APLIKASI BERNOULLI PADA Saluran Kovergen/Divergen Diffuser, Sudden expansion Fluida gas Flowmeter : Pitot tube, Orificemeter, Venturimeter, Rotameter PERS.BERNOULLI Steady 2 V2 P V2 d m(u gz ) (u gz ) in dmin (u P gz V )out dmout dQ dWother 2 sys 2 2 dWother V2 dQ ( gz ) u 2 dm dm P dWother V2 ( gz ) F 2 dm P PERS.BERNOULLI dWother V2 ( gz ) F 2 dm P HEAD FORM OF BERNOULLI EQUATION dWother F P V2 ( z ) g 2g gdm g DIFFUSER Cara untuk untuk memperlambat kecepatan aliran 2 1 z1-z2 V1,P1,A1 V2,P2,A2 dWother V2 ( gz ) F 2 dm P V12 A11 1 2 F P2 P1 2 A2 SUDDEN EXPANSIONS Cara untuk untuk memperlambat kecepatan aliran 1 2 P1,V1 z1-z2 P2,V2=0 dWother V2 ( gz ) F 2 dm P V12 P2 P1 F 2 BERNOULLI UNTUK GAS Patmosfir dWother V2 ( gz ) F 2 dm P 1 VR,PR P1,V1 P1v1 RT1 M v1 -------------------- ------------P1-Patm V (ft/s) Psia (Eq.5.17) -------------------------0.001 35 0.1 111 0.3 191 0.6 267 1.0 340 2.0 467 5.0 679 V(ft/s) (Eq.in Chap.8) --------35 111 191 269 344 477 714 1 1 RT1 P1M (P P ) V1 2 R atm 2 RT1 V1 ( PR Patm ) P1M 12 MV12 2 T ( R 1) 2 RkT1 (k 1) T1 PR TR P1 T1 12 (Eq.5.17) Eq.in Chap.8 k k 1 BERNOULLI FOR FLUID FLOW MEASUREMENT h1 1• 2 • PITOT TUBE P2 Patm g h1 h2 P1 Patm gh2 dWother V2 ( gz ) F 2 dm P h2 ( P2 P1 ) V12 F 2 V1 2 gh1 2 F 12 V1 2gh1 1 2 VENTURIMETER 1 V1,P1 2 V2,P2 dWother V2 ( gz ) F 2 dm P Manometer ( P2 P1 ) V22 V12 0 2 2 ( P2 P1 ) V2 2 2 1 A A 2 1 12 2P1 P2 V2 Cv 2 2 1 A A 2 1 12 Venturi Flowmeter The classical Venturi tube (also known as the Herschel Venturi tube) is used to determine flowrate through a pipe. Differential pressure is the pressure difference between the pressure measured at D and at d D d Flow ORIFICEMETER 1 2 Orifice plate Circular drilled hole where, C - Orifice coefficient o - Ratio of CS areas of upstream to that of down stream P -P - Pressure gradient across the orifice meter a - Density of fluid b ORIFICEMETER where, C - Orifice coefficient o - Ratio of CS areas of upstream to that of down stream P -P - Pressure gradient across the orifice meter a - Density of fluid b incompressible flow through an orifice compressible flow through an orifice Y is 1.0 for incompressible fluids and it can be calculated for compressible gases.[2] For values of β less than 0.25, β4 approaches 0 and the last bracketed term in the above equation approaches 1. Thus, for the large majority of orifice plate installations: Y = Expansion factor, dimensionless r = P2 / P1 k = specific heat ratio (cp / cv), dimensionless compressible flow through an orifice compressible flow through an orifice k = specific heat ratio (cp / cv), dimensionless = mass flow rate at any section, kg/s C A = orifice flow coefficient, dimensionless = cross-sectional area of the orifice hole, m² 2 ρ1 = upstream real gas density, kg/m³ P1 = upstream gas pressure, Pa with dimensions of kg/(m·s²) P2 = downstream pressure in the orifice hole, Pa with dimensions of kg/(m·s²) M = the gas molecular mass, kg/kmol R = the Universal Gas Law Constant = 8.3145 J/(mol·K) T1 = absolute upstream gas temperature, K Z (also known as the molecular weight) = the gas compressibility factor at P1 and T1, dimensionless Sudden Contraction (Orifice Flowmeter) Orifice flowmeters are used to determine a liquