IS 320 Problems from Chapter 12 12.7 a) Max(A1) = $220 thousand, Max(A2) = $200 thousand. Maximax = $220 thousand when choosing alternative A1. b) Min(A1) = $110 thousand, Min(A2) = $150 thousand. Maximin = $150 thousand when choosing alternative A2. c) S1 is the most likely outcome. For this state, the maximum payoff of $220 thousand occurs with alternative A1. d) Alternative A1 has the highest expected payoff of $194 thousand. 1 2 3 4 5 6 7 A B Payoff Table ($thousand) C D Alternative A1 A2 S1 220 200 State of Nature S2 170 180 S3 110 150 Prior Probability 0.6 0.3 0.1 E F Expected Payoff ($thousand) 194 189 e & f) 0.6 State 1 220 220 220 0.3 State 2 Alternative 1 170 0 194 170 170 0.1 State 3 110 110 110 1 194 0.6 State 1 200 200 200 0.3 State 2 Alternative 2 180 0 189 180 180 0.1 State 3 150 150 150 IS 320 Problems from Chapter 12 g) 16 17 18 19 20 21 22 23 24 25 26 27 28 M Prior Probability of S1 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 N Best Alternative 1 2 2 2 1 1 1 1 1 1 O Expected Payoff ($thousand) 194 183 184 185 186.5 189 191.5 194 196.5 199 Let p = prior probability of S1. For A1: EP = p(220) + (1 – 0.1 – p)(170) + (0.1)(110) = 220p + 153 – 170p + 11 = 50p + 164 For A2: EP = p(200) + (1 – 0.1 – p)(180) + (0.1)(150) = 200p + 162 – 180p + 15 = 20p + 177 A1 and A2 cross when 50p + 164 = 20p + 177 or 30p = 13 or p=0.433. They should choose A2 when p ≤ 0.433, A1 when p > 0.433. IS 320 Problems from Chapter 12 h) 16 17 18 19 20 21 22 23 24 25 26 27 28 M Prior Probability of S1 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 N Best Alternative 1 2 2 2 2 2 1 1 1 1 O Expected Payoff ($thousand) 194 174 176.5 179 181.5 184 188.5 194 199.5 205 Let p = prior probability of S1. For A1: EP = p(220) + (0.3)(170) + (1 – 0.3 – p)(110) = 220p + 51 + 77 – 110p = 110p + 128 For A2: EP = p(200) + (0.3)(180) + (1 – 0.3 – p)(150) = 200p + 54 + 105 – 150p = 50p + 159 A1 and A2 cross when 110p + 128 = 50p + 159 or 60p = 31 or p = 0.517. They should choose A2 when p ≤ 0.517, A1 when p > 0.517. IS 320 Problems from Chapter 12 i) 16 17 18 19 20 21 22 23 24 25 26 27 28 M Prior Probability of S2 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 N Best Alternative 1 2 2 2 1 1 1 1 1 1 O Expected Payoff ($thousand) 194 180 181.5 183 185 188 191 194 197 200 Let p = prior probability of S2. For A1: EP = (0.6)(220) + p(170) + (1 – 0.6 – p)(110) = 132 + 170p + 44 – 110p = 60p + 176 For A2: EP = (0.6)(200) + p(180) + (1 – 0.6 – p)(150) = 120 + 180p + 60 – 150p = 30p + 180 A1 and A2 cross when 60p + 176 = 30p + 180 or 30p = 4 or p = 0.133. They should choose A2 when p ≤ 0.133, A1 when p > 0.133. j) Alternative A1 should be chosen. 12.9 When x = 50, alternative A3 has the highest expected payoff of $5,600. A 1 x= 2 3 Payoff Table ($hundred) 4 Alternative 5 A1 6 A2 7 A3 8 9 Prior Probability 10 B 50 C D S1 100 25 35 State of Nature S2 50 40 150 S3 10 90 30 0.4 0.2 0.4 E F Expected Payoff ($hundred) 54 54 56 IS 320 Problems from Chapter 12 When x = 75, alternative A1 has the highest expected payoff of $7,400. A 1 x= 2 3 Payoff Table ($hundred) 4 Alternative 5 A1 6 A2 7 A3 8 9 Prior Probability 10 B 75 C D S1 150 25 35 State of Nature S2 50 40 225 S3 10 90 30 0.4 0.2 0.4 E F Expected Payoff ($hundred) 74 54 71 Barbara Miller should pay a maximum of $1,800 to increase x to 75. 12.17 a through d) Prior Probabilities P (state) 0.1 user nonuser 0.9 Conditional Probabilities P(finding | state) Joint Probabilities P(state and finding) 0.095 user and positive 0.95 positive, given user negative, given user 0.05 0.005 user and negative Posterior Probabilities P(state | finding) 0.6786 user, given positive 0.0058 user, given negative 0.045 0.3214 nonuser and positive nonuser, given positive 0.05 positive, given nonuser negative given nonuser 0.95 0.855 0.9942 nonuser and negative nonuser, given negative IS 320 Problems from Chapter 12 e) B C 3 Data: 4 State of Prior Nature Probability 5 0.1 User 6 0.9 Nonuser 7 8 9 10 11 12 Posterior 13 Probabilities: P(Finding) Finding 14 Positive 0.14 15 0.86 Negative 16 17 18 19 D E Positive 0.95 0.05 F P(Finding | State) Finding Negative 0.05 0.95 User 0.679 0.006 P(State | Finding) State of Nature Nonuser 0.321 0.994 G H
© Copyright 2025 Paperzz