Computing A Near-Maximum Independent Set in Linear Time by Reducing-Peeling Lijun Chang, Wei Li, Wenjie Zhang UNSW Sydney, Australia [email protected] Reducing-Peeling Framework Problem Definition Ø The Framework Ø IndependentSet Givenagraph𝐺 = (𝑉, 𝐸),avertexsubset𝐼 ⊆ 𝑉 isanindependentsetifforanytwo vertices𝑢 and𝑣 in𝐼,thereisnoedgebetween𝑢 and𝑣 in𝐺. Definition:(InexactReduction) Givenagraph𝐺,we remove/peelthevertexwith thehighestdegreefrom𝐺. Independent Set Ø Problem Statement Givenagraph𝐺 = 𝑉, 𝐸 ,computeanindependentset𝐼of𝐺 whosesizeisthelargest amongallindependentsetsof𝐺. Maximum Independent Set Ø Main Observations • Realnetworksareusuallypower-lawgraphswithmanylow-degreevertices • Reductionruleshavebeeneffectivelyusedforlow-degreevertices • High-degreeverticesarelesslikelytobeinamaximumindependentset Our Approaches Ø BDOne & BDTwo Degree-oneReduction Existing Works (a)𝛼 𝐺 = 𝛼 𝐺\ 𝑣 𝛼 𝐺 : 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝐺 Ø NP-hard [Garey et al. Book’79] and APX-hard [J. Håstad. FOCS’96] Degree-twoReductions Ø Exact Algorithms • branch-and-reduce paradigm [F.V.Fomin etal.J.ACM’09,T.Akiba etal.Theor.Comput. (b)Isolation𝛼 𝐺 = 𝛼 𝐺\ 𝑣, 𝑤 (c)Folding𝛼 𝐺 = 𝛼 𝐺/ 𝑢, 𝑣, 𝑤 Sci.’16] • Theoreticallyrunsin𝑂∗ 1.2201' timeandpracticallycomputestheexactsolutionfor manysmallandmedium-sizedgraphs,butdoesnothandlelargegraphswell. Ø Approximation Algorithms • [U.Feige J.DiscreteMath’04,M.M.Halldórsson etal.Algorithmica’97,P.Berman. Theor.Comput.Sys.’99] • Approximationratiolargelydependsonn orΔ. Not practically useful Ø Heuristic Algorithms • Linear-timealgorithms § Greedy,anddynamicupdate § Efficient,butcanonlyfindsmallindependentsetsinpractice. • Iterative randomized searching algorithms § ARW[D.V.Andrade.J.Heuristics’12],ReduMIS [S.Lamm.ALENEX’16], OnlineMIS [J. Dahlum.SEA’16] § Can find large independent sets, but take long time 𝒅𝒆𝒈 𝒗𝟏 = 𝟏 +1 𝒅𝒆𝒈 𝒗𝟑 = 𝟐 Ø LinearTime Lemma4.1:(Degree-twoPath Reductions)Consideragraph 𝐺 = 𝑉, 𝐸 withminimumdegreetwo. Foramaximaldegree-twopath 𝑃 = 𝑣N , 𝑣O , … , 𝑣Q ,let𝑣 ∉ 𝑃 and 𝑤 ∉ 𝑃 betheuniquevertices connectedto𝑣N and𝑣Q , respectively. Ø NearLinear Overview of Our Approaches Ø Computelarge independentsetforlargegraphsinatime-efficient andspace-effective manner • Subquadratic (orevenlinear)time • 2m+O(n)space:m isthenumberofundirectededges. Lemma5.1:(DominanceReduction)[F.V.Fomin etal.JACM’09] Vertexv dominatesvertexu if 𝑣, 𝑢 ∈ 𝐸 andallneighbors ofv otherthanu arealsoconnectedtou (i.e.,𝑁 𝑣 \ 𝑢 ⊆ 𝑁 𝑢 ).Ifv dominatesu,thenthereexistsamaximumindependentsetofG theexcludesu; thus,wecanremoveu fromG,and𝛼 𝐺 = 𝛼 𝐺\ 𝑢 . Lemma5.2:Vertexv dominatesitsneighbor u iff ∆ 𝑣, 𝑢 = 𝑑 𝑣 − 1,where∆ 𝑣, 𝑢 isthenumberoftriangles containinguandv Performance Studies Accuracy Boost ARW Processing Time Memory Usage
© Copyright 2026 Paperzz