z&#&
!&
!"#$"%!&
',3(/J.</+(&1(&9:6&
!"#$"%&'&()*)'+",-".#,&'/&01)"2&*'/3&
',3(/J.</+(&1(&9:6&
!"#$"%&'&()*)'+",-".#,&'/&01)"2&*'/3&
%&!
'%#&
x1
'&!
&%#&
x1
T+C_NPA%PA#`Z&
%&!
y1
'(!
y2
y1
0.2
%&!
'%#&
0.5
0.7
%&!
y2
'&!
0.5
0.8
'%%&
'%#&
0.3
&%#&
'&!
&%#&
%&!
'(!
%(!
:7/Q</(L&$&F<*<Q3)3*7&8*+Q&t&C<*1<(.3".+C<*1<(.3&
*34</+(751F7!
`D"&!
3+2.4!O/!58.702.;GU.2&
'(!
%(!
aF/,!O2.;GU.2!
45+*"67)089)7"(#7):+";&,)"0#"<="*#"),&:5&*)"9*"
',3(/J.</+(&1(&9:6&
6+"*;/+"(#7):"/7)089)7>&
%&!
%&!
'%#&
'%%&
'(!
'&!
%&!
%(!
58.702.;GU.2!
',3(/J.</+(&1(&9:6&
6+"*;/+"(#7):"/7)089)7>&
'%%&
%&!
'&!
%(!
b./i&[53*3&<*3&(+&*34</+(751F7&O3)I33(&3(,+L3(+-7&C<*1<O437&
CcDDO9OE_S!95_`OSO5_&
'%#&
&%#&
'(!
%&!
%(!
b./i&6+,34&17&k3.-*71C3&
CcDDO9OE_S!95_`OSO5_&
q&
!"#$"%!&
',3(/J.</+(&1(&9:6&
6+"*;/+"(#7):"/7)089)7>&
%&!
',3(/J.</+(&1(&9:6&
6+"*;/+"(#7):"/7)089)7>&
%(!
'%%&
%&!
'##&
'&!
%&!
&#%&
&%#&
'(!
'&!
%(!
%(!
'%#&
'%%&
%&!
&#%&
&%#&
'##&
'(!
%(!
bECd&6+,34&17&R+(S*3.-*71C3P&O-)&A^7&5<C3&-(1]-3&1(8+*Q</+(&
_E9ECCefb!95_`OSO5_&
_5g&6+,34&17&R+(S*3.-*71C3&
ERh&(+)&3(+-L5&1(8+*Q</+(&8+*&-(1]-3&7+4-/+(&
',3(/J.</+(&1(&9:6&
?;)"@'7)'".#07/8#0&
',3(/J.</+(&1(&9:6&
6+"*;/+"(#7):"/7)089)7>&
%&!
%(!
'%%&
'##&
'&!
%&!
%&!
&#%&
&%#&
'%#&
'%%&
'(!
'&!
%(!
• &u&Z&m&1(.+Q1(L&F<)57&
• &W&Z&m&+8&3N+L3(+-7&C<*7n&m&1(,1*3.)4A&.+((3.)3,&3(,+L3(+-7&C<*7&
• &u&v&W&
• !_E9ECCefb!95_`OSO5_&&
%&!
%>!
%(!
&#%&
&%#&
'##&
:6H'k'TE0&
BRh:k'h:R['\'TE['URG&
'(!
%(!
