Hopfield Neural Networks for Optimization 虞台文 大同大學資工所 智慧型多媒體研究室 Content Introduction A Simple Example Race Traffic Problem Example A/D Converter Example Traveling Salesperson Problem Hopfield Neural Networks for Optimization Introduction 大同大學資工所 智慧型多媒體研究室 wii 0 wij w ji Energy Function of a Hopfield NN n n n E 12 wij vi v j Ii vi K i 1 j 1 Interaction btw neurons i 1 Interaction constant to the external Running a Hopfield NN asynchronously, its energy is monotonically non-increasing. n n n E 12 wij vi v j Ii vi K i 1 j 1 i 1 Solving Optimization Problems Using Hopfield NNs Reformulating the cost of a problem in the form of energy function of a Hopfield NN. Build a Hopfield NN based on such an energy function. Running the NN asynchronously until the NN settles down. Read the answer reported by the NN. Hopfield Neural Networks for Optimization A Simple Example Race Traffic Problem 大同大學資工所 智慧型多媒體研究室 n n n E 12 wij vi v j Ii vi K i 1 j 1 i 1 A Simple Hopfield NN I2 I1 1 w12 w21 2 E v1w12v2 I1v1 I 2v2 K E v1w12v2 I1v1 I 2v2 K The Race Traffic Problem +1 1 +1 1 v1 E (v1 v2 ) 1 2 2 v v1v2 v 1 2 2 1 v1v2 1 1 2 2 2 w12 w21 1 I1 I 2 0 v2 +1 1 v1 +1 1 The Race Traffic Problem 0 0 1 1 E (v1 v2 ) 1 2 2 v v1v2 v 1 2 2 1 v1v2 1 2 1 2 2 2 w12 w21 1 I1 I 2 0 v2 +1 1 v1 +1 1 The Race Traffic Problem 0 0 1 1 1 2 1 1 Stable State v2 +1 1 v1 +1 1 The Race Traffic Problem 0 0 1 1 1 2 1 1 Stable State v2 +1 1 v1 +1 1 The Race Traffic Problem 0 0 1 1 1 2 1 v2 Hopfield Neural Networks for Optimization Example A/D Converter 大同大學資工所 智慧型多媒體研究室 Reference Tank, D.W., and Hopfield, J.J., “Simple "neural" optimization networks: An A/D converter, signal decision circuit and a linear programming circuit,” IEEE Transactions on Circuits and Systems, Vol. CAS-33 (1986) 533-541. A/D Converter I Analog Using Unipolar Neurons A/D v0 v1 v2 v3 20 21 22 23 1 i E I 2 vi 2 i 0 3 2 A/D Converter 3 1 3 i 2 1 3 3 i j E (2 vi ) (2 vi )(2 v j ) I (2i vi ) 2 i 0 2 i 0 j 0 i 0 j i 3 1 3 2i 1 3 3 i j 2 vi vi 2 v j (2i I )vi 2 i 0 2 i 0 j 0 i 0 j i 3 1 3 3 i j vi 2 v j (22i 1 2i I )vi 2 i 0 j 0 i 0 j i Using Unipolar Neurons 1 i E I 2 vi 2 i 0 3 2 3 3 3 E 12 wij vi v j I i vi K i 0 j 0 j i i 0 A/D Converter 3 1 3 i 2 1 3 3 i j E (2 vi ) (2 vi )(2 v j ) I (2i vi ) 2 i 0 2 i 0 j 0 i 0 j i 3 1 3 2i 1 3 3 i j 2 vi vi 2 v j (2i I )vi 2 i 0 2 i 0 j 0 i 0 j i 3 1 3 3 i j vi 2 v j (22i 1 2i I )vi 2 i 0 j 0 i 0 j i wij 2i j I i 22i 1 2i I 0 I0 1 I1 2 I2 3 ji v0 v1 v2 v3 I3 Hopfield Neural Networks for Optimization Example Traveling Salesperson Problem 大同大學資工所 智慧型多媒體研究室 Reference J. J. Hopfield and D. W. Tank, “Neural” computation of decisions in optimization problems, ” Biological Cybernetics, Vol. 52, pp.141-152, 1985. Traveling Salesperson Problem Traveling Salesperson Problem Given n cities with distances dij, what is the shortest tour? Traveling Salesperson Problem 2 3 4 1 5 9 11 10 6 8 7 Traveling Salesperson Problem 2 Distance Matrix 3 4 1 5 9 11 10 6 8 7 Find a minimum cost Hamiltonian Cycle. 