Ottawa, Canada Kl A- ON4 CANAD~AN THESES THESES CANADIENNES NOTICE AVlS The quality of this microfiche is heavily dependent upon the quality of the original thesiS submitted for microfilming. Every effor! has been made to ensure the highest qualirybf reproduction pcssible. P La qualit4 de cette microfiche depend grandement de la quallttl de la these soumise au microfilmage. Nous avons tout fait pour assurer une qualit4 sup4rieure de reproduction. - H pagesare missing, contact the u;liversip which granted Me - Some pages may have indistinct grint especially if the %bGal pages were typed with a poor typewriter ribbon or if the university sent us an inferior'photmopy. - e S'il manqlle des pzges, veuiltez communiquer avec t'universit6 qui a confer6 !s grade= La qsal t6 d'impression de certaines pages peut laisser desirer, surtout si lq w s originales ont 6th dactylographi66 B I'aide $un ruban us4 ou si 11universit4nous a fait parvenir une photocopie de qualit6 -- infkrieure. . Previously copyrighted materials (journal articles, published tests, etc.) are not filmed. Les documents qui font dkjh llBbjet dSundroit d'auteur (articles de revue, examens publibs, etc.) ne sont pas microfltm6s. Reproduction in full or in @rt of this film Canadian Copyright Act, R'.s.c.1970, cLC-30. B la Loi canadienne sur le droit d'auteur, SRC 1970, c. G30. La reproduction, meme partielle, de ce microfilm est soumise THIS DISSERTATION EXACTLY AS 9ECEIVED M I C R ~ F I L M ~TELLE E QUE NOUS L'AVONS REWE. QUALITATIVE AND GUANTITATIVE ANALYSIS OF PERTURBED LOTKA-VOLTERRA COMPETITION MODELS by * Hyun-sook Kim B.Sc., Simon Fraser University, 1975 4 THE hYQUIREAEXVTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department Mathematics and Statistics SIMON FRASER UNIVERSITY h , '", 4 4 April B 9 E $. All rights reseived; This thesis may not be reproduced in whole or in part, by photocopy or other me'ans, without~permi~slo~ oT the author. ' r Permission has been grqnted to t h e National Library of Canada t o m i c r o f i l m t h i s t h e s i s and to l e n d or sell c o p i e s of t h e f i l m . Ltautorisation a GtE ~ccordi5e 3 la BibliothSque m t i o n a l e d u Canada d e m i c r o f i l m e r c e t t e t h s s e e t de p r & t e r ou d e v e n d r e des e x e m p l a i r e s d u film. The a u t h o r ( c o p y r i g h t owner) has,;resaerved o t h e r p u b l ~ c a t i o n rights, and neitb.er the thesis nor, e x t e n s f i v e e x t r a c t s from it may be p r i n t e d or o t h e r w i s e reproduced without his/her w r i t t e n p e r m i s s i o n . L t a u t e u r ( t i t u l a i r e du d r o i t les d t a u t e u r ) se r g s e r v e a u t r e s droit; d blication; ni l a thsse de longs ne e x t r a i t s de celle-ci doivent Gtre imprimgs ou a u t r e m e n t rep,rodui ts s a n s son a u t o r i s a t i o n gcrite. ISBN 0-315-30717-X ' 'APPROVAL Name : Hyun-sook Kim Degree : Master of Scienee Title of Thesis: Qualitative and quantitative analysis of perturbed Lotka-Volterra competition models. Examining Committee: Chairman : Dr. A. R. Frec&nan ~r.(,k. Bojadziev Senior Supervisor ,' Dr. M. Singh Dr. C.Y. Shen - .- Ds. D. sharma External Examiner - - PARTIAL COPYRIGHT L ICENSE ' 1 h s r e b y xbrant t o Simon F r a s e r U n i v e r s I t y t h e r i g h t t o lend my t h e s i s , p r o j e c t 4 3 r e x t e n d e d essay ( t h e t i t l e o f w h i c h i s shown b e l o w ) 'to- u s e r s o f t h e Simon F r a s e r U n i v e r s i t y L i b r a r y , and t o make p a r t i a l o r s i ng l e c o p i e s on 1 y f o r such u s e r s o r i n -response t o a r e q u e s t f r o m t h e l i b r a r y o f any o t h e r u n i v e r s i t y , o r o t h e r e d u c a t i o n a l i t s own b e h a l f o r f o r one o f i t s u s e r s . i n s t i t u t i o n , on I f u r t h e r agree t h a t permission f o r m u l t i p l e c o p y i n g o f t h i s work f o r s c h o l a r l y purposes may be g r a n t e d by me o r t h e Dean o f G r a d u a t e S t u d i e s . I t i s understood t h a t copying o r p u b i i c a t i o n o f t h i s work f o r f i n a n c i a l g a i n s h a l l not be a l l o w e d w i t h o u t my w r i t t e n p e r m i s s i o n . T i t l e o f T h e s i s / P r o j e c t / E x t e n d e d Essay Author: (sYgnatu;e) ( name ABSTRACT h. P , - 4- b. The Lotka-Volterra competition model>w.i t h c o n s t a n t r a t e harvesting, H i s i n v e s t i g a t e d b o t h q u a l i t a t i v e l y and q u a n t i t a t i v e l y , i n . t h e neighbourhood o f t h e e q u i l i b r i a when small p e r t u r b a t i o n a l terms o f t h e form €fi (N1,~Z; ,i = 1,2 , are a p p l i e d t o t h e system. -3 The e f f e c t of c o n s t a n t r a t e h a r v e s t i n g on t h e unperturbed system i s analyzed. For- a c e r t a i n v a l u e of H , ,the unperturbed system h a s a s t r u c t u r a l l y u n s t a b l e double e q u i l i b r i u m ' p o i n t (saddle-node),, Lf-Y t h e Jacobian i s z e r o which under small p e r t u r b a t i o n s b i f u r c a t e s i n t o two s t r u c t u r a l l y s t a b l e simple e q u i l i b r i #,'of t h e p e r t u r b e d system. P AS an i l l u s t r a t i o n a numerical example is g i d n . ~ l s o ,a p a r t i c u l a r c a s e o f t h e p e r t u r b e d system i s i c v e s t i g a t e d from t h e p o i n t o f view of c o n t r o l . Asymptotic s o l u t i o n s o f t h e p e r t u r b e d system w i t h no h a r v e s t i n g is o b t a i n e d by u s i n g modified Krylov-Bogoliubov-Mitropolskii method. (iii) DEDI CAT1ON To my f a m i l y I wish t o express my deepest g r a t i t u d e t o 3 Professor George N. f o r giving me t h e Bojadziev, my s e n i o r t h i s study i n i t i a l i n s p i r a t i o n and continued would not have been p o s s i b l e . \ J I wish t o thank M.A. S a t t a r and Professor C.Y. Shen f o r t h e i r valuable crhIrents and suggestions. 1 I a l s o wish t o thank D r . Sharmal Bose, Chong-suh Chun, Richard Misiurka, W i l l i a m McCuaig, Robert Townsend, P a t r i c k Vaugrante, Jeannie and Kang Lee, C h r i s t i n e and S i e g f r i e d Schf f frnachgr and I3eS1'Carlson who ." gave m e w a r m and u n f a i l i n g moral support. My s p e c i a l thanks goes t o my l a t e f a t h e r Key-Dal K i m , my m t h e r Sung-Jeung Lee, my s i s t e r s : Moon-Hye, Yeon-Koo, my uncles: existence Dr. ye-young; my b r o t h e r s : Hwan-Koo, Hyung-koo; Key-Hiuk K i m , D r . Ki-Hwan K i m ; who a r e my very . ina ally, I wish t o thank Professor . ~ e c i lGraham, ' Dep-ntal C- Chairman, P r o f e s s o r Choo-whan K i m , M s . Kathy Hammes and t h e rest of t h e f a c u l t y and s t a f f members o f t h e Department o f Mathematics and S t a t i s t i c s , S i m n F r a s e r M i y r s i t y , f o r t h e i r h e l p and kindness. I f 4 , a l s o warmly thank Mrs. S y l v i a Holmss f o r h e r e x c e l l e n t t y p i n g of t h e manuscript. -- / ,f---\. i .x< 2% TABLE O F CONTENTS < . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (ii) . . .,L. ;. . . . . . . . . . . . . . . . . . . . . . . . . (iii) 5 Abstract +. , ,\ \ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .( i v ) ~cknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . (v) Tableofcontents . . . . . . . . . . . . . . . . . . . . . . . . .(vi) Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . ( v i i ) Dedication 4 i ,CKAPTER 1. c=+ . 1 1 . Asymptotic method o f Krylov-Bogoliubov-Mitropolskii II ......1 \ . . . . . . . . . . . .6 92. Qualitat.lve methods of dynamic systems •˜ 3 . Survey of Lotka-Volterra competition models ......... .16 2 CHAPTER 2. ( . . . . . .19 . . . . . . . . .2 6 1 . Lotka-Volterra competition model without h a r v e s t i n g •˜ 2. Harvesting o f Lotka-Volterra cornpeti t i o n model. - CHAPTER 3 . 5 1. The p e r t u r b e d Lotka-Volterra c m p e t i t i o n model without . . . . . . . . . . . . . . . . .