_5g&:C3*A)51(L&)5<)&<V3.)7&A#&<V3.)7&A%&c&\<147&A&0B"?)+*"
CcDDO9OE_S!95_`OSO5_&
$&
!"#$"%!&
k-437&+8&',3(/J.</+(&
•
)&$&_Fn]`_Fn]n%`"#&&
–
FZ&m&+8&A&C<*1<O437P&]Zm&+8&N&C<*1<O437&
– &(3.377<*A&
• R+&F<)57&O3)I33(&3(,+L3(+-7&C<*1<O437&
–
•
&6+,34&17&*3.-*71C3&
–
•
7-w.13()&
%> D5<)&17&,1V3*3()&<O+-)&JK(L&-71(L&
4123415++,&<(,&.+C<*1<(.3&Q<)*1.37G&
#> ',3(/J<O141)A&
!> '()*+,-./+(&)+&4<C<<(&
U*,3*i&u&v&W&
–
•
7-w.13()&
E&01234A&U-)41(3&
(3.377<*A&
k<(2i&733&?41(3&#dd$&+*&@+443(&%xsx&
–
–
:(,+L3(+-7&C<*7&Q-7)&O3&<V3.)3,&-(1]-34A&
7-w.13()&
H<.2<L37&8+*&\1K(L&<(&9:6&1(&k&
:N)3(71+(7&+V&+8&4<C<<(&
• &4<C<<(&c&5=Fi""III>4<C<<(>+*L&
S&&&&'(1/<44A&O<73,&+(&6F4-7&
S 91Q14<*&)+&k&41(3<*&Q+,34&7A()<N&
• &4<C<<(>7-*C3A&c&5=Fi""III>4<C<<(>+*L&
S&&&&.+**3.)7&)37)7&O<73,&+(&.+QF43N&7-*C3A&,371L(&
S E..+-()7&8+*&.4-7)3*1(L"(37/(L&-71(L&survey F<.2<L3&
• &73Q&c&5=Fi""7+.73*C>7+.7.1>Q.Q<7)3*>.<"y8+N"617."73Q"&
S&&&&kE6&z&3]-</+(&7A()<N&
S&&&&L++,&,+.-Q3()</+(&
S *37)*1.)3,P&(+)&<4I<A7&<O43&)+&J)&Q+,347&
• &73Q[++47&S&5=F7i""L1)5-O>.+Q"71Q73Q"73Q[++47"I121&
S&&&&L*<O&O<L&+8&<,,1/+(<4&)++47&
S&&&&1QF-)</+(&<(,&J)&1(,3N&)++47&
S Q-4/C<*1<)3&723I&<(,&2-*)+717&1(,1.37&
S T*3</+(&+8&(3I&C<*1<O437&
S <(,&Q+*3g&&T+(7)<()4A&L*+I1(Lg&
• &+F3(6N&S&&5=Fi""+F3(QN>F7A.>C1*L1(1<>3,-"&
S&&&@<73,&+V&+8&6N&
S '(.*3,1O4A&M3N1O43P&F+I3*8-4&
• &k:{9&S&5=Fi""III>QC7+l>.+Q"&
S&'()3*8<.3&8+*&.+QQ3*.1<4&:{9&7+lI<*3&
S&\43N1O43P&,3C34+F3,&OA&9:6&7)</7/.1<(7&
• &73QH4+)&S&5=F7i""L1)5-O>.+Q"9<.5<:F72<QF"73QH4+)"&
S&&&F4+)7&J)&Q+,347&
S&&.<(&<47+&O3&-73,&)+&F4+)&<&F13.3I173&9:6&
S&I+*27&-71(L&qgraph!
t&
!"#$"%!&
()*))+i&E&H<.2<L3&8+*&\1K(L&9:67&1(&k&
B71(L&T+C<*1<(.3&6<)*1N&63)5+,7&
3.20:G+;!0;!e;:4'/0/!+T!I+/,[D07.!f.<+8.7'!+T!
I4:;,!9+JJF;0G./!0;!9:40T+7;0:!C-7F64:;2/Y!
C-"D@=?EFAG"6D"F"?@@H"
I-"6?"6D"J@?"%GA=G.?"
