Optimal value range in interval linear programming

Optimal value range in interval linear
programming
Milan Hladı́k
Department of Applied Mathematics
Charles University, Prague
EURO XXII, Prague
July 8–11, 2007
Introduction
Definition
I
An interval matrix
AI = [A, A] = {A ∈ Rm×n | A ≤ A ≤ A},
Introduction
Definition
I
An interval matrix
AI = [A, A] = {A ∈ Rm×n | A ≤ A ≤ A},
I
Midpoint and radius of AI
1
Ac ≡ (A + A),
2
1
A∆ ≡ (A − A).
2
Introduction
Definition
I
An interval matrix
AI = [A, A] = {A ∈ Rm×n | A ≤ A ≤ A},
I
Midpoint and radius of AI
1
Ac ≡ (A + A),
2
1
A∆ ≡ (A − A).
2
Consider the interval linear program
f (A, b, c) ≡ inf c T x subject to Ax = b, x ≥ 0,
where A ∈ AI , b ∈ bI , c ∈ c I .
Lower and upper bounds of the optimal value
f ≡ inf f (A, b, c) subject to A ∈ AI , b ∈ bI , c ∈ c I ,
f ≡ sup f (A, b, c) subject to A ∈ AI , b ∈ bI , c ∈ c I .
Lower and upper bounds of the optimal value
f ≡ inf f (A, b, c) subject to A ∈ AI , b ∈ bI , c ∈ c I ,
f ≡ sup f (A, b, c) subject to A ∈ AI , b ∈ bI , c ∈ c I .
Theorem (Rohn 2006)
We have
f = inf c T x subject to Ax ≤ b, Ax ≥ b, x ≥ 0.
Let f be finite or let the right-hand side of (1) be positively
infinite. Then
T
T
y
−
A
f = sup bcT y + b∆
|y | subject to AT
c
∆ |y | ≤ c.
(1)
Unified approach
Consider the general interval linear program
f (A, b, c) ≡ inf c T x subject to x ∈ M(A, b),
where M(A, b) is described by a linear system.
Unified approach
Consider the general interval linear program
f (A, b, c) ≡ inf c T x subject to x ∈ M(A, b),
where M(A, b) is described by a linear system.
Lower and upper bounds of the optimal value
f ≡ inf f (A, b, c) subject to A ∈ AI , b ∈ bI , c ∈ c I ,
f ≡ sup f (A, b, c) subject to A ∈ AI , b ∈ bI , c ∈ c I .
Unified approach
Consider the general interval linear program
f (A, b, c) ≡ inf c T x subject to x ∈ M(A, b),
where M(A, b) is described by a linear system.
Lower and upper bounds of the optimal value
f ≡ inf f (A, b, c) subject to A ∈ AI , b ∈ bI , c ∈ c I ,
f ≡ sup f (A, b, c) subject to A ∈ AI , b ∈ bI , c ∈ c I .
Dual problem
max bT x subject to x ∈ N(A, c).
Solution sets of M(A, b) and N(A, c), respectively, are
M ≡ {x ∈ M(A, b) | A ∈ AI , b ∈ bI },
N ≡ {y ∈ N(A, c) | A ∈ AI , c ∈ c I }.
Solution sets of M(A, b) and N(A, c), respectively, are
M ≡ {x ∈ M(A, b) | A ∈ AI , b ∈ bI },
N ≡ {y ∈ N(A, c) | A ∈ AI , c ∈ c I }.
Theorem
We have
T
f = inf ccT x − c∆
|x| subject to x ∈ M.
Let f < ∞ or let the right-hand side of (2) be positively infinite.
Then
T
f = sup bcT y + b∆
|y | subject to x ∈ N.
(2)
Algorithm
Definition (Strong solvability)
The system describing M(A, b), A ∈ AI , b ∈ bI , is strongly
solvable if M(A, b) is nonempty for all A ∈ AI , b ∈ bI .
Algorithm
Definition (Strong solvability)
The system describing M(A, b), A ∈ AI , b ∈ bI , is strongly
solvable if M(A, b) is nonempty for all A ∈ AI , b ∈ bI .
Algorithm (Optimal value range [f , f ])
1. Compute
T
|x| subject to x ∈ M.
f := inf ccT x − c∆
Algorithm
Definition (Strong solvability)
The system describing M(A, b), A ∈ AI , b ∈ bI , is strongly
solvable if M(A, b) is nonempty for all A ∈ AI , b ∈ bI .
Algorithm (Optimal value range [f , f ])
1. Compute
T
|x| subject to x ∈ M.
f := inf ccT x − c∆
2. Compute
T
ϕ := sup bcT y + b∆
|y | subject to y ∈ N.
Algorithm
Definition (Strong solvability)
The system describing M(A, b), A ∈ AI , b ∈ bI , is strongly
solvable if M(A, b) is nonempty for all A ∈ AI , b ∈ bI .
Algorithm (Optimal value range [f , f ])
1. Compute
T
|x| subject to x ∈ M.
f := inf ccT x − c∆
2. Compute
T
ϕ := sup bcT y + b∆
|y | subject to y ∈ N.
