Chapter 11: Phase Transformations ISSUES TO ADDRESS... • ____________ one phase into another takes time. Fe g (Austenite) C FCC Fe C 3 Eutectoid transformation (cementite) + a (ferrite) (BCC) • How does the rate of ________________ depend on time and temperature? • Is it possible to slow down transformations so that non-equilibrium _________________ are formed? • Are the mechanical properties of non-equilibrium structures more desirable than ___________ ones? Chapter 11 - 1 Phase Transformations Nucleation – nuclei (seeds) act as templates on which crystals grow – for nucleus to form rate of addition of atoms to nucleus must be faster than rate of loss – once nucleated, growth proceeds until equilibrium is attained Driving force to nucleate increases as we increase T – ___________ (eutectic, eutectoid) – ___________ (peritectic) Small supercooling ________________ - few nuclei - ____ crystals Large supercooling ________________ - many nuclei - ____ crystals Chapter 11 - 2 Solidification: Nucleation Types • Homogeneous nucleation – nuclei form in the bulk of liquid _______ – requires considerable _____________ (typically 80-300°C) • _________________ nucleation – much easier since ______ “nucleating surface” is already present—e.g., mold wall, impurities in liquid phase – only very slight _____________ (0.1-10ºC) Chapter 11 - 3 Homogeneous Nucleation & Energy Effects Surface Free Energy - ___________ the nuclei (it takes energy to make an _____________) DGS = 4pr 2 g g = surface _____________ GT = Total ______________ = GS + GV Volume (Bulk) Free Energy – ________ the ______ (releases energy) 4 DGV = pr 3 DGu 3 DGu = volume free energy unit volume r* = critical nucleus: for r < r* nuclei ______; for r >r* nuclei grow (to reduce energy) Adapted from Fig.11.2(b), Callister & Rethwisch 4e. Chapter 11 - 4 Solidification - 2gTm r* = DHf DT r* = critical radius g = surface free energy Tm = melting temperature Hf = latent heat of _____________ T = Tm - T = supercooling Note: Hf and g are ___________ dependent on T r* _____________ as T increases For typical T r* ~ 10 nm Chapter 11 - 5 Rate of Phase Transformations Kinetics - study of reaction rates of phase transformations • To determine reaction rate – measure degree of ______________ as function of time (while holding temp constant) How is degree of ___________ measured? ____________ – many specimens required electrical conductivity measurements – on ________ specimen measure __________ of sound waves – on single specimen Chapter 11 - 6 Fraction transformed, y Rate of Phase Transformation ____________________ Fixed T __________ rate reached – now amount unconverted __________ so rate slows 0.5 t0.5 rate ________ as surface area increases & nuclei _________ log t Avrami equation => y = 1- exp (-kt n) fraction transformed Adapted from Fig. 11.10, Callister & Rethwisch 4e. time – k & n are ____________ specific parameters By convention rate = 1 / t0.5 Chapter 11 - 7 Temperature Dependence of Transformation Rate 135C 119C 1 10 113C 102C 102 88C 43C 104 Adapted from Fig. 11.11, Callister & Rethwisch 4e. (Fig. 11.11 adapted from B.F. Decker and D. Harker, "Recrystallization in Rolled Copper", Trans AIME, 188, 1950, p. 888.) • For the ________________ of Cu, since rate = 1/t0.5 rate _________ with ___________ temperature • Rate often so ______ that attainment of ___________ state not possible! Chapter 11 - 8 Transformations & Undercooling g a + Fe3C • _________ transf. (Fe-Fe3C system): 0.76 wt% C 6.7 wt% C • For transf. to occur, must 0.022 wt% C cool to below ________ (i.e., must “_________”) T(ºC) 1600 d 1200 L+Fe3C 1148ºC 1000 g +Fe3C Eutectoid: Equil. Cooling: Ttransf. = 727ºC 800 727ºC 400 0 (Fe) T a +Fe3C Undercooling by Ttransf. < 727C 0.76 600 0.022 a ferrite g +L g (austenite) 1 2 3 4 5 6 Fe3C (cementite) L 1400 Adapted from Fig. 10.28,Callister & Rethwisch 4e. (Fig. 10.28 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-inChief), ASM International, Materials Park, OH, 1990.) 