-. . . . . . . . . -36 c o n t r o l l e d Loma-Volterra corns t i t i o n model . . . . . . . . . 4 2 harvesting. 5 2. The 33. The perturbed Lotka-Volterra competition model with C t harvesting. . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Asymptotic s o l u t i o n s of t h e perturbed Lotka-Volterra competition model 52. ....................... .57 . . . . . . . . . . . .67 . . . . . . . . . . . . . . . . . . . ,. . . . . . . . . . . . .68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 c is cuss ion o f t h e asymptotic s o l u t i o n s . Conclusion , , .,. References s INTRODUCTION The e f f e c t of small perturbations on models of the type di' = N.,F. (N 1 1.1 1 2 popul&ions N1 i =. 1,2, describing the behaviour of two i n t e r a c t i n g and N , matheqtical 2 , has .been a topic of continuing inte-rest i n ecology. The purpose of t h i s t h e s i s i s t o study q u a l i t a t i v e l y the e f f e c t of small perturbations on Lotka-Volterra competition models. The q u a l i t a t i v e behaviour of the Lotka-Volterra competition m d e l i with harvesting i s compared t o t h a t of the nodel without harvesting. We a l s o intend t o study the b i f u r c a t i o n s i n t h e i r c r i t i c a l cases f o r : he unperturbed and perturbed ~ o t k a - ~ o l t e r rcofipetition a model with harvesting. - A p a r t i c u l a r case of t h e perturbed Lotka-Volterra competition model without harvesting i s i n v e s t i g a t e d from the point of view of control. Also, t h e a i m of t h i s work i s t o study the asymptotic behaviour of qolutions of t h e Lotka-Volterra competit$onLmodel without The c c n t r i b u t i o n s of t h i s t h e s i s s t a r t from the second p a r t of s e c t i o n 2,. Chapter 2. chapter 1'reviews some well-known material of both -. q u a n t i t a t i v e and q u a l i t a t i v e nature of d i f f e r e n t i a l equations which w i l l be used Krylov-Bogoli thesis. -* The asymptotic method based on works of equations i s reviewed i n s e c t i o n 1. In s e c t i o n 2 , we o u t l i n e t h e c l a s s i c a l methods f o r i n v e s t i g a t i n g the q u a l i t a t i v e behaviour of 1 e q u i l i b r i a of a given dynami~system. Section 3 gives a b r i e f survey o f works done on Lotka-Volterra c o m p e t i t i ~ nmodels. Chapter 2 c a r r i e s out t h e s t a b i l i t y a n a $ p i s of e q u i l i b r i p of t h e unperturbed Lotka-Volterra competition model with constant rate harvesting, H , in t h e c r i t i c a l and u n c r i t i c a l cases. The e f f e c t of constant r a t e h a r v e s t i n g i s e*ned. Chapter 3 c o n s i s t s of t h r e e s e c t i o n s , dealing primarily with t h e i n v e s t i g a t i o n of q u a l i t a t i v e behaviour i n t h e neighbourhood of the z. - perturbed e q u i l i b r i a of Lotka-Volterra r a t e harvesting. competition model with constant The influence of small p e r t u r b a t i o n s i s analyzed i n /= I I both c r i t i c a l and u n c r i t i c a l c a s e s , and a numerical example i s given in t h e c r i t i c a l case. A p a r t i c u l a r case of the perturbed system i n v e s t i g a t e d ' f r o m t h e p o i n t of view of control. is Then the cornpari OG is b made to t h a t of the case without c o n t r o l . Chapter 4 i s devoted t o t h e study of t h e asymptotic s o l u t i o n s of the p e r t u b e d L o t k a - V d t e r r a compe ition mdel .without harvesting. h F i n a l l y , T?h conclusion i s given. (viii) - -1 ASYMFTOTIC METHOD OF KRYLOV-BOGOLIUBOV-MITROPOLSKII . The a s y m p t o t i c method o f Krylov-Bogoliuboy-Mitropolskii [ l , 2 1 i s one o f t h e widely used methods f o r o b t a i n i n g a n a l y t i c s o l u t i o n s o f nonlinear equations with s m a l l n m l i n s a r i t i e s , 31 The method 1.2, which was developed o r i g i n a l l y f o r systems w i t h p e r i o d i c s o l u t i o n s w a s l a t e r e x t e n d e d by Popov [ 4 ] , f o r n o n l i n e a r damped o s c i l l a t o r y systems. The a s y m p t o t i c s o l u t i o n s o f d i f f e r e n t i a l e q u a t i o n s a r e o b t a i n e d a s power s e r i e s i n a s m a l l p a r a m e t e r E . The s e r i e s themselves a r e .not convergent ,. b u t f o r a f i x e d number of t e r m s , t h e approximate s o l u t i o n - A t e n d s t o t h e e x a c t s o l u t i o n a s t h e small p a r a m e t e r - tends t o zero. ens in t h e form of a s y w t o t i c Approximate s o l u t i o n s o f d i f f e r e n t i a l equa 9 E ,\ s e r i e s were f i r s t p r e s e n t e d by ~ i o u v i l l eE51. D Here w e . p r e s e n t some m o d i f i c a t i o n s o f Krylov-BogoliubovM i t r o p o l s k i i (K-B-M) method given by Murty [ 6 ] and B o j a d z i e v and -\ Edwards [7f. Consider a second-order n o n l i n e a r d i f f e f e n t i a l e q u a t i o n where E function. is a s m a l l p a r a m e t e r and Let -AlI -A 2 f(x, dx x) is a given n o n l i n e a r b e t h e two r o o t s o f t h e c h a r a c t e r i s t i c e p a t i o n when E 0, so t h a t E = ZK 1 = h + h 1 2 (1.19 = 0,the solution of equation and K 11 . = Xlh2 When - i s given by A where and A a r e a r b i t r a r y c o n s t a n t s t o b e determined from the B [x(0), $1 1. When E # 0 , we t=0 assume a s o l u t i o n a c c o r d i n g t o t h e a s y m p t o t i c method i n t h e form . ' g i v e ~ ~ e to f i n i t i a l c o n d i t i o n s h 7 where a UJ and a e d e f i n e d by d -da = - with 2K 2 = dt h - h2 1 - K a and 1 + EA ul, L- (a) u2, + ... E 2 A2(a) + ..i . are functions of (1.4) a and, to b e determined. - T h e o r e t i c a l l y , t h e s o l u t i o n can be o b t a i n e d up t o t h e accuracy - o f any o r d e r o f approximation. However, owing t o t h e , r a p i d l y growing a l g e b r a i c complexity f o r t h e d e r i v a t i o n o f t h e formulae, t h e solution i s i n general, confined t o t h e f i r s t order. I n o r d e r t o determine t h e s o l u t i o n s o f e q u a t i o n (1.1),w e f i r s t d i f f e r e n t i a t e t h e assumed s o l u t i o n i n e q u a t i o n (1.3) t w i c e w i t h respect t o t and s u b s t i t u t e t h e s e e x . r e s s i o n s i n t o " t h e o r i g i n a l e q u a t i o n (1.1) u s i n g the r e l a t i o n s i n e q u a t i o n s (1.4) and (1.5) (i. e. , we have t o s u b s t i t u t e e x r e s s i o n s f o r 5' 2 d a/dt 2 , da/dt, 2 2 d $/dt , 4 d$/dt, etc., a b t a i n e d from f o r the derivatives .of E on (1.4) and (1.5) 2 2 d x / d t , d x/dt 1 . , in t h e equations C o e f f i c i e n t s o f e q u a l powers a r e then compared i n o r d e r t o o h t a i n e q u a t i o n s f o r t h e unknown For t h e f i r s t approximation we compare p w e r s o f E and o b t a i n t h e following : W e now assume t h a t t h e right-hand s i d e of (1.6) can be expanded i n powers of e' and e -' with 03 f = 2 r=o [h (alerq r + g r ( a ) e -r$] ,=- .-' f '-. ~ u b s t i t u t i r &t h e expression f o r % i f in (1.6) , we - c b t a i n .the e q u a t i o n s •’&,omcomparing c o e f f i c i e n t s of e q u a l powers o f e trJl following , e- e a d (~zJJ d - -1 % da 2 - where (where hl, ,- (1.7) - glr hr r > l) e9 + K2 (A1 + dBl) - h ( a ) f o r da 1 and g' are the coefficients of X and e e -+ r'4J r e s p e c t i v e l y , o b t a i n e d i n t h e T a y l o r ' s s e r i e s expansion of t h e given n o n l i n e a r f u n c t l m . Let us n o t e t h a t t h e zxpansion o f t h e right-hand s i d e of (1.6) is certainly valid i f f is F. polynomial i n x and dx/dt. A f t e r some a l g e b r a i c manipulation, e q u a t i o n t o Euler-type e q u a t i o n s whose p a r t i c u l a r s o l u t i o n s give ( 1 . 