3. If M(A, b), A ∈ AI , b ∈ bI , is strongly solvable, then set
f := ϕ, otherwise set f := ∞.
Examples
Example (simple case)
Let M(A, b) = {x | Ax ≤ b, x ≥ 0}.
Examples
Example (simple case)
Let M(A, b) = {x | Ax ≤ b, x ≥ 0}. Then
N(A, c) = {y | AT y ≥ c, y ≥ 0},
M = {x | Ax ≤ b, x ≥ 0},
T
N = {y | A y ≥ c, y ≥ 0}.
Examples
Example (simple case)
Let M(A, b) = {x | Ax ≤ b, x ≥ 0}. Then
N(A, c) = {y | AT y ≥ c, y ≥ 0},
M = {x | Ax ≤ b, x ≥ 0},
T
N = {y | A y ≥ c, y ≥ 0}.
Strong solvability of M(A, b) is equivalent to solvability to
Ax ≤ b.
Examples
Example (simple case)
Let M(A, b) = {x | Ax ≤ b, x ≥ 0}. Then
N(A, c) = {y | AT y ≥ c, y ≥ 0},
M = {x | Ax ≤ b, x ≥ 0},
T
N = {y | A y ≥ c, y ≥ 0}.
Strong solvability of M(A, b) is equivalent to solvability to
Ax ≤ b.
Optimal value bounds
f = inf c T x subject to x ∈ M,
T
f = sup b y subject to y ∈ N.
Example (with dependences)
Let the feasible set be described as follows
M(A, (b1 , b2 )) = {x, y | Ax = b1 , Ay = b2 , x, y ≥ 0}.
Example (with dependences)
Let the feasible set be described as follows
M(A, (b1 , b2 )) = {x, y | Ax = b1 , Ay = b2 , x, y ≥ 0}.
The dual feasible set and solution sets
N(A, (c 1 , c 2 )) = {u, v | AT u ≤ c 1 , AT v ≤ c 2 },
Example (with dependences)
Let the feasible set be described as follows
M(A, (b1 , b2 )) = {x, y | Ax = b1 , Ay = b2 , x, y ≥ 0}.
The dual feasible set and solution sets
N(A, (c 1 , c 2 )) = {u, v | AT u ≤ c 1 , AT v ≤ c 2 },
n
1
2
M = x, y | Ax ≤ b , Ax ≥ b 1 , Ay ≤ b , Ay ≥ b 2 , x, y ≥ 0,
o
1 T
2 T
b∆
y + b∆
x + A∆ |xy T − yx T | ≥ |(Ac x − bc1 )y T − (Ac y − bc2 )x T | ,
n
1
T
2
T
T
c
,
A
c
,
v
−
A
|v
|
≤
N = u, v | AT
u
−
A
|u|
≤
c
∆
c
∆
o
T
1
T
2
T
(c − Ac u)|vk | + (c − Ac v )|uk | + A∆ |vk u − uk v | ≥ 0 ∀k : uk vk < 0 .
Example (with dependences)
Let the feasible set be described as follows
M(A, (b1 , b2 )) = {x, y | Ax = b1 , Ay = b2 , x, y ≥ 0}.
The dual feasible set and solution sets
N(A, (c 1 , c 2 )) = {u, v | AT u ≤ c 1 , AT v ≤ c 2 },
n
1
2
M = x, y | Ax ≤ b , Ax ≥ b 1 , Ay ≤ b , Ay ≥ b 2 , x, y ≥ 0,
o
1 T
2 T
b∆
y + b∆
x + A∆ |xy T − yx T | ≥ |(Ac x − bc1 )y T − (Ac y − bc2 )x T | ,
n
1
T
2
T
T
c
,
A
c
,
v
−
A
|v
|
≤
N = u, v | AT
u
−
A
|u|
≤
c
∆
c
∆
o
T
1
T
2
T
(c − Ac u)|vk | + (c − Ac v )|uk | + A∆ |vk u − uk v | ≥ 0 ∀k : uk vk < 0 .
Optimal value bounds
1 T
2 T
f = inf(cc1 )T x − (c∆
) |x| + (cc2 )T y − (c∆
) |y | s.t. (x, y ) ∈ M,
2 T
1 T
) |v | s.t. (u, v ) ∈ N.
) |u| + (bc2 )T v + (b∆
f = sup(bc1 )T u + (b∆
Extension
Extension
Consider quadratic programming problem
min x T Cx + d T x subject to Ax ≤ b, x ≥ 0,
Extension
Consider quadratic programming problem
min x T Cx + d T x subject to Ax ≤ b, x ≥ 0,
Its dual is
max −x T Cx − bT u subject to 2Cx + AT u + d ≥ 0, u ≥ 0.
Extension
Consider quadratic programming problem
min x T Cx + d T x subject to Ax ≤ b, x ≥ 0,
Its dual is
max −x T Cx − bT u subject to 2Cx + AT u + d ≥ 0, u ≥ 0.
Theorem
If C is fixed and A ∈ AI , b ∈ bI , d ∈ d I , then
f = inf x T Cx + d T x subject to Ax ≤ b, x ≥ 0,
T
f = sup −x T Cx − bT u subject to 2Cx + A u + d ≥ 0, u ≥ 0.
The End.