Pararel Computing for Scientific Environment Cluster, Grid & Cloud approach Mardhani Riasetiawan, MT, Candidate Ph.D [email protected] http://mardhani.blog.ugm.ac.id 6283869942863 Department of Computer Science & Electronics Faculty of Mathematic and Natural Science Universitas Gadjah Mada www.dcse.fmipa.ugm.ac.id A Research and Working Group on Grid & Cloud Technology Universitas Gadjah Mada www.cloud.wg.ugm.ac.id Konsep Kenapa Pararel, Cloud AGENDA Computing? Cloud Computing Cluster, Grid, & Cloud Spatial Cloud Computing Best Practise GEOSS Clearing House Dala Project GamaBox Implementasi Ide & isu Arsitektur Teknologi Case study Teknologi Memaksimalkan sumber daya dan meminimalisir resiko Isu Teknologi The Issues Petabytes Worldwide 1,000,000 Transient information or unfilled demand for storage 900,000 800,000 Information 700,000 600,000 500,000 400,000 300,000 Available Storage 200,000 100,000 0 2005 • • • • • 2006 2007 2008 2009 2010 The digital universe will grow 10-fold in five years, from ~160-170 exabytes in 2006 to >1,600 exabytes in 2011 Information created surpassed available storage in 2007, will be 2X five years Unstructured information accounts for >90% of the digital universe Consumers/individuals account for ~70% of information created, yet enterprises have “responsibility/liability” for ~85% Preservation “intense” information will grow 9-fold in 5 years Source: John Gantz, Chief Research Officer, IDC 4 “Enabler” Fakta tentang Data Cluster – Grid – Cloud Cloud Technology Grid Computer Cluster Computer Un-used & second hard hardware Pararel Computing Yang ditawarkan Integrasi semua data geospatial, pengetahuan/knowledge, dan memprosesnya dengan waktu yang terukur. Menghasilkan dan mengirimkan informasi yang benar secara real-timekepada pengambil keputusan, penguna utama dan korban. Platform dan infrastruktur komputasi Siap dalam beberapa menit Dapat mengakomodasi kebutuhan penguna Mengeluarkan sesuai dengan “biaya” komputasi yang digunakan Menghindari emergency cost yang muncul dari kegagalan sistem yang sudah ada By definition “Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model promotes availability and is composed of five essential characteristics, three service models, and four deployment models.” (NIST 2010) Spatial Cloud Computing • Data Intensity • Computing Intensity • Concurrent Access Intensity, and • Spatiotemporal Intensity • • Enables the geospatial science discoveries, emergency responses, education, other societal benefits Is optimized by spatiotemporal principles. Spatial Databases: Representative Projects Evacutation Route Planning Parallelize Range Queries only in old plan Only in new plan In both plans Shortest Paths Storing graphs in disk blocks Why cloud computing for spatial data? • Geospatial Intelligence [ Dr. M. Pagels, DARPA, 2006] • Estimated at 140 terabytes per day, 150 peta-bytes annually • Annual volume is 150x historical content of the entire internet • Analyze daily data as well as historical data • Best Practices GEOSS Clearinghouse Objectives Share Global Earth Observation Data Among 140+ Countries to Address Global Challenges of Natural Hazards and Emergency Responses Support Global End Users to Discover, Access, and Utilize EO Data Provide Responses to End Users in Seconds Advanced Computing Technologies Cloud Computing (EC2 & Azure) Responds to Spike Massive Concurrent End Users Cloud DB (SQLAzure) Manages Millions to Billions of Metadata Records WebGIS & 5D Vis Tools to Visualizes EO Data Concurrent Intensity CERN Implementasi Arsitektur A Conceptual Framework for CloudGIS Yang C., Bambacus M., Benedict K., Nebert D., Mochuney D., Hazlett S., Houser P., Raskin R., Xu Y., Fay D., Rezgui A., Huang Q., and Xu C., 2011. Using Metadata, Data/Service Quality and Knowledge to Facilitate Better Data Discovery, Access, and Utilization for Supporting EarthCube, http://semanticommunity.info/@api/deki/files/13812/=024_Yang.pdf. Referensi 1.Yang, C., Goodchild M., Huang Q., Nebert D., Raskin R., Xu Y., Bambacus M., Fay D., 2011a, Spatial Cloud Computing: How could geospatial sciences use and help to shape cloud computing, International Journal on Digital Earth. 2.Foster, I., Zhao, Y., Raicu, Y., Lu, S., 2008. Cloud Computing and Grid Computing 360-Degree Compared, In: Grid Computing Environments Workshop, GCE 2008. IEEE, Los Alamitos. 3.Yang, C., Raskin, R., Goodchild, M.F., and Gahegan, M., 2010, Geospatial Cyberinfrastructure: Past, Present and Future, Computers, Environment, and Urban Systems, 34(4):264-277. 4.M.F. Goodchild, M. Yuan, and T.J. Cova (2007) Towards a general theory of geographic representation in GIS. International Journal of Geographical Information Science 21(3): 239–260. (Open Access) 5.Rey, S. J., and M. V. Janikas. 2006. STARS: Space-Time Analysis of Regional Systems. Geographical Analysis, 38 (1): 67– 86. 6.Armbrust, M, Fox, A., Griffith R., Joseph A., Katz, R. and etc, 2009. Above the Cloud: A Berkeley View of Cloud Computing, Technical Report No. UCB/EECS-2009-28. (Open Access) 7. Wang S. and Armstrong M., 2009. A theoretical approach to the use of cyberinfrastructure in geographical analysis, International Journal of Geographical Information Science 23(2), 169 – 193. (Open Access) 8. Yang C., Wu H., Li Z., Huang Q., Li J., 2011, Spatial Computing: Utilizing Spatial Principles to Optimize Distributed Computing for Enabling Physical Science Discoveries, Proceedings of National Academy of Sciences, doi: 10.1073/pnas.0909315108. (Open Access) http://www.pnas.org/content/early/2011/03/21/0909315108.full.pdf 9. Wang, S., and Liu, Y. 2009. TeraGrid GIScience Gateway: Bridging Cyberinfrastructure and GIScience. International Journal of Geographical Information Science, 23 (5): 631-656. 10. Evangelinos C., Hill C., 2008. Cloud Computing for parallel Scientific HPC Applications: Feasibility of running Coupled Atmosphere-Ocean Climate Models on Amazon’s EC2, CCA-08 October 22–23, 2008. 11. Image taken from : http://www.bluecloudspatial.com/ Terima kasih
© Copyright 2026 Paperzz