6 ) reduce A 1 and - B1 . and g; 'k-&a& of the b . s n quantities hl values of A and 1 B 1 . Substitution of these i n e q u a t i o n s (1.4) and (1.5) and i n t e g r a t i n g g i v e s t h e f i r s t o r d c r approximation terms i n t h e assumed s o l u t i o n o f equation (1.3). We now d e t e r m i n e , from e q u a t i o n ( 1 . 9 ) , t h e f i r s t o r d e r ul(a,$) c o r r e c t i o n term where f h e c o e f f i c i e n t s unknown. or e -9 The f u n c t i o n , which and 'r '0' is assumed i n t h e form of t h e s e r i e s , on t h e r i g h t - h a n d s i d e a r e y e t Dr u ( a r $ ) does n o t c o n t a i n t e r m s i n v o l v i n g 1 s i n c e t h e s e a r e i n c l u d e d i n t h e f i r s t two t e r m s i n t h e r i g h t - hand s i d e o f e q u a t i o n (1.3) . S u b s t i t u t i n g t h e series e q u a t i o n (1.9) and e q u a t i n g t h e c o e f f i c i e n t s o f s e t of equations o f t h e E u l e r type. r e s u l t i n g equations give quantities e '4 h and r i s determined. 'r C o t Cr ' and . kr$ e (1.10) i n t o terms, w e g e t a Particular solutions of these Dr i n t e r m s o f t h e known Thus, t h e f i r s t o r d e r c o r r e c t i o n t e r m u 1 The s e c o n d and h i g h e r o r d e r a ~ p r o x i m a t i o n scan be determined i n a s i m i l a r manner. I' For e q u a t i o n (1.1), i t i s a l s o p o s s i b l e t o assume a s o l u t i o n where a and 9 s a t i s f y (1.3) and ( 1 . 4 ) . The c h o i c e o f t h e s o l u t i o n *i.s dependent on the given i n i t i a l c o n d i t i o n s . QUALITATIVE METHODS O F DYNAMIC SYSTEMS. 52. ' The d e f i n i t i o n s , theorems ' and methods p r e s e n t e d i n t h i s i 4- s e c t i o n a r e a d a p t e d from the books o f Andronov, Leontovich, Gordon and Maier [8, 91, Sansone and C o n t i [ l o ] , Nemytskii and S t e f a n o v [ l l ] and B i r k h o f f and Rota [ 1 2 ] . * . When a p h y s i c a l problem l e a d s t o a n o n l i n e a r s y s t e m , i t i s f r e q u e n t l y e a s i e r and more c o n v e n i e n t t o s t u d y t h e q u a l i t a t i v e b e h a v i o u r o f s o l u t i o n c u r v e s ( t r a j e c t o r i e s o r o r b i t s ) d i r e c t l y , by examination o f t h e v e c t o r f i e l d d e f i n e d by t h e s y s t e m , t h a n by means o f a n a l y t i c a l L - ' e x p r e s s i o n s o b t a i n e d by i n t e g r a t i o n s . We w i l l d e v o t e t h i s s e c t i o n t o t h e s t u d y o f t h e c l a s s i c a l methods f o r q u a l i t a t i v e i n v e s t i g a t i a n o f a g i v e n dynamic s y s t e m . We are p a r t i c u l a r l y i n t e r e s t e d i n t h e n a t u r e o f t h e o r b i t s i n t h e neighbourhood o f t h e e q u i l i b r i u m . -. . !A% C o n s i d e r a dynamic system where - P and Q a r e f u n c t i o n s o f class 2 , k z l , d e f i n e d i n some c l o s e d bounded p l a n e r e g i o n open s u b r e g i o n o f G - G , and or G* .\ 2- d"; ,-- a c l o s e d dr . M f i n i t i o n 1. A dynamic system (A) is said t o be s t r u c t t ' w .. a l l y s t a b l e i n G* C G i f t h e r e exists an open domain H containing - G* , - 1 1 , \. ---- which s a t i s f i e s the following conditionsp-For any > 0 , there e x i s t s & N 6 > 0 such t h a t i f system i s 6-dlose t o system (A) i n (A) N f i n d a region G , one can , it is- C f o r which H @ I f syst.em (A) is not s t r u c t u r a l l y s t a b l e i n region G* s a i d t o be s t r u c t u r a l l y unstable i n t h a t region, The s t r u c t u r a l s t a b i l i t y of the dynamic system i s generally r s f e r r e d t o t h e property t h a t q u a l i t a t i v e nature of t h e ' o r b i t s does not change under. small changes i n the system. An equilibrium M(xOIyO) of system . (A) M € , is & i n t e r s e c t i o n point of two curves , system (A) Definition 2. An equilibium s t a t e is s a i d t o be of m u l t i p l i c i t y r M(xo,yo) if M of a dynamic i s a commn point I of m u l t i p l i c i t y r of curves An equilibrium s t a t e (1.12) M i s c a l l e d a simple equilibrium. . with m u l t i p l i c i t y r > 1 If , then M 1 (1l , r = 1) is called a multiple equilibrium.. An equilibrium s t a t e if M M i s s a i d t o be of i n f i n i t e m u l t i p l i c i t y i s an i n t e r s e c t i o n point of i n f i n i t e m u l t i p l i c i t y of curves (1.12) (note t h a t i n any closed bounded plane region an a n a l y t i c dynamic system has e l n e r a f i n i t e n m b e r of equilibrium s t a t e s o r s i n g u l a r curves a l l of k h s e points axe equilibrium s t a t e s ) . I ? , An e q u i l i b r i u m M (xO,yo) is simple i f t h e Jacabian Then, by t h e i m p l i 4 t function theorem 18, see appendix, 5 4 . 3 , Theorem V I , ~ernzka ~simple e q u i l i b r i u m e x i s t s a neighbodhood of An i s o l a t e d e q u i l i b r i u m M M Hence a multiple-eq*librium M i s i s o l a t e d , i .e. ,there c o n t a i n i n g no e q u i l i b r i u m o t h e r than M . i s s t r u c t u r a l l y s t a b l e . o n l y i f i t is simple. is not structurally stable. The following theorems 181 e s t a b l i s h t h e necessary and s u f f i c i e n t conditions f o r the e x i s t e n c e of a double and a multiple e q u i l i b r i u m o f the dynamic system (A) Theorem 1. A c o m n point . 0(0,0) a r e s.s&umed t o be o f c l a s ~ 2, i n (P, Q - G) - o f t h e t w o curves (1.12) i s a double i n t e r s e c t i o n I p o i n t i f and only i f t h e following conditions a r e s a t i s f i e d : (b) A t l e a s t one of the e l e m n t s i n the determinant A is d i f f e r e n t from zero; (c) The number Q(x,rp(x)) = 0 for y where x = 0 i s a double r o o t of t h e equation y = q(x) i s t h e s o l u t i o n of the - equation i n some s u f f i c i e n t l y small r e c t a n g l e - 1x1 5 a , IY 1 5 B ~ ( x , y )= 0 ( t h i s s o l u t i o n e x i s t s and is uniqsbe by virtue of m a t i o n (b) and the theorem of i m p l i c i t f u n c t i o n s ; P (0,O) = 0 ~f Y cp (0) = 0) . / , but A some o t h e r element o f does n o t -= vanish, c o n d i t i o n ( c ) should be a p p r o p r i a t e l y reworded. . -- - . The%rem-2. r of c l a s s Let be an e,quilibrium s t a t e of a system 0(0;0) ( i n p a r t i c u l a r , a n a l y t i c a l system) and l e t a t l e a s t one of the f i r s t derivatives of functions vanish a t t h e p o i n t the equation - hood of 0 , O(O.0) Q(x,y) = 0 Jl ( x ) and . number 0 and Let f u r t h e r for y r Q . say y = cp ( x ) Qy (0 , O ) , not be t h e s o l u t i o n of i n some s u f f i c i e n t l y s m a l l neighbour- = P ( x , i (x) ) equilibrium o f m u l t i p l i c i t y P . Then t h e p o i n t o f system is a multiple i f and only i f t h e (A) i s a multiple r o o t of m u l t i p l i c i t y 0 r of t h e e q u a t i o n $ ( x ) = 0 . Before we p r e s e n t t h e theorem we f i r s t d e f i n e t h e concept o f a l i m i t cycle and a s e p a r a t r i x . Limit c y c l e i s a c l o s e d t r a j e c t o r y such t h a t no t r a j e c t o r y 2 s u f f i c i e n t l y n e a r t o i t is closed. r Separatrix is a path " (generally a saddle point) a s do n o t t e n d t o t -t tending t o a s i n g u l a r point +"J (-03) such t h a t neighbouring p a t h s under t h e s m c o n d i t i o n s and s o p a r t A A r as t -+ +a ( - "J) . S t r u c t u r a l l y s t a b l e systems a r e c h a r a c t e r i z e d by t h e following Theorem [ 8 ] . b -G* Theorem 3. The dynamic system w i t h a normal boundary IG* c G) A is structurally stable i n i f and only i f t h e f o l l o w i n g necessary and s u f f i c i h t c o n d i t i o n s are s a t i s f i e d : (a) System (A) has only a f i n i t e number of e q u i l i b r i a which are a l l simple and hyperbolic (no eigenvalue matrix, i.e. , ~ a c o b i & nmatrix, in -G* . o f t h e variationak of (A) has zero r e a l p a r t ) (b) There a r e no saddle-to-saddle s e p a r a t r i c e s i n . *> * * -G* . ( c ) System (A) has only a f i n i t e number of c l o s e d t r a j e c t o r i e s id G* which a r e a l l simple l i m i t c y c l e s . We now review t h e c l a s s i c a l methods f o r i n v e s t i g a t i o n of the t o p o l o g i c a l s t r u c t u r e of an e q u i l i b r i u m M(xO,yO) of system ( A ) . We d i s t i n g u i s h between two c a s e s : a simple ,equilibrium and a m u l t i p l e equilibrium. (i) Let M be. an i s o l a t e d simple equilibrium. Without l o s s of g e n e r a l i t y , w e a s s u m t h a t t h e e q u i l i b r i u m under consideration i s a t ,at t h e o r i g i n , i .e. ' change of v a r i a b l e s the point = P ( O r @ ) , Q,(O,O), Px(O,O), Y + 0 ( 0 , 0 ) ( t h i s can be ensured by t h e X , y = yo + Y) .