6.7 C, wt%C Chapter 11 - 9 The Fe-Fe3C Eutectoid Transformation • Transformation of austenite to pearlite: Adapted from Fig. 10.15, Callister & Rethwisch 4e. a a g a a a a g • For this transformation, cementite (Fe3C) Ferrite (a) rate ___________ with ___________________. a g pearlite growth direction a a 100 y (% pearlite) Austenite (g) grain boundary Diffusion of C during transformation 600ºC (T larger) 50 0 650ºC 675ºC (T smaller) g Carbon diffusion Adapted from Fig. 11.12, Callister & Rethwisch 4e. Coarse _______ formed at higher temperatures – relatively _____ Fine ________ formed at lower temperatures – relatively ______ Chapter 11 - 10 Generation of Isothermal Transformation Diagrams Consider: y, % transformed • The Fe-Fe3C system, for Co = _____ wt% C • A transformation temperature of ________. 100 T = 675ºC 50 0 10 2 1 T(ºC) Austenite (stable) 10 4 time (s) TE (727ºC) 700 Austenite (unstable) 600 Pearlite isothermal transformation at 675ºC 500 400 1 10 10 2 10 3 10 4 10 5 time (s) Adapted from Fig. 11.13,Callister & Rethwisch 4e. (Fig. 11.13 adapted from H. Boyer (Ed.) Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, 1977, p. 369.) Chapter 11 - 11 Austenite-to-Pearlite Isothermal Transformation • • • • Eutectoid composition, Co = 0.76 wt% C Begin at T > ________ Rapidly ___________________ Hold T (625°C) ___________ (__________ treatment) T(ºC) Austenite (stable) 700 Austenite (unstable) 600 g g 500 TE (727ºC) Pearlite g g g Adapted from Fig. 11.14,Callister & Rethwisch 4e. (Fig. 11.14 adapted from H. Boyer (Ed.) Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, 1997, p. 28.) g 400 1 10 10 2 10 3 10 4 10 5 time (s) Chapter 11 - 12 Transformations Involving Noneutectoid Compositions Consider C0 = 1.13 wt% C T(ºC) T(ºC) 900 d A + 1200 C A + P a P L+Fe3C (austenite) 1000 g +Fe3C 800 600 500 1 g +L g 10 102 103 time (s) Adapted from Fig. 11.16, Callister & Rethwisch 4e. 104 T 400 0 (Fe) 0.76 600 A TE (727ºC) A 1.13 700 L 1400 0.022 800 1 727ºC a +Fe3C 2 3 4 5 Adapted from Fig. 10.28, Callister & Rethwisch 4e. 6 Fe3C (cementite) 1600 6.7 C, wt%C Hypereutectoid composition – ___________ cementite Chapter 11 - 13 Bainite: Another Fe-Fe3C Transformation Product • _________: --elongated Fe3C _________ in a-ferrite ________ --__________ controlled • Isothermal Transf. ___________, Co = 0.76 wt% C 800 Austenite (stable) T(ºC) A 5 mm 100% pearlite 100% bainite 400 B A a (ferrite) TE P 600 Fe3C (cementite) Adapted from Fig. 11.17, Callister & Rethwisch 4e. (Fig. 11.17 from Metals Handbook, 8th ed., Vol. 8, Metallography, Structures, and Phase Diagrams, American Society for Metals, Materials Park, OH, 1973.) 200 10-1 10 103 Adapted from Fig. 11.18, Callister & Rethwisch 4e. 105 time (s) Chapter 11 - 14 Spheroidite: Another Microstructure for the Fe-Fe3C System a --Fe3C particles within _______________ (ferrite) • Spheroidite: --formation requires ____________ --heat ____________________________ Fe3C just below eutectoid for long times (cementite) --driving force – reduction of a-ferrite/Fe3C ___________ area 60 mm Adapted from Fig. 11.19, Callister & Rethwisch 4e. (Fig. 11.19 copyright United States Steel Corporation, 1971.) Chapter 11 - 15 Martensite: A Nonequilibrium Transformation Product • ___________: Fe atom sites x x x x x 60 mm -- g(FCC) to ____________ (BCT) potential C atom sites x Adapted from Fig. 11.21, Callister & Rethwisch 4e. • Isothermal Transf. Diagram 800 Austenite (stable) T(ºC) A 400 10-1 Adapted from Fig. 11.22, Callister & Rethwisch 4e. (Fig. 11.22 courtesy United States Steel Corporation.) • g to ________ (M) transformation. B A 200 TE P 600 Adapted from Fig. 11.23, Callister & Rethwisch 4e. Martensite needles Austenite 0% 50% 90% M+A M+A M+A 10 103 105 -- is rapid! (_______________) -- % transf. depends only on __ to which rapidly __________ time (s) Chapter 11 - 16 Martensite Formation g (FCC) slow cooling