π₯
π¦
π
ο·
ο·
ο·
ο·
ο·
π
π₯
π¦
π₯
πΉ(π₯) β π[π β€ π₯]
π₯1 , β¦ , π₯π
π=
π₯
π
π₯
πΉ
π₯1 , β¦ , π₯π
π·π β sup |πΉ (π) (π₯) β πΉ(π₯)|
π₯
πΉ
(π)
π₯
π¦
π
πΉ
(π) (π₯)
1
β β πΌ(π₯π β€ π₯)
π
π=1
πΉ1 , β¦ , πΉπ
π₯Μπ β πΉπ (π₯π )
π₯π
πΉπ
π
π
π₯Μ1 , β¦ , π₯Μπ
π
π
π§1 β πΉ1 (π₯1 )
π§2 β πΉ2 (π₯2 |π₯1 )
β¦
π§π = πΉπ (π₯π |π₯1 , β¦ , π₯πβ1 )
(π₯1 , β¦ , π₯π )
[0,1]π
π
π
πΉπ
π₯π
π
π₯1 , β¦ , π₯πβ1
π β (π§1 , β¦ , π§π )
π
ππ , β¦ , ππ΅
ππ , β¦ , ππ΅
π
π
π
[0,1]π
π
π§1 , β¦ , π§π
[0,1]
π
π
πβπ
[0,1]π
π
π
π
ππ
ππ
π₯Μ1, β¦ , π₯Μπ
π₯2
π₯1
π!
π
Μ =
π΅π
1
β(ππ β πΌπ )2
π
π=1
π
ππ
πΌπ
π΅π = 0
ππ = πΌπ
π
πΈ[π΅π] = π β (π β 1)2 + (1 β π) β π2 = π2 β 2ππ + π
π
π=π
2
2
π΅π = πΈπ [(π β π(π)) ] β πΈπ [(π β π(π)) ] + π (1 β π )
π(π)
π
π π
ο·
ο·
ππππ [π(π)]
Μ
π΅π
π
π
π
ο·
π
π = 0.5
π
π¦1 < π¦2 < β― < π¦πΎ
π1 : = π[π₯ β€ π¦1 ], β¦ , ππΎ β π[π₯ β€ π¦πΎ ]
1
2
π
ππ = πΈ [ (ππ β πΌ(π₯ β€ π¦π )) ]
πΎ
πΆπ
ππ = πΈ [β«(πΉ(π₯) β πΌ(π₯0 β€ π₯))2 ππ₯]
πΉ
π₯0
π
1
Μ = β β«(πΉπ (π₯) β πΌ(π₯π β€ π₯))2 ππ₯
πΆπ
ππ
π
π=1
2
πΏ
1
Prob(X < x)
I (x_0 < x)
0.8
0.6
0.4
0.2
0
0%
πΉ(π₯) = 0
π₯ < 0 πΉ(π₯) = (1 β π)
2%
0β€π₯<1
2
(π β πΌ{π₯0 =1} )
4%
6%
π₯0 = 1
πΉ(π₯) = 1
1β€π₯
8%
π₯0 = 0
π
π₯
πΆπ
πππ = 1 β
π₯π
πΆπ
ππ
πΆπ
πππππππππππ
(0.5) β (0.9 + 0.1) = 0.5
0.1
πΈ[(0.5 β πΌπ»ππππ )2 ] = (0.5) β (0.5 β 1)2 + (0.5) β (0.5 β 0)2 = 0.25
0.9
π π‘β
0.5 β πΈ[(0.9 β πΌπ»ππππ )2 |π
ππ ππππ] + 0.5 β πΈ[(0.1 β πΌπ»ππππ )2 |πΊππππ ππππ]
= 0.5 β [(0.9) β (0.9 β 1)2 + (0.1) β (0.9 β 0)2 ] + 0.5 β [(0.1) β (0.1 β 1)2 + (0.9) β (0.1 β 0)2 ] = 0.09
1β
0.09
0.25
= 0.64
πΆπ
πππ = 64%
ο·
ο·
ο·
ο·
ο·
ο·
ο·
π₯1 , β¦ , π₯8
π§1 , β¦ , π§8
π§
π
π₯1 , π₯2 , β¦ , π₯πβ1
K-S Statistic: βπ β π·π
Median
Min
Max
1.3300
0.5857
2.3373
CRPSS vs. Through-the-Cycle
(best possible = 100%)
7.7%
-4.5%
17.4%
πΌ
0.2
0.1
0.05
0.01
π¦=π₯
π₯π
Ξ¦β1 (π§)
K-S Stat
1.07
1.22
1.36
1.63
CRPSS vs. Stationary
(best possible = 100%)
3.8%
-25.0%
18.9%
3
3
Pooled
Pooled
2
y=x
2
y=x
1
1
0
0
-3
-2
-1
0
1
2
-3
3