@ Denote t h e values * Q (0,o) Y by a , b, c, d l respectively. System (A) then can be w r i t t e n i n t h e form P dx = dt where 0 (0,O) ax + by + P2 (x,y) , and p2 , the dt = cx + dy + 22 a r e f u n c t i o n s of c l a s s functions P2 Q2 Q2 (x,y) k 2 1 in , -G (1.14) ; a t the point and t h e i r p a r t i a l d e r i v a t i v e s a l l vanish: The ~ a c o b i a nmatrix of t h e l i n e a r p a r t of system (1.14) a t t h e equilibrium 0 , denoted by J 0 , is L. , Since 0 i s a simple equilibrium, the Jaco@ian The c h a r a c t e r i s t i c equation of (1.16) has solutions where The numbers A1 and h2 eigenvalues of the matrix are called the c h a r a c t e r i s t i c roots o r J 0 . The c h a r a c t e r i s t i c equation and i t s roots play a major r o l e i n investigation of the topological s t r u c t u r e of an equilibrium. discriminant of Several cases a r i s e depending on the value of the (1.19) X The general c l a s s i f i c a t i o n c r i t e r i a are surmnariz~~d in Table 1. , Case Equilibrium Stability, Node Node i f - A > O - ll' Stable . if U < O Real, positive Unstable if- a > 0 Real, negative Stable i f if a<O Real, Distinct, Negative Unstable if 0>O Real, Distinct, Positive Saddle i f A < 0 Real, Distinct, Opposite sign < Stable if O < Focus i f o # o Complex, Re A O ~om~lex R e, h Unstable i f if a>O I Center I 1,2 112 < 0 > 0 Pure imaginary Table 1 (ii) Let be an i s o l a t e d multiple. equilibrium of an 0(0,0) analytical dynamic sys tern Two cases are possible: (A) 0 = 0 which s a t i s f i e s the condition , 0 # 0 . - Here we consider only the I case where # 0 , Then t h e system U P2 . Q2 (A1 becomes , a r e a n a l y t i c i n t h e 'neighbourhood of t h e o r i g i n and t h e i r s e r i e s expansions involve only terms of a t l e a s t second o r d e r ; 7 Under t h e s e assumptions, t h e r e e x i s t s a nonsingular l i n e a r transformation reducing the system (1.23) t o t h e form f where I d ---\ T = ot , c i s some c o n s t a n t , and k o n d i t i o n s as t h e function '. , P2 and Q; in - - , Q2 P2 s a t i s f y t h e same (1.23). By t h e i m p l i c i t function,theorem, t h e r e i s a s o l u t i o n where cp (S) is q i a n a l y t i c function such that of the equation i n a s m a l l neighbourhood of 0(0,0) and l e t t h e expansion o f t h e 7 ' - function i n powers o f 5 have t h e form where m L 2 , and (The e x i s t e n c e of t h e s e numbers m and A m follows from t h e f a c t > t h a t t h e equilibrium i s i s o l a t e d ) . The following proposit$ons apply [9, see 5 21.2, Theorem 651 : 1. If m i s odd, and Am > 0 , the equilibrium 0 of system (1.23) i s a t o p o l o g i c a l node. A < 0 ,0 2. If m i s odd, and 3. If m i s even, t h e e q u i l i b r i u m m is a topo&ical 0 saddle p o i n t . i s a saddle-node, i.e., its canonical neighbourhood c o n s i s t s o f a p a r a b o l i c and two hyperbolic sectors. , ?ccording t o Andronov, Leontovich, Gordon and Maier [ 81, t h e theory o f b i f u r c a t i o n s i s concerned with t h e changes which occur i n t h e system i n a p a r t i c u l a r region when t h e t o p l o g i c a l s t r u c t u r e of&dynamic / ' - \ -1 r i g h t - s i d e s o f tfie system a r e a l t e r e d . I f system (A) i s s t r u c t u r a l l y unstable, dynamic systems o f d i f f e r e n t t o p o l o g i c a l s t r u c t u r e s always e x i s t i n any a r b i t r a r i l y small neighbourhood o f (A) . Therefore, only s t r u c t u r a l l y unstable systems should be considered. A m u l t i p l e e q u i l i b r i u m s t a t e of m u l t i p l i c i t y r Z 2 , O(.O,O) , of an a n a l y t i c system (A) should s a . t i s f y the following conditions ( s e e D e f i n i t i o n 5, 52.1 [8] and D e f i n i t i o n 1): (a) There e x i s t numbers system (ff) bo-close t o rank E 0 r > 0 and t o system 6O > 0 (A) ' such t h a t any has a t most r e q u i l i b r i u m s t a t e s i n t h e E -neighbourhood o f , 0 ; 0 (b) For any 6 - d o s e t o rank E r > and Eo to , there 0 € 0 -neighbourhood o f 0 , k .. O1 ,02,. ,Ok 0 equilibrium s t a t e s 6 0 - c l ~ s et o rank O1,O2,... ,Ok r to i n the a n d - t h e y a r e a l l s t r u c t u r a l l y s t a b l e , w e say stable e q u i l i b r i u m s t a t e s equilibrium n (A) equilibrium s t a t e s t h a t the multiple equilibrium s t a t e of t h e p o i n t s r . I f an a n a l y t i o a l dynamic system system ( A ) has p r e c i s e l y n e x i s t s a system (A) which has a t l e a s t !A) i n t h e €-neigfibourhood of 6 > 0 i n t h e case 01,02,. 0 ..,Ok decomposes i n t o s t r u c t u r a l l y n on p a s s i n g t o system (A) Each which are obtained from an i s o l a t e a m u l t i p l e o = px(Q,O)?+ Q (0.0) # 0 is either a Y s t r u c t u r a l l y s t a b l e node o r a s t r u c t u r a l l y s t a b l e saddle p o i n t (see 923, Theorem 35 l81). . , . 3. SURYEY OF LOTKA-MLTERRA COMPETITION EIODELS . ~ o s mathematical t models f o r the populations o f two species competing for the same food supply are formulated i n terms of a system of 'two ordinary d i f f e r e n t i a l equations. I t is usually assumed t h a t the growth r a t e of each species which measures the r a t e of increase of population s i z e per member of the population i n u n i t time, depends l i n e a r l y on the two population s i z e s . A widely used model of i n t e r - species competition describing the competitive interaction o f , two species coexisting i n the same ecological environment w i t h f i n i t e resources was proposed independently by Lotka (1924) and Volterra ( 1931) ; --- \ -1-4 where t ; N ai \ % .' i s the number of i n d i v i d ~ l sof species i a t a given time i \ i s the i n t r a s p e c i f i c coeffidie;;h(i$nate capacity of increase per individual ,of species i); $ i i s the i n t e r s p e c i f i c coefficient . j (competition coefficient of an individual of species of s p e c i e s , i); 0i positive constants. i s the carrying capacities of N i on an individual ; they q e a l l I n 1935, Gauss and W i t t [I31 i n v e s t i g a t e d (1.31) and gave t h e necessary and s u f f i c i e n t conditions f o r s t a b l e coexistence of-two competing s p e c i e s . ' Abdelkader [14] found exact s o l u t i o n s of model (1.31) A under c e r t a i n conditions. In 1967, Rescigno and Richardson [151 re-examined t h e Kolmogorov mode 1 and analyzed t h e behaviour of s o l u t i o n s i n case of competition and cooperat ion. In 1974, Brauer and Sanchez [16] extended t h e Lotka-Volterra model (1.31) t o include harvesting: -2 where H is a p o s i t i v e parameter. They i n v e s t i g a t e d t h e e f f e c t of constant r a t e h a r v e s t i n g on e q u i l i b r i a and t h e i r s t a b i l i t i e s . i I n 1980, Freedman [17, s e e p. 156, 7.21 proposed an open problem t o analyze the behaviour of sol'utions of t h e perturbed ~otka- p Volterra competition model where E i s a small p o s i t i v e parameter. Following the suggestion of Freedman we now propose t o study the two-dimensional perturbed LotkaVolterra competition model. h-=vesting. Also, we extend our study t o include CHAPTER 2 LQTKA-VOLTERRA COMPETITION MODEL WITHOT3 HARVESTING. 