1 2 1 d12 2 d 21 3 d 31 d 32 n d n1 d n 2 3 n d13 d1n d 23 d 2 n d 3n d n 3 Search Space 2 3 4 1 5 9 11 10 6 Assume we are given a fully connection graph with n vertices and symmetric costs (dij=dji). The size of search space is 8 7 Find a minimum cost Hamiltonian Cycle. n! 2n Problem Representation Using NNs Time 1 1 2 1 2 City 4 3 5 3 4 5 2 3 4 5 Problem Representation Using NNs The salesperson reaches city 5 at time 3. 1 2 1 2 City 4 3 5 3 4 5 Time 1 2 3 4 5 Goal: Find a minimum cost Hamiltonian Cycle. Problem Representation Using NNs Time 1 1 2 1 2 City 4 3 5 3 4 5 2 3 4 5 Goal: Find a minimum cost Hamiltonian Cycle. The Hamiltonian Constraint Time Each1 row and2 column can have only one neuron “on”. 4 For3a n-city problem, n neurons will be on. 5 1 2 City 1 3 4 5 2 3 4 5 Goal: Find a minimum cost Hamiltonian Cycle. Cost Minimization Time 2 The 1total distance of the valid tour have to be very low. 4 The 3summation of these dij’s is very low. 5 2 1 3 5 d35 d54 5 d25 d42 3 4 4 d51 2 City 1 Indices of Neurons 1 2 City vxi 1 3 x 4 5 2 Time i 3 4 5 Time 1 2 1 City 5 5 d25 d42 3 4 4 d51 2 Energy Function 3 d35 d54 ETSP EH Ed Hamiltonian-Cycle Satisfaction Cost Minimization Time 1 2 1 City 4 d51 2 Energy Function 3 d25 d42 3 d35 4 5 d54 5 ETSP EH Ed λ3 λ1 λ2 EH vxi vxj vxi v yi vxi n 2 x 1 i 1 j 1 2 i 1 x 1 y 1 2 x 1 i 1 n n n Each row one or zero neuron ‘on’ n n n Each column one or zero neuron ‘on’ n n n neurons ‘on’ 2 Time 1 2 1 City 4 d51 2 Energy Function 3 d25 d42 3 d35 4 5 d54 5 ETSP EH Ed λ3 λ1 λ2 EH vxi vxj vxi v yi vxi n 2 x 1 i 1 j 1 2 i 1 x 1 y 1 2 x 1 i 1 λ4 Ed 2 n n n n n n v i 1 x 1 y 1 y x n xi n n d xy (v y ,i 1 v y ,i 1 ) Total distance of the tour n n 2 Time 1 2 1 City 5 5 d25 d42 3 4 4 d51 2 Energy Function 3 d35 d54 ETSP EH Ed λ1 n n n vxi vxj 2 x 1 i 1 j 1 λ1 λ2 λ3 λ4 0 j i λ2 2 n n n v i 1 x 1 y 1 y x v xi yi λ3 v n xi 2 x 1 i 1 λ4 2 n n n n n v i 1 x 1 y 1 y x xi 2 d xy (v y ,i 1 v y ,i 1 ) Time 1 2 1 City d35 4 E2 D λ1 vxi vxj 2 x 1 i 1 j 1 n n n Mapping j i λ2 2 n n n v i 1 x 1 y 1 y x λ 3 vxi n 2 x 1 i 1 n λ4 2 n n n n v i 1 x 1 y 1 y x xi d25 d54 1 n n n n vxi wxi , yj v yj 2 x 1 i 1 y 1 j 1 y x j i n n I xi vxi x 1 i 1 v xi yi wxi,yjEnergy λ1δfunction xy (1 δij ) of a 2 d xy (v y ,i 1 v y ,i 1 ) 5 d42 3 5 ETSP EH Ed 4 d51 2 Build NN for TSP 3 2-D neural λ δ (1 network δ ) 2 ij xy λ3 (1 δij )(1 δxy ) λ4 d xy (δi , j 1 δi , j 1 ) I xi λ3n Analog Hopfield NN for 10-City TSP Analog Hopfield NN for 10-City TSP The shortest path Analog Hopfield NN for 10-City TSP The shortest path Analog Hopfield NN for 30-City TSP Analog Hopfield NN for 30-City TSP
© Copyright 2026 Paperzz