a (BCC) + Fe3C quench M (BCT) _________ _________(M) – single phase – has body centered tetragonal (BCT) crystal structure _________ transformation BCT few slip planes BCT if C0 > 0.15 wt% C hard, brittle Chapter 11 - 17 Phase Transformations of Alloys Effect of adding other __________ Change transition temp. Cr, Ni, Mo, Si, Mn retard g a + Fe3C reaction (and formation of _________________) Adapted from Fig. 11.24, Callister & Rethwisch 4e. Chapter 11 - 18 Continuous Cooling Transformation Diagrams Conversion of isothermal _____________________ continuous cooling _____________________ Adapted from Fig. 11.26, Callister & Rethwisch 4e. Cooling curve Chapter 11 - 19 Isothermal Heat Treatment Example Problems On the isothermal transformation diagram for a 0.45 wt% C, Fe-C alloy, sketch and label the time-temperature paths to produce the following microstructures: a) 42% proeutectoid ferrite and 58% coarse pearlite b) 50% fine pearlite and 50% bainite c) 100% martensite d) 50% martensite and 50% austenite Chapter 11 - 20 Solution to Part (a) of Example Problem a) 42% proeutectoid ferrite and 58% coarse pearlite Fe-Fe3C phase diagram, for C0 = 0.45 wt% C Isothermally treat at _______ 800 A -- all __________ transformsT (ºC) to proeutectoid a and coarse pearlite. 600 Wpearlite Co - 0.022 = 0.76 - 0.022 A+a P B A+P A+B A 400 50% M (start) M (50%) M (90%) 200 Wa = 1 - 0.58 = _____ Adapted from Fig. 11.50, Callister & Rethwisch 4e. 0 0.1 10 103 time (s) 105 Chapter 11 - 21 Solution to Part (b) of Example Problem b) 50% fine pearlite and 50% bainite Fe-Fe3C phase diagram, for C0 = 0.45 wt% C 800 Isothermally treat at ~590°C T (ºC) – __________________________ to fine pearlite. A P B 600 Then _________________ treat at ~470°C 400 – all remaining _____________ transforms to __________. A+a A+P A+B A 50% M (start) M (50%) M (90%) 200 Adapted from Fig. 11.50, Callister & Rethwisch 4e. 0 0.1 10 103 time (s) 105 Chapter 11 - 22 Solutions to Parts (c) & (d) of Example Problem c) 100% __________ – rapidly quench to ______ Fe-Fe3C phase diagram, _____________ for C0 = 0.45 wt% C d) 50% _________ 800 T (ºC) & 50% _________ -- rapidly quench to __________, hold at this temperature A A+a P B 600 A+P A+B A 400 50% M (start) M (50%) M (90%) d) 200 c) Adapted from Fig. 11.50, Callister & Rethwisch 4e. 0 0.1 10 103 time (s) 105 Chapter 11 - 23 Mechanical Props: Influence of C Content Adapted from Fig. 10.34, Callister & Rethwisch 4e. TS(MPa) 1100 YS(MPa) C0 < 0.76 wt% C Hypoeutectoid Hypo Hyper C0 > 0.76 wt% C Hypereutectoid Hypo %EL Adapted from Fig. 10.37, Callister & Rethwisch 4e. Hyper 80 100 900 hardness 40 700 50 500 0 0.5 1 wt% C 0 0 0.5 0.76 0 0.76 300 Impact energy (Izod, ft-lb) Pearlite (med) ferrite (soft) __________ (med) __________ (hard) Adapted from Fig. 11.30, Callister & Rethwisch 4e. (Fig. 11.30 based on data from Metals Handbook: Heat Treating, Vol. 4, 9th ed., V. Masseria (Managing Ed.), American Society for Metals, 1981, p. 9.) 1 wt% C • Increase C content: TS and YS increase, %EL decreases Chapter 11 - 24 Mechanical Props: Fine Pearlite vs. Coarse Pearlite vs. Spheroidite Brinell hardness 320 Hyper fine pearlite 240 coarse pearlite spheroidite 160 80 0 • Hardness: • %RA: 0.5 1 wt%C 90 Ductility (%RA) Hypo Hypo spheroidite 60 coarse pearlite fine pearlite 30 0 Hyper 0 _______________________ _______________________ 0.5 1 wt%C Adapted from Fig. 11.31, Callister & Rethwisch 4e. (Fig. 11.31 based on data from Metals Handbook: Heat Treating, Vol. 4, 9th ed., V. Masseria (Managing Ed.), American Society for Metals, 1981, pp. 9 and 17.) Chapter 11 - 25 Mechanical Props: Fine Pearlite vs. Martensite Brinell hardness Hypo 600 Hyper martensite Adapted from Fig. 11.33, Callister & Rethwisch 4e. (Fig. 11.33 adapted from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 36; and R.A. Grange, C.R. Hribal, and L.F. Porter, Metall. Trans. A, Vol. 8A, p. 1776.) 