1 . .. 4 L e t us examine t h e two-dimensional L o t k a - V o l t e r r a c o m p e t i t i o n model. Here i t i s assumed t h a t b o t h competing s p e c i e s have c a r r y i n g capacities (self-saturation levels). The model i s g i v e n by t h e system of nonlinear d i f f e r s n t i a l equations where 8 i is the carrying capacity o f positive constants, f o r i = 1,2 Ni and a . ' s , Bi's -- 1 are . We w i l l f i r s t determine t h e e q u i l i b r i a o f s y s t e m ( 2 . 1 ) . a r e a t l e a s t t h r e e e q u i l i b r i a i n t h e f i r s t quadrant: and ~ ~ ( 0 . 8 ~F)c r. t h e r a f o u r t h e q u i l i b r i u m by s o l v i n g t h e system o f e q u a t i o n s E (0,O) 4 E (q .q 4 1 2 There , E2 (el,O) i s determined ? ~ T h i s system h a s a unique s o l u t i o n i f and o n l y i f Then assuming (2.3) t o h o l d , t h e s o l u t i o n s o f (2.2) a r e , ' Here we a r e i n t e r e s t e d o n l y i n nonzero e q u i l i b r i u m p o p u l a t i o n s i n t h e i n t e r i o r of t h e f i r s t quadrant. (ii) a 1 - B 1 82 < 0 , The c o n d i t i o n s f o r t h i s a r e : a 2 - B2el < 0 when y Y 0 . B To determine t h e s t a b i l i t y o f t h i s e q u i l i b r i u m p o s i t i o n ( t h i s g i v e s only t h e l o c a l s t a b i l i t y o f e q u i l i b r i u m ) we f i r s t make t h e change of variables r where xl ( t ) and x2 ( t ) a r e t h e two new v a r i a b l e s , which w i l l have t h e e f f e c t of s h i f t i n g the equilibrium Substituting -- we g e t (2.5) (q1,q2) into (2.1) t o the origin. and simplifying, where e The c h a r a c t e r i s t i c eqda: iori of the l i n e a r i z e d system (2.6) i s whose roots are We first look a t the discriminant of (2.9). Since (A1 - B ~ > )0 by u s i n g (2.7) , the discriminant of (2.9) i s always p o s i t i v e , which ~and implies t h a t t h e o r i g i n of system (2.6) is e i t h e r . a saddle o r a node and using ( 2 . 7 ) , and From these i t i s c l e a r t h a t a a 1 2 > BlB2 Re A a a , do < 0 if 1 2 < - A. i s always negative and . B1B2 > 0 if Hence the equilibrium E4(q1,q2) 0102 ( i ) an asymptotically 2 - d2e1 > 0 and s t a b l e node i f y > 0 a 1 - B102 > 0 I , Thus, the s t a b l e coexistence can occur when e,e, 1 L BIB2 (i.e., the species control t h e i r own growth stronger than they control t h e i r c o q e t it o r s ) .- One can e a s i l y see t h a t El i s a s t a b l e node since each species grows i n the absence of the other. a 2 - 2 ~1 e< o , saddle i f if cr1 - 8 18 2 < O I a2 saddle i f E2 - B2e1 > 0 . E3 a 1 - Blez > 0 . i s a s t a b l e node i f i s a l s o a s t a b l e node W e summarize the various cases as following; r a1 - case^. 6 8 > O , 1 2 a2 - 6 28 1 > O and y > O . Thisisa s i t u a t i o n where both species coexist i n stable equilibrium with p o s i t i v e l i m i t i n g populations (see Figure case n. al - file2 < 0 a2 a . la) . - B2e1 < 0 and y < 0 . I n L h i case ~ the survival of the species depends on the i n i t i a l conditions (see Figure Case C. a1 species N1 B102 < 0 as a 1 - 6 18 2 > case^. CX2 - B2e1 > . 0 dies out while species e2 saturation N1 - t -+ 0 N2 (see Figure a2 - b201 < 0 approaches i t s level of s a t u r a t i o n out as t + This i s a s i t u a t i o n where approaches i t s l e v e l of 2 . 1 ~ ).' . O1 This i s a case where species while species N2 dies (see Figure 2.1d). --W e now study the existence of l i m i t cycles by using DulacBendixson c r i t e r i a [9, see 5 1 2 , Theorem 311. respective right-hand s i d e s of ( 2 . 1 ) where G Let P, Q denote the and choose the Dulac function y # 0 (see ( 2 . 3 ) ) . Then Since a k + a2h # , this 1 curves N1 = 0 vanishes on the quadrant. 0 and $ ! 2 = 0 function vanishes only along the i n t e g r a l . N -and N -axes, 1 2 a (PB) a~ , -- Though the expression + a (QB) aN, it does not change sign i n any . . Thus there can be no l i m i t cycles. From the above analysis we observe t h a t : (i) A l l e q u i l i b r i a a r e hyperbolic. (ii) There a r e no l i m i t cycle. (iii) There a r e no saddle-to-saddle s e p a r a t r i x . Thus, by theorem 3 i n Chapter 1, 8 2 , system stable. [2-11 i s structurally Fig. 2.lc 52. HARVESTING OF L-Y COMPETITION MODEL. For populations of two species, i n competition, we model t h e I 1 e f f e c t of h a r v e s t i n g one s p e c i e s by \the' introduct'ion of a p a r m t e r . I f the s p e c i e s N1 i s h a r v e s t e d a t a constant r a t e while t h e second s p e c i e s N2 H y p e r u n i t time, i s undisturbed, then t h e governing equations become where H i s a p o s i t i v e constant. --.- - The e q u i l i b r i u m p o i n t s of (2.16) a r e given by t h e i n t e r s e c t i o n p o i n t s of the. curves (a hyperbola and a p a i r of l i n e s ) From t h e second equation of (2.17) we g e t Substituting N2 •’ram (2.18) into (2.17) we obtain correspondingly the follswing equations where y be N1 (1) is given in (2.3) . N2 Let the solutions of (2.19) and (2.20) (2) respectively, we get where In order to ensure real equilibrium solutions we require that the discriminants of (2.21) and (2.22) be nonnegative which leads to the following conditions for H respectively. Since H > 0 , we also require that Y > 0 ., . t- Assuming (2.24) t o h o l d , we s u b s t i t u t e ( 2 . 2 2 ) i n t o t h e second e q u a t i o n of (2.18) t o g e t Also, t h e values of (2.22) and - (2.25) have p o s i t i v e r e a l p a r t s i f t h e following. c o n d i t i o n s a r e s a t i s f i e d : and H > - a1 a2 (a2 - B 2 9 4 . Note t h a t c o n d i t i o n s i n ( 2.26) a r e a independent o f H and t h e r e f o r e must be s a t i s f i e d by t h e unharvested system i f s t a b l e c o e x i s t e n c e i s t o occur under h a r v e s t i n g . We c o n s i d e r only t h e system f o r Assuming t h a t (2.26) holds t h e r e a r e two p o s s i b i l i t i e s . I n t h i s c a s e , t h e system (2.16) g i v e s four s i w l e e q u i l i b r i a i n t h e f i r s t quadrant. y, 6 a r e given i n (2.3) venience we l e t and ( 2 . 3 3 ) , r e s p e c t i v e l y . For con- ( P ~ ~ ~ andP (~ P~ ~ ) ~ I Pdenote ~ ~ )t h e c o o r d i n a t e s >-. of I? 3 and I?4 , respectiveAy. Here we s t u d y t h e s t a b i l i t y i n t h e neighbourhood o f equilibrium J(Nl, N2) , E4 (P12 the F i r s t we compute t h e J a c o b i a n - m a t r i x , of (2.16) We again apply a l i n e a r t r a n s l a t i o n i which reduces the system (2.16) t o the form where The c h a r a c t e r i s t i c equation of the l i n e a r p a r t of system (2 - 3 2 ) has roots S t is c l e a r from (2.33) t h a t the discriminant of Since from (2.30) the Jacobian a t E4 (2.35) i s always positive. and - is always negative ; hence E4 i s an asymptotically s t a b l e node (Table 1-11. Following the same procedure we f i n d t h a t E2' E3 a r e saddle p o i n t s . - E 1 i s an unstable node and .- The dynami,cs a r e shown i n Figure 2 . L / / ./ ,,j (ii) H = a2 0 1 (a1 4y B1e2) --'. 2 -. ,/- .--,, // r Y > O : J' . ,- 'I /-i p (2.38f %/' \ Then t h e system (2.16) has two simple e q u i l i b r i a and a s t r u c t u r a l l y unstable double equillbriurn (by Theorem 1, 82, A A ~ e tpl,p2 denote t h e r e s p e c t i v e coordinates of the n a t u r e of t h e double equilibrium E E . W e wish t o study (61 ,; 2) . A n We f i r s t s h i f t t h e equilibrium E (pl ,p2) t o t h e o r i g i n by the change of v a r i a b l e s i -- Then o u r s y s t e m becomes where -- by u s i n g ( 2 . 