K-"FHEFLD"2FMG"DNAG"6?"6D"<@6JO"EPF?"L@N"
?P6JM"6?"6D"<@6JOQ"
r\1C3&A3<*&7)-,A&+8&I14,J*37&1(&9+-)53*(&T<418+*(1<&1(&%xx!>&xd&F4+)7&
#t&
_#d&N&$dQ`P&_,<)<&8*+Q&;+(&?3343A&3)&<4>`&
E(<4A717&8+.-7i&-(,3*7)<(,&F+7)SJ*3&*3.+C3*A&+8&
&&&&&&&&&&&&&&&&&&&&&&&&&&&F4<()&7F3.137&*1.5(377&
Q3<7-*3,&C3L3)</+(&*3.+C3*Ai&
S F4<()&.+C3*&
S 7F3.137&*1.5(377&
U)53*&8<.)+*7&Q3<7-*3,&1(.4-,3,i&
S&4+.<4&<O1+/.&.+(,1/+(7&_<7F3.)P&7+147`&
S&7F</<4&53)3*+L3(31)A&
S&4<(,7.<F3S43C34&.+(,1/+(7&_4+.</+(P&343C</+(`&
:N<Q1(</+(&+8&I++,A&*3Q<1(7&
<44+I3,&8+*&37/Q<)3&+8&<L3&+8&
7)<(,&)5<)&O-*(3,&<7&I344&<7&
73C3*1)A&+8&)53&J*37>&
#|&
#s&
|&
!"#$"%!&
7-QQ<*A_<9:6`&
T+,1(L&<&k3L*3771+(&C3*7-7&9:6&
./$&0"#$%&1"23$,4$#5!
lavaan (0.4-11) converged normally after 15 iterations!
<L3&
.+C3*&
Number of observations
90!
Estimator
Minimum Function Chi-square
Degrees of freedom
P-value
#regression!
aLM<-lm(cover ~ age, data=keeley)!
Parameter estimates:!
#sem!
library(lavaan)!
aSEM<-sem('cover ~ age', data=keeley)!
Regressions:!
cover ~!
age
T+QF<*3&)+&k3L*3771+(&
Regressions:!
cover ~!
age
Variances:!
cover
Estimate
Std.err
Z-value
P(>|z|)!
-0.009
0.002
-3.549
0.000!
0.013!
9+J*:7.!,+!f./02F:4!CE!
/R7,#@=@hB$"@=(AX!
0.087
> summary(aLM)!
Coefficients:!
Estimate Std. Error t
(Intercept) 0.917395
0.071726
age
-0.008846
0.002520
---!
Signif. codes: 0 ‘***’ 0.001 ‘**’
value Pr(>|t|)
!
12.79 < 2e-16 ***!
-3.51 0.00071 ***!
0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 !
Residual standard error: 0.2988 on 88 degrees of freedom!
iF,!j-:,!:6+F,!,-.!0;,.7<.*,k!
ML!
0.000!
0!
1.000!
Information
Standard Errors
Variances:!
cover
!"#$%&'(&()*+,)*$#&
("-&#(!!,./,!-:/!;+!2T!
Expected!
Standard!
Estimate
Std.err
Z-value
P(>|z|)!
-0.009
0.002
-3.549
0.000!
0.087
0.013!
'()3*.3F)7&:7/Q<)3,&I1)5&63<(&
9)*-.)-*3&
> aMeanSEM<-sem('cover ~ age',
data=keeley, meanstructure=T)!
> summary(aMeanSEM)!
...!
Estimate Std.err Z-value
Regressions:!
cover ~!
age
-0.009
Intercepts:!
cover
Variances:!
cover
P(>|z|)!
0.002
-3.549
0.000!
0.917
0.071
12.935
0.000!
0.087
0.013!
s&
!"#$"%!&
9)<(,<*,1b3,&T+3w.13()7&
@*1(L1(L&@<.2&\1*3&
!! !lhs op
rhs est.std
se
z pvalue!
1 cover ~
age -0.350 0.099 -3.549
0!
2 cover ~~ cover
0.877 0.131 6.708
0!
3
age ~~
age
1.000
NA
NA
NA!
d>ss&
Sd>!$&
<L3&
7-QQ<*A_F<*/<463,9:6P&*7]-<*3Z[P&7)<(,<*,1b3,Z[`&
d>q$&
!!
!
!
Regressions:!
firesev ~!
age
cover ~!
firesev
age
Variances:!
firesev
cover
!
!Estimate
J*373C&
Z-value
.+C3*&
partialMedModel<-' firesev ~ age!
cover ~ firesev + age'!
partialMedSEM<-sem(partialMedModel, !