-2
-1
0
-1
-1
-2
-2
-3
-3
3
Pooled
2
y=x
1
0
-3
-2
-1
0
-1
-2
-3
1
2
3
1
2
3
2.5
CAD
y=x
-2.5
2.5
USD
2
1.5
-1.5
Correlation
USD
CAD
AUD
GBP
HKD
CHF
JPY
EUR
2
CAD|USD
1.5
y=x
1
1
0.5
0.5
0
-0.5
-0.5
0.5
1.5
2.5
-2.5
-1.5
0
-0.5
-0.5
-1
-1
-1.5
-1.5
-2
-2
-2.5
-2.5
USD
100%
59%
61%
62%
60%
61%
45%
61%
CAD
59%
100%
63%
61%
60%
61%
43%
60%
AUD
61%
63%
100%
64%
62%
64%
41%
63%
GBP
62%
61%
64%
100%
61%
63%
44%
61%
HKD
60%
60%
62%
61%
100%
61%
47%
60%
CHF
61%
61%
64%
63%
61%
100%
44%
62%
JPY
45%
43%
41%
44%
47%
44%
100%
47%
0.5
EUR
61%
60%
63%
61%
60%
62%
47%
100%
1.5
2.5
Correlation
USD
CAD
AUD
GBP
HKD
CHF
JPY
EUR
USD
100%
96%
84%
90%
75%
77%
58%
73%
CAD
96%
100%
81%
93%
69%
79%
64%
74%
AUD
84%
81%
100%
83%
75%
75%
55%
67%
GBP
90%
93%
83%
100%
65%
82%
67%
76%
HKD
75%
69%
75%
65%
100%
66%
35%
64%
CHF
77%
79%
75%
82%
66%
100%
50%
80%
JPY
58%
64%
55%
67%
35%
50%
100%
67%
EUR
73%
74%
67%
76%
64%
80%
67%
100%
2.5
USD
CAD|USD
y=x
2
1.5
1
0.5
-2.5
-1.5
0
-0.5
-0.5
0.5
1.5
2.5
-1
-1.5
-2
-2.5
< 10β24
< 0.005
140
120
100
80
60
HKD Outlier
40
20
0.02%
0.13%
0.25%
0.36%
0.48%
0.59%
0.71%
0.82%
0.94%
1.05%
1.17%
1.28%
1.40%
1.51%
1.63%
0
2.5
Pooled_Q1
Pooled_Q2
Pooled_Q3
Pooled_Q4
y=x
-2.5
-1.5
2.5
Pooled_Q1
2
Pooled_Q2
1.5
Pooled_Q3
1
Pooled_Q4
y=x
0.5
0
-0.5
-0.5
0.5
1.5
2.5
-2.5
-1.5
2
1.5
1
0.5
0
-0.5
-0.5
-1
-1
-1.5
-1.5
-2
-2
-2.5
-2.5
0.5
1.5
2.5
ο·
ο·
ο·
π¦π = log(π₯π )
π1 , β¦ , ππ
ππ
π
π₯1 , β¦ , π₯π
ππ = log(ππ )
π = (π1 , β¦ , ππ )π
Ξ£ = (πΆππ£(ππ , ππ ))
1β€π,πβ€π
ππ+1
(π¦ β π)π
π1 = π¦1 , β¦ , ππ = π¦π
π¦1 β π1
π¦2 β π2
(π¦ β π)π = [ β¦ ]
π¦π β ππ
ππ+1
Ξ£
Ξ£ = πΏπΏπ
πΏ
πΏβ1 (π β π)
π(0, πΌπ )
πΏ(π) : = (πΏππ )1β€π,πβ€π
ππ₯π
πΏ
πΏπ+1 : = [πΏπ+1,1 πΏπ+1,2 β¦ πΏπ+1,π ]
π
(π + 1)π‘β
πΏ
ππ+1 = ππ+1 + πΏπ+1 [πΏ(π) ]β1 (π¦ β π)π + πΏπ+1,π+1 ππ+1
ππ+1
π(0,1)
πΈ[ππ+1 |π1 = π¦1 , β¦ , ππ = π¦π ] = ππ+1 + πΏπ+1 [πΏ(π) ]β1 (π¦ β π)π
πππ[ππ+1 |π1 = π¦1 , β¦ , ππ = π¦π ] = πΏ2π+1,π+1
ππ+1
© Copyright 2026 Paperzz