3 9 ) ,and ( 2 - 4 2 ) f o l l o w i n g Andronov e t a1 [9], w e i n t r o d u c e a nonsingular l i n e a r transformation a which r e d u c e s t h e s y s t e m (2.41) t o t h e form where with Solving equation we o b t a i n Define a f u n c t i o n $(S) by Substituting the expression cp (c) from (2.48) w i t h (2.46) i n t o (2.49) t h e s e r i e s e x p a n s i o n o f the f u n c t i o n )<()I Thlu s , t h e double eqiA l i b r i u m ' (see c h a p t e r 1, 92) 1 (2 - k, . See 0(0,0) Fig. 2 . 3 . , t a k e s t h e form (2.41) is a saddle-node of I t can e a s i l y b e ' shown t h a t 0 ) i s a n u n s t a b l e node and (- 2 + k , 0) i s a s a d d l e . By the same analogy as i n system (2.11, w e f i n d t h a t t h e s y s t e m (2.16) s a t i s f y i n g t h e c o n d i t i o n s (2.28) and (2.26) i s s t r u c t u r a l l y s t a b l e , and t h a t s a t i s f y i n g ( 2 . 3 8 ) i s s t r u c t u r a l l y u n s t a b l e . Fig. 2 . 2 Fig. 2 . 3 CHAPTER 3 1 THE PEHTURBED LOTKA-VOLTERRA COMPETITION MODEL WITHOUT HARVESTING. We now consider t h e perturbed Lotka-Volterra sys tern, when s m a l l p e r t u r b a t i o n a l terms Efi (N1 , N 2 ) i = 1 ,2 are applied t o I sys tern ( 2 . 1 ) where E << 1 i s a s m a l l p o s i t i v e parameter and f. ( N ,N ) 1 1 2 ,i = 1,2, a r e a n a l y t i c function's of t h e i r arguments. Here we i n v e s t i g a t e t h e q u a l i t a t i v e behaviour of (3.1) i n t h e neighbourhood of the perturbed e q u i l i b r i a . W e f i r s t compute t h e perturbed e q u i l i b r i a using t h e techniques of Freedman and Waltman [lo]. The equilibrium positic& dN./ d t = 0 , i = 1 , 2 1 . of (3.1) can be found by s e t t i n g They a r e t h e s o l u t i o n s of t h e .system Here we a r e only i n t e r e s t e d i n nonzero equilibrium populations i n the f i r s t quadrant. (q1,q2) in Note t h a t f o r (2.4) f o r (3.1) , denoted Hence T h i s gives with J (N & (2.3) N ,€ ) 1' 2 . = 0 , the equilibrium i s given by f i r s t , we compute t h e Jacobian matrix , and obtain by (2.3) , and s o by t h e i m p l i c i t f u n c t i o n theorem, (3.2) can be s o l v e d 1. i f o r N1 and N2 a s f u n c t i o n s o f E f o r s u f f i c F e n t l y small & Let . t h e s e s o l u t i o n s be compute q; q;(€) and q; N1 - q; Substituting f . (N ,N ) , i = 1 , 2 , 1 1 2 (3.5) and t o order and q; (€1 E . * N2 = q2 , respectively. W e wish t o Hence we s e t into i n Taylor s e r i e s about (3.2) , expanding € = 0 g i v e s , a f t e r comparing t h e c o e f f i c i e n t s o f , and u t i l i g i n g € To s t u d y t h e s t a b i l i t y i n t h e neighbourhood o f t h e p e r t u r b e d equilibrium where E* f q f ,q*) 1 1 2 x 's-are i w e introduce a l i n e a r transformation t h e two new v a r i a b l e s whose e q u i l i b r i u m p o s i t i o n i s I A - - -- > (0,O). Without l o s s o f g e n e r a l i t y , we again use t h e same S u b s t i t u t i n g (3.7) i n t o (3.1) * f. (ql 1 + EX1, * q2 + u t i l i z i n g (3:2) &rld q A1, b €x2) , i =' 1 , 2 , w i t K (3.5)' i n Taylor s e r i e s i n , dividing B1, A 2 # B2 111q21 . , expanding by E , and keeping terms up t o o r d e r gives where E a r e given i n (2.7) and a r e given by (3.6). The l i n e a r p a r t of system ( 3 . 8 ) i s E , E , The c h a r a c t e r i s t i c equation of (3.10) , where A = A B 1 2 - A B 2 1 +.- E ( A 1b 2 + alBZ - has r o o t s W e f i r s t compute t h e discriminant of (3.13) A2bl - a B ) 2 1 + o(E'), by w?ng (2.7)-: Hence f o r s u f f i c i e n t l y small t h e d i s c r i m i n a n t € (3.14) 'is always p o s i t i v e which i m p l i e s t h a t t h e r o o t s h1 h2 and From tha Table 1.1 ( s e e p. 1 2 ) we conclude t h a t are r e a l and d i s t i n c t . the o r i g i n o f system (3.10) i s e i t h e r a node o r a s a d d l e . Using (2.7) we compute +&2) a 0 = (A, + B2) + O(E1 = - + Olt). (3.15) O2 d L ? 7 - . -r i ,which i s always n e g a t i v e . Thus t h e n a t u r e o f t h e o r i g i n i s determined : as following : (i) an a s y m p t o t i c a l l y s t a b l e node i f (ii) a s a d d l e i f a1 a 2 - f3 f3 8 8 1 2 1 2 a1 a 2 - 81820182 > 0 I < 0 foy system (3.10) and hence f o r system (3.8) . Again t h e s t a b l e co-existence o c c u r s when t h e c o m p e t i t i o n w i t h i n ( i n t e r n a l grawthl i s s t r o n g e r t h a n o u t s i d e ( e x t e r n a l growth) a s i n t h e unpe'rturbed system ( 2 . Thusf t h e s t a b l e e q u i l i b r i u m E 4 of t h e unperturbed system (2.1) p e r s i s t s under t h e i n f l u e n c e of s m a l l p e r t u r b a t i o n s . 5 2. THE CONTROLLED LOTKA-VOLTERRA COMPETITION MODEL. ' The small terms €fi(N1,N2) for i = 1 , 2 , p e r t u r b i n g the s i t u a t i o n d e s c r i b e d by t h e Lotka-Volterra e q u a t i o n s s t u d i e d i n S e c t i o n 1 o f t h i s Chapqer can be t h o u g h t of a s c o n t r o l s . As an example l e t us c o n s i d e r t h e c o n t r o l l e d system which i s a p a r t i c u l a r c a s e o f (3.1) w i t h W e assum t h a t t h e c o n t r o l l i n g f a c t o r belong t o t h e s e t functions. For f-1,1}, E = 0 hence fl f l = $lN1 @ ( t ) and 1 and f2 2 and , f 2 = 02NZ 2 @2(, t )t E 0 , a r e discontinuous , o u r system reduces t o ' l o t k a - ~ o l t e r r amodel From (3.5) with ( 3 . 6 ) w e o b t a i n t h e nonzero e q u i l i b r i u m . where of G1 are given i n (2.4) with (2.3) . Depending on t h e values 91' 92 G2 , t h e and system generates f o u r systems with f o u r e q u i l i b r i u m 4 points. According t o Section 1, Chapter 3 , t h e s t a b i l i t y of t h e e q u i l i b r i a of t h e c o n t r o l l e d system remains t h e same a s i n t h e uncontrolled system. population s i z e s . of s p e c i e s N 1 i n c r e a s e s while However, t h e r e can be small changes i n t h e For example, when decreases while N 2 decreases i f N2 = -1 and increases i f Y< 0 . 2 Y > = 1 0 the size and N 1 53. THE PERTURBED LO--VOLTERRA COMPETITION MODEL WI'TH HARVESTING. I n t h i s s e c t i o n we c o n s i d e r t h e . L o t k a - V o l t e r r a system w i t h . h a r v e s t i n g ' s t u d i e d i n Chapter 2 when p e r t u r b e d by small terms € f i (N1,N2) where ai , i = 1.2 , Bi , H p a r a m e t e r and arguments. For f . (N 1 . - - Then t h e governing model becomes a r e p o s i t i v e c o n s t a n t s , E < < 1 i s a small p o s i t i v e N ) 1' 2 € = 0 , i = 1,2 , and . H = 0 The e q u i l i b r i u m p o s i t i o n s a r e a n a l y t i c f l m c t i o n s of t h e i r , t h e s y s t e m . (3.16) * (pl I P;) reduces t o of t h e p e r t u r b e d s y s t e m (3.16) a r e t h e s o l u t i o n s o f t h e system We a r e a g a i n i n t e r e s t e d i n nonzero e q u i l i b r i a i n the f i r s t q u a d r a n t . The J a c o b i a n m a t r i x f o r (3.16) i s g i v e n by (3.3) . H e r e , a s i n Chapter 2, w e c o n s i d e r s e p a r a t e l y two cases. a e (a - 6 9 1 ~ < H < 2 1 .- 1 2 1 4~ - does n o t vanish a t . E case, t h e J a c o b i a n 3 . d I n This - and E4 . Hence by i m p l i c i t f u n c t i o n theorem we a g a i n f i n d the p e r t u r b e d e q u i l i b r i a - E* (p* tp* 3 11 21 and E*(p* ,p* ) 4 12 22 i n t h e form o f power series i n E as i n t h e u n h a r v e s t e d c a s e i n S e c t i o n 1 of t h e p r e s e n t c h a p t e r f o r i = 1,2, respectively. Hence (p11'p21 1 and %2 e q u i l i b r i u m p o s i t i o n s o f t h e u n p e r t u r b e d system (2.16) coefficients of E ) sre the (E = 0). The B i , A;, 2 in - B2 a r e g i v e n i n ( 2 . 3 3 ) . and c a n be o b t a i n e d fzom (2.33) by r e p l a c i n g respectively. P22 pll, p21 A;, with p 1 2 ' P22r W e f i r s t study the s o l u t i o n s of (3.16) i n the neighbourhood ii (P;2 of ,P;2) . * + -$* t o t h e o r i g i n (0,O) -- \i ',. (pY2 22 1 + ( l ) ,+ E 2 pi2 , expanding - € x i ( t ) = Pi2 + shifts I T- N. ( t ) = pi2 1 i The l i n e a r t r a n s l a t i o n (xi . S u b s t i t u t i n g (3.20) i n t o (3.16) fi --% 6 E * + ( P ; ~ + &xl, p22 . &x2) ,i with = 1,2 u t i l i z i n g ( 3 . 