!! ! ! ! ! ! data=keeley)!
73QH4+)&
Sd>!$&
d>|x&
P(>|z|)
Std.lv
Std.all!
0.060
0.012
4.832
0.000
0.060
0.454!
0.020
0.003
-3.353
-1.833
0.001
0.067
-0.067
-0.005
-0.350!
-0.191!
2.144
0.078
0.320
0.012
2.144
0.078
0.794!
0.780!
0.206!
0.220!
J*373C&
d>|s&
-0.067
-0.005
R-Square:!
firesev
cover
Sd>%x&
Std.err
.+C3*&
.+C3*&
e4/+d!summary(aSEM, standardized=T, rsq=T)!
<L3&
<L3&
#plot!
library(semPlot)!
semPaths(partialMedSEM, "std")!
x&
!"#$"%!&
D5<)&18&I3&2(+I&O3=3*G&
<L3&
\144&1(&d^7&)+&*3Q1(,&
-7&)5<)&J*373C&17&1(&
)53&Q+,34P&<(,&
JN3,&)+&d&
.+C3*&
d&
d&
J*373C&
R33,&)+&,+&)517&8+*&
Q+,34&.+QF<*17+(P&
<7&I3&<*3&
.+QF<*1(L&
.+C<*1<(.3&Q<)*1.37&
zeroMedModel<-' firesev ~ 0*age!
cover ~ 0*firesev + age'!
zeroMedFit<-sem(zeroMedModel, !
!! ! ! ! ! ! data=keeley)!
D5<)&<O+-)&T+**34<)3,&:**+*G&
.+C3*&
7)<(,<*,1b3,9+4-/+(_b3*+63,\1)`&
d&
.+C3*&
J*373C&
d>ss&
d&
!! !lhs op
rhs est.std
se
z pvalue!
1 firesev ~
age
0.000
NA
NA
NA!
2
cover ~ firesev
0.000
NA
NA
NA!
3
cover ~
age -0.350 0.099 -3.549
0!
4 firesev ~~ firesev
1.000 0.149 6.708
0!
5
cover ~~
cover
0.877 0.131 6.708
0!
6
age ~~
age
1.000
NA
NA
NA!
D5<)&<O+-)&T+**34<)3,&:**+*G&
Sd>!$&
%%&
<L3&
Sd>!$&
<L3&
.+C3*&
0.87
<L3&
J*373C&
%#&
#what about correlations!
corModel <-'firesev ~ age!
cover ~ age!
cover ~~ firesev'!
corFit <- sem(corModel, data=keeley)!
Sd>!!&
d>q$&
J*373C&
0.79
> standardizedSolution(corFit)!
lhs op
rhs est.std
se
z pvalue!
1 firesev ~
age
0.454 0.094 4.832
0!
2
cover ~
age -0.350 0.099 -3.549
0!
3 firesev ~~
cover -0.333 0.094 -3.556
0!
4 firesev ~~ firesev
0.794 0.118 6.708
0!
5
cover ~~
cover
0.877 0.131 6.708
0!
6
age ~~
age
1.000
NA
NA
NA!
%d&
!"#$"%!&
9+4-/+(&%i&[53&6+,34&
6+*(1(L&:N3*.173&
<O1+/.&
%> \144&1(&9)<(,<*,1b3,&T+3w.13()7&<(,&k#&8+*&
)517&Q+,34&
#> k3J)&17&<77-Q1(L&)5<)&)53*3&17&<&%i%&
*34</+(751F&O3)I33(&53)3*+&<(,&*1.5(377&
<O1+/.&
,17)<(.3&
*1.5&
,17)<(.3&
*1.5(377&
53)3*+&
#The Richness Partial Mediation Model!
distModel <- 'rich ~ distance + abiotic + hetero!
hetero ~ distance!
abiotic ~ distance'!
distFit <- sem(distModel, data=keeley)!