400 200 fine pearlite 0 0 0.5 1 wt% C • Hardness: ______________________. Chapter 11 - 26 Tempered Martensite Heat treat martensite to form tempered martensite • tempered martensite ______ brittle than martensite • tempering reduces internal stresses caused by _________ TS(MPa) YS(MPa) 1800 Adapted from Fig. 11.35, 1400 Callister & Rethwisch 4e. 1200 (Fig. 11.35 adapted from Fig. furnished 1000 courtesy of Republic Steel 800 Corporation.) 200 TS YS 60 50 %RA 40 30 %RA 400 9 mm 1600 Adapted from Fig. 11.34, Callister & Rethwisch 4e. (Fig. 11.34 copyright by United States Steel Corporation, 1971.) 600 Tempering T (ºC) • tempering produces extremely small Fe3C particles surrounded by a. • tempering ___________ TS, YS but __________ %RA Chapter 11 - 27 Summary of Possible Transformations Austenite (g) slow cool Bainite Strength (a + Fe3C layers + a proeutectoid phase) (a + elong. Fe3C particles) Martensite T Martensite bainite fine pearlite coarse pearlite spheroidite General Trends rapid quench Martensite (BCT phase diffusionless transformation) reheat Ductility Pearlite moderate cool Adapted from Fig. 11.37, Callister & Rethwisch 4e. Tempered Martensite (a + very fine Fe3C particles) Chapter 11 - 28 Precipitation Hardening • Particles impede ___________ motion. 700 • Ex: Al-Cu system T(ºC) • Procedure: 600 a+L a L CuAl2 q+L --Pt A: _______________ A 500 (get a solid solution) q a+q --Pt B: _______ to room temp. 400 C (retain a solid solution) --Pt C: ________ to nucleate 300 small q __________ within (Al) 0 B 10 20 30 40 50 wt% Cu composition range a phase. • Other alloys that precipitation harden: Temp. • Cu-Be • Cu-Sn • Mg-Al Adapted from Fig. 11.22, Callister & Rethwisch 4e. Pt A (sol’n heat treat) available for precipitation hardening Adapted from Fig. 11.43, Callister & Rethwisch 4e. (Fig. 11.43 adapted from J.L. Murray, International Metals Review 30, p.5, 1985.) Pt C (precipitate q) Pt B Time Chapter 11 - 29 Influence of Precipitation Heat Treatment on TS, %EL • 2014 Al Alloy: 400 300 200 100 149ºC 204ºC 1min 1h 1day 1mo 1yr precipitation heat treat time • ________ on %EL curves. %EL (2 in sample) tensile strength (MPa) • ________ on TS curves. • __________ T accelerates process. 30 20 10 0 204°C 149°C 1min 1h 1day 1mo 1yr precipitation heat treat time Adapted from Fig. 11.46 (a) and (b), Callister & Rethwisch 4e. (Fig. 11.46 adapted from Metals Handbook: Properties and Selection: Nonferrous Alloys and Pure Metals, Vol. 2, 9th ed., H. Baker Chapter 11 - 30 (Managing Ed.), American Society for Metals, 1979. p. 41.) Melting & Glass Transition Temps. What _______________________? • • • Both Tm and Tg _________ with increasing chain stiffness Chain stiffness ___________ by presence of 1. Bulky sidegroups 2. Polar groups or sidegroups 3. Chain double bonds and aromatic chain groups _____________ of repeat unit arrangements – affects Tm only Adapted from Fig. 11.48, Callister & Rethwisch 4e. Chapter 11 - 31 Thermoplastics vs. Thermosets • Thermoplastics: -- little __________ -- ductile -- soften w/heating -- polyethylene polypropylene polycarbonate polystyrene • _____________: T viscous liquid mobile liquid Callister, rubber Fig. 16.9 tough plastic crystalline solid partially crystalline solid Molecular weight Adapted from Fig. 11.49, Callister & Rethwisch 4e. (Fig. -- significant _____________ 11.49 is from F.W. Billmeyer, Jr., Textbook of Polymer (10 to 50% of repeat units) Science, 3rd ed., John Wiley and Sons, Inc., 1984.) -- hard and brittle -- do NOT soften w/heating -- ____________ rubber, epoxies, polyester resin, phenolic resin Chapter 11 - 32 Tm Tg Summary • Heat treatments of Fe-C alloys produce microstructures including: -- pearlite, bainite, spheroidite, martensite, tempered martensite • Precipitation hardening --hardening, strengthening due to formation of precipitate particles. --Al, Mg alloys precipitation hardenable. • Polymer melting and glass transition temperatures Chapter 11 - 33
© Copyright 2026 Paperzz