1 7 ) , d i v i d i n g by E , (3.18) i n Taylor s e r i e s i n and c o F l w o t h e f i r s t o r d e r I' terms of E , gives ,/ where ... and xl, B1, x2, -B2 a r e given i n ( 2 . 3 3 ) . The c h a r a c t e r i s t i c e q u a t i o n of LLe l i n e a r part of (3.21) i s where 1 Hence b '1 S i n c e f o r s u f f i c i e n t l y small E , G(E) is always p o s i t i v e ( s e e Chapter 2 , 5 2 ) %@lZ ,p* 22 ) , i s always n e g a t i v e and t h e the perturbed equilibrium is an asynptotically stable node. A - Following t h e same p r o c e d u r e as t o be a saddle. equilibrium Ei Thus, t h e s t a b l e e q u i l i b r i u m - we f i n d - E4 E*3 (p*11& and the unstable o f t h e u n p e r t u r b e d system (2.16) p e r s i s t a g a i n under E3 t h e i n f l u e n c e o f small p e r t u r b a t i o n s . (ii) H = a 20 1 (a1 - B102) 2 - I n t h i s c a s e t h e nonzero + 4Y A equilibrium A E (pl I P ~ ) of t h e system (3.16) when E = 0 is a s t r u c t u r a l l y u n s t a b l e double e q u i l i b r i u m , which i r n p l i e s t h a t t h e A A Jacobian variishes a t A E (pl IP,) which is a saddle-node (see 2 43) . A We seek a p e r t u r b e d e q u i l i b r i u m form of series i n & (3.26) , i = 1,2 of t h e system (3.16) i n t h e by p e r t u r b a t i o n t e c h n i q u e . Substituting ' i ( pA*f;*) 1 2 (p;,p;) N1 - pl* A and N2 - s; , i n Taylor s e r i e s about Hence we s e t i n t o ( 3 . 1 7 ) , expanding E = 0 g i v e s , a f t e r comparing t h e c o e f f i c i e n t s o f , and & utilizing where C All I A B1, f i ) I A2, E 2 a r e given i n (2 - 4 2 ) From t h e f i r s t e q u a t i o n s of ( 3 - 2 7 ) w e g e t /- A f t e r some s i m p l i f i c a t i o n on s u b s t i t u t i n g ( 3 . 2 8 ) *o e q u a t i o n of ( 3 . 2 7 ) and k e e p i n g terms quadratic equation where order of th& second E , d From t h i s it i s c l e a r t h a t (3.29) h a s s o l u t i o n s i f and only i f Assuming t h a t (3.31) h o l d s it f o l l o w s t h a t there e x i s t p r e c i s e l y two v a l u e s of and 11 s a t i s f y i n g e q u a t i o n (3.29) . L e t t h e s e s o l u t i o n s be A (2) Pll : Expanding t h e r i g h t - h a n d s i d e of ( 3 . 2 8 ) . we g e t . S u b s t i t u t i n g (3.32) i n t o ( 3.33) we o b t a i n r e s p e c t i v e l y p (1) 11 W e d e n o t e two simple e q u i l i b r i a (see Chapter 1, 32) o b t a i n e d as ' A where A A p iI p i l and Pi2 a r e given i n (2.391, (3.32) and (3,341. - To s t u d y t h e s o l u t i o n s i n t h e neighbourhood of t h e s e e q u i l i b r i a A n A and E2 o b t a i n e d from t h e double e q u i l i b r i u m A E(p1,p2) we make linear translations w e i c h w i l l have t h e of s h i f t i n g t h e e q u i l i b r i u m o f i n t e r e s t t o the o r i g i n . same p r o c e d u r e as i n S e c t i o n 1, w e f i n d t h a t A h i s an a s y m p t o t i c a l l y s t a b l e node and E2 i s a s a d d l e . Hence 1 h A saddle-& E (pl,p2) which i s the double e q u i l i b r i u m o f (2.16) under E - small p e r t u r b a t i o n s s a t i s f y i n g (,3.j.-) b i f u r c a t e s i n t o two s t r u c t u r a l l y stable equilibria - an asymptotically s t a b l e node and a saddle. When system (3.16) does n o t s a t i s f y (3.31) , E(p1,p2) ' _- A A disappears. As an i l l u s t r a t i o n we give t h e following example. - A- Consider the system Ex. , For E = 0 and 1 (z , 65 ) . t h e system (1) has s o l u t i o n s Here we study equilibrium 1 (5 , 5 ) . me can e a s i l y check t h a t t h e conditions s t a t e d i n Theorem 1 ( s e e Chapter 1, 5 2 ) . a r e fulfilled. (ii) noEe of t h e e l e m n t i n t h e determinant i n (i) i s zero; (iii) let P, 2 1 ?; 2 = -I denote r e s p e c t i v e right-hand sides of i s a double r o o t of the equation P (Nl,q (N1) = 0 3 = q(N1) = 1 1 Hence (7, \ 5 ) 1 -N 2 1 i s the s o l u t i o n of the equation (3.37) . , where Q (Nl.,N2) i s t h e double equilibrium which i s unstable. = 0 . TO of ($, $1, s t u d y the behaviour o f t h e s o l u t i o n s i n t h e neighbourhood we f i r s t make t h e change Of v a r i a b l e s A f t e r some s i m p l i f i c a t i o n on s u b s t i t u t i n g i n t o system (3.37) g e t the system We then make a nonsingular linear transformation- which reduces the system (3.39) t o t h e form N o w consider -- (E = 0 ) ' we BY the i m p l i c i t function theorem, the equation ( 3 . 4 2 ) has a s o l u t i o n i n a s m a l l neighbourhood of o r i g i n . Define Then t h e s e r i e s expansion of t h e function Hence by the theorem (1F 5, c )i s 6 $(c) becomes ( s e e Chapter 1, 8 2 ) ' t h e double equilibrium a t o p o l o g i c a l saddle-node. W e now consider t h e perturbed system (3.37). One can e a s i l y see t h a t t h e p e r t u r b a t i o n a l terms of ( 3 . 3 7 ) s a t i s f y the condition (3.31) t" W e n w seek t h e perturbed e q u i l i b r i a i n t h e form of power s e r i e s i n Substituting ( 3 . 4 7 ) i n t o (3.37) and expanding t e n & of o r d e r 5iviiing by E , gives E and € From (3.48) w e get Substituting (3.49) into the second equation of (3.48) we get Equation (3.50) has solutions gubstitute (3.51) into (3.849) we obtain Hence t w o perturbed equilibria of system (3.37) are h F i r s t we consider E2 neighbourhood of the e q u i l i b r i u m where . To study t h e s o l u t i o n s i n the E2 w e make a l i n e a r t r a n s l a t i o n a r e two new v a r i a b l e s and whose e q u i l i b r i u m i s o r i g i n . xl, x2 S u b s t i t u t i n g (3.53) i n t o (3.37) and expanding, keeping up t o o r d e r d i v i d i n g by E , E , gives The c h a r a c t e r i s t i c e q u a t i o n o f t h e l i n e a r p a r t o f system From this i t f o l l o w s t h a t f o r s u f f i c i e n t l y small h (3.55) a r e n e g a t i v e d i s t i n c t and r e a l , Hence 2 E , (3.54) is roots satisfying is a s t a b l e node. h S i m i l a r l y , we f i n d (17 , -)65 E 1 t o be a s a d d l e . Thus, t h e saddle-node which i s t h e double e q u i l i b r i u m a o f t h e system 13.37) JE '. = 0) b i f u r c a t e s i n t o a s t r u c t u r a l l y s t a b l e s a d d l e and an a s y m p t o t i c a l l y % ' -, s t a b l e node under s m a l l p e r t u r b a t i o n s . \ I I - -. - CHAPTER 4 - 1. ASYMPTOTIC SOLUTIONS OF THE PERTURBED LO'I'KA-VOLTERRA MODEL. Here we are interested in obtaining the asymptotic solutions -. of the nonlinear system ( 3 . 8 ) by using the modified K-B-M method presented in Chapter 1, 51, and also papers by G. Bojadziev [ 2 0 ] and G. Bojadziev and M. Bojadziev When system -.E = 0 C191. , the nonlinear system ( 3 . 8 ) reduces to the linear ' where AII BII A2 and B2 are given in (2.7). We first seek the solutions of the linear system (4.1). -The ~har~cteristic equation of (4.1) is -. where 2K1 = - (Al + B2) and Kll = A B 1 2 - A2Bl . I t i s assumed t h a t K 11 > 0 . E q u a t i o n (4.2) h a s two n e g a t i v e real distinct roots where Then t h e , - a o l u t i o n o f e q u a t i o n s (4.1) becomes + ,= A. + K, + K, whe re aol bo -(K, + A, + K, K,) t - K, L - -4K 1 - K, are a r b i t r a r y c o n s t a n t s t o b e d e t e r m i n e d from the g i v e n set o f i n i t i a l conditions Following t h e xl ( 0 ) and x2 ( 0 ) . K-B-M method w e s e e k a s o l u t i o n o f t h e non- l i n e a r s y s t e m ( 3 . 8 ) i n the form o f - \ \ ..' where ui (a,$) ,i = 1.2, are functims i n a and t o be determined by $J the d i f ferentiax equation3 &e f u n c t i o n s that (4.7) u , A, i B , satisfies 8 1 .. have ' t o be determined from t h e c o n d i t i o n t o each o r d e r o f ', E . For E = 0 the % s o l f i t i o n (4.7) with (4.9i9'f l i n b system (4.1). up t o .the o r d e r of ( 3 . 