53)3*+&
9+4-/+(&%i&[53&6+,34&
d>qt&
,17)<(.3&
d>!$&
lhs
1
rich
2
rich
3
rich
4
hetero
5 abiotic
6
rich
7
hetero
8 abiotic
9 distance
op
~
~
~
~
~
~~
~~
~~
~~
<O1+/.&
k#Zd>#%&
d>!s&
53)3*+&
k#Zd>%#&
T+QF<*3&I1)5&H13.3I173&\1)&
d>#|&
*1.5(377&
k#Zd>qt&
d>#t&
rhs est.std
se
z pvalue!
distance
0.377 0.092 4.117 0.000!
abiotic
0.268 0.087 3.079 0.002!
hetero
0.256 0.082 3.104 0.002!
distance
0.346 0.099 3.498 0.000!
distance
0.460 0.094 4.911 0.000!
rich
0.539 0.080 6.708 0.000!
hetero
0.880 0.131 6.708 0.000!
abiotic
0.789 0.118 6.708 0.000!
distance
1.000
NA
NA
NA!
d>qt&
,17)<(.3&
d>!$&
<O1+/.&
k#Zd>#%&
d>!s&
53)3*+&
k#Zd>%#&
V0M.40-++2!
d>#|&
*1.5(377&
k#Zd>qt&
d>#t&
d>qt&
,17)<(.3&
d>!$&
<O1+/.&
k#Zd>#%&
d>!|&
53)3*+&
k#Zd>%#&
d>#t&
*1.5&
k#Zd>q|&
d>#$&
I0.<.j0/.!
%%&
!"#$"%!&
9+4-/+(&#i&[53&6+,34&
d>qt&
,17)<(.3&
d>!q&
<O1+/.&
k#Zd>#%&
:7/Q</(L&h1*3.)&<(,&'(,1*3.)&:V3.)7&
I1)5&R<Q3,&T+3w.13()7&
d>!d&
*1.5(377&
k#Zd>q%&
d>qq&
53)3*+&
k#Zd>%#&
>d%&_%`&
oneDistModel <- 'rich ~ distance + abiotic + 1*hetero!
hetero ~ distance!
abiotic ~ distance'!
oneFit<-sem(oneDistModel, data=keeley)!
summary(oneFit, stdandardized=T, rsquare=T)!
7-QQ<*A_)+)h17)\1)P&7)<(,<*,1b3,Z[P&
*7]-<*3Z[`&
!
...!
!
!
!
!Estimate
Std.err
Z-value
P(>|z|)
Std.lv
Std.all!
Defined parameters:!
direct
0.640
indirect
13.357
total
13.997
0.156
5.090
5.051
4.117
2.624
2.771
0.000
0.009
0.006
0.640
13.357
13.997
0.377!
0.210!
0.588!
totDistModel <- '!
! !rich ~ a*distance + b*abiotic + c*hetero
! !hetero ~ b1*distance
!
! !abiotic ~ c1*distance !
direct:= a
! !indirect:= b1*b + c1*c
! !total:= b1*b + c1*c + a
'!
!
!
!
!
7)<(,<*,1b3,9+4-/+(_)+)h17)\1)`&
! ! lhs op
rhs est.std
se
z
1
rich ~
distance
0.377 0.092 4.117
2
rich ~
abiotic
0.268 0.087 3.079
3
rich ~
hetero
0.256 0.082 3.104
4
hetero ~
distance
0.346 0.099 3.498
5
abiotic ~
distance
0.460 0.094 4.911
6
rich ~~
rich
0.539 0.080 6.708
7
hetero ~~
hetero
0.880 0.131 6.708
8
abiotic ~~
abiotic
0.789 0.118 6.708
9 distance ~~
distance
1.000
NA
NA
10
direct :=
a
0.377
NA
NA
11 indirect :=
b1*b+c1*c
0.210
NA
NA
12
total := b1*b+c1*c+a
0.588
NA
NA
pvalue!
0.000!
0.002!
0.002!
0.000!
0.000!
0.000!
0.000!
0.000!
NA!
NA!
NA!
NA!
%#&
© Copyright 2026 Paperzz