8 ) reduces t o t h e s o l u t i o n (4.61 o f t h e Toqfind t h e f i r s t o r d e r approximation, only terms E have t o be considered. , I n x d e r t o determine t h e unknowns A t h e assumed s o l u t i o n (4.7) u s i n g (4.9) t o o b t a i n These expressions' t o g e t h e r w i # *. B dxl/dt we d i f f e r e n t i a t e and dx2/dt (4.7) a r e s u b s t i t u t e d i n t o t h e o r i g i n a l d i f f e f - e n t i a l ' e q u a t i o n s (3.8) and t h e term o f e q u a l powers o f f a and & are compapd. . The z e r o o r d e r terms c a n c e l i d e n t i c a l l y while t h e I , i.\' terms. of o r d e r E give t h e following e q u a t i o n s - f o r u1 and u 2 . Equations (4.10) and (4.11) where p i if r i' s i and v i are functions of the coefficients of equal p i e r s of equations suggest solutions in the form of a to be determined. eiU terms we have the following dpl Ka1 da ' dw 1 Ka1 da -6 + 11 2 + B p '= -a. AIPl 1-2 2B, 1 + B o = - ( A + B ~ - a a - b c a) 1 1 2 2 1 11 + (A1 - + (A1 + 2K2)v1 + K )u 2 - do 2. Ka1 da dr 1 Ka1 da dr 2 Ka1 da ds 1 Ka1 da ds 2 Ka1 da dvl K a 1 da dv Ka1 da + A2v 1 + fB2 v 1 2 a2 a = p($ 1 a2 + 2K2)v2 = - a + 61 c 2 ) ' L In order to avoid arbitrariness in determining ui , as is customary in the K-B-M method, we introduce additional conditions. For such conditions we chTose w 1 = r1 = 0 (4.16), (4.17) and . (4.18) reduce to' We assume particular solutions of A(a) . and for some constants % Substituting simplifying we obtain and v2 Then equations .- B(a) in the form of to be determined. (4.25) into (4.15), (4.23) and (4.24) and Solving equations (4.26) simultaneously and simplifying using relations (4.8) we get Hence Substituting (4.28) intd function u i . Equations (4.13) the form of polynomials. - (4.15) (4.22) Substituting - (4.18) ' we now deternine the suggest particular solutions i n x 1 i 1I into (4.13) (4.1,4) and ,-" ( 4 . 5 ) a n d ( 4 . 8 ) -we ~ i m i l a r l ~we, f i n d where obtain and simplifying using relations (2.7) < , Substituting A(a) and B(a) n e g l e c t i n g t h e terms o f t h e o r d e r o f cla -- dt - where a from 2 O(E ) (4.28) i n t o (4.9) and g i v e s the e q u a t i o n s a +b = [ - K1 0 =a(O) + E , 2,2 l a ( $ 0 = )I ( 0 ) , . The s o l u t i o n s o f (4.33) The f i r s t improved approximate s o l u t i o n of from (4.7) by t r u n c a t i n g t h e t e r m s of o r d e r o f here pl, sl, vl, p 2 , w 2 ' s 2 ' r2 ' v 2 the terms w i t h f a c t o r ' E . is obtained 2 O(E ) are g i v e n i n The f i r s t a ~ r o x i r n a t es o l u t i o n o f (3.8) are (4.30) and (4.31). (3.8) i s (4.35) w i t h o u t The second approximate s o l u t i o n of s i m i l a r l y keeping terms of order of r a t h e r Labourious . c2 , but (3.8) can be found the c a l c u l a t i o n s are DISCUSSIm OF THE ASYHPTOTIC SOLUTIONS. 52. According t o (3.7) and (4.35) t h e populations N1 and e x h i b i t small v i b r a t i o n s i n t h e neighbourhood o f the e q u i l i b r i u m (ql , q2) . 'Since t h e dominant p a r t s of (4.35) and x 2 Also, s i n c e w i l l approach t h e equilibrium p o s i t i o n a s t K1 > K ~ , . + $ Formula (4.33) show t h a t i n t h e f i r s t approximation t h e phase linearly increasing function in t changing exponential f u n c t i o n i n behaviour of amplitude - K1 = -21 (A1 + B2) Since - a (see Ni, K1 I . 4.34) x i , a is a is a f a s t For s u f f i c i e n t l y s m a l l E the depends on t h e expression (2.7) is i s always n e g a t i v e , t h e amplitude i = 1,2 given by i = 1.2, approach t h e e q u i l i b r i u m which i s a l o c a l a t t r a c t o r . $4 . which according t o exponentially decaying and (0.0), hence while t h e amplitude t - c o n s i s t s of r e a l exponential terms, t h e r e w i l l be no o s c i l l a t i o n s . x1 *L a. is (4.35) * q;) (ql, approach of (3.1) CONCLUSION We have proved t h a t t h e Lotka-Volterra system (2.1 ) f o r two s p e c i e s i n competition w i t h o u t h a r v e s t i n g i s s t r u c t u r a l l y s t a b z e . In o t h e r words, t h e t o p o l o g i c a l s t r u c t u r e of system (2.1) does n o t change s i g n i f i c a n t l y under s m a l l changes i n t h e system. We have observed t h i s p r o p e r t y i n S e c t i o n 1 and s e c t i o n 3 of Chapter 3 when small p e r t u r b a t i o n s :* o r controls ~ f(N. ,N ) 1 1 2 , i = 1 , 2 , a p p l i e d t o modify t h e Lotka-Volterra . - . system (2.1) do n o t change s i g n i f i c a n t l y ' t h e behaviour o f t h e s o l u t i o n s . For i n s t a n c e , t h e e q u i l i b r i u m E4 o f t h e unperturbed system ( 2 .l) i s an I a s y m p t o t i c a l l y s t a b l e node which, under t h e i n f l u e n c e of small p e r t u r b a t i o n s , remains an a s y m p t o t i c a l l y s t a b l e node. The Lotka-Yolterra system with harvesting (2.16) s a t i s f y i n g ( 2 . 2 8 ) and ( 2 . 2 6 ) i s s t r u c t u r a l l y s t a b l e , and t h a t s a t i s f y i n g (2.38) i s s t r u c t u r a l l y unstable. E Its s t r u c t u r a l l y u n s t a b l e double e q u i l i b r i u m which i s a saddle-node, under c e r t a i n small p e r t u r b a t i o n s , b i f u r c a t e s into e i t h e r two s t r u c t u r a l l y s t a b l e simple e q u i l i b r i a , a s a d d l e p o i n t and an a s y m p t o t i c a l l y s t a b l e nade, o r d i s a p p e a r s . 111 Krylov, N.N. and Bogoliubov, N.N., "Introduction to nonlinear mechanics'', Princeton University Press (1947). [2] Bogoliubov, N.N. and Mitropolskii, Yu, A., "Asymptotic methods in the theory of nonlinear oscillations", New Yor, Gordon and -Breach (1961) . [3] Minorsky, N., "I duction to nonlinear mechanics", J.E. Edwards, Ann Arbor, Michigan (1947) . [4] 151 Popov, Ye. P. m d Pol'tov, N.P., "Approximate methods for Russian) analyzing non-linear automatic systems". Moscow (h (1960). Liouville, J., J. de Math. 2, 16, 418 (1837). [6] Murty, I.S.N., "A unified Krylov-Bogoliubov method for solving second-order non-linear systems". Int. J. onl linear Mechanics 6, pp. 45-53, Pergamon Press (1971). [71 3 Bojadziev, G. and Edwards, F., "On some asymptotic methods for non-oscillatory and oscillatory Processes", Nonlinear Vibrations Problems 20, pp. 69-79 (1981) . [8] Andronov, A.A., Leontovich, E.A., Gordon, 1.1. an3 Maier, A.G., "Theory of Bifurcations of dynamic systems on a planev, Halsted Press Book (1973). [9] Andronov, A.A., Leontovich, E.A., Gordon,' I.I., and Maier, A.G., "Qualitative theory of dynamic systems", Halsted Press Book (1973). [lo] Sansone, G. and Conti, R., "Non-linear differential equations", New York: Pergamon Press (1952) . [ll] Nemytskii, V.V. and Stepanov, V.V., "Qualitative theory of differential equations", Princeton University Press (1960). - [12] Birkhoff , G. and Rota, G. , "Ordinary differential equations", John Wiley & Sons, Inc. (1978). x 5131 r Gauss, G.F. and Witt, A.A., "Behaviour of Mixed populations and the problem of Natural Selection". Am. Nat., 69, 596-609 (1985). [14f Abdelkader, M . r "Exact Solutions of Lotka-Volterra Equations". Math. Biosci., 20, 293-297 (1974) . - 1151 Rescigno, A. and Richardson, I.W., "The Struggle for life: I. Two species", Bull. Math. Biophys., 29, 377-387, (1967). 1161 Brauer, F. and Sanchez, D.A. , "Constant rate poljulation harv%sting: Equilibrium and stability". Theor. Pop. Biol. 8, 12-30, 1975a. A [17] Freedman, H.E. , "~ete-ministic mathematical models in population Ecology", Marcel Dekker, New York (1980). - 1181 P Freedman, H.I. and Waltman, Per "Perturbation of predator-prey equations", SIAM J. Appl. Math. (1975) . i i i 1191. Bojadziev, G. and Bojadziev, M., Lotka-Volterra model co+rolled by small perturbations, Proceedings Inst. "Modelling and simulation", Athens, June 27-29, Vol \ 1-2, 29-40, (1984). c0nf7' c 1201 - iBojadziev, G. , "The Krylov-Bogoliubov-Mitropolskii methob;applied to models in population dynamics", Bull. Math. Biol. 40, 335-345 (1978). .
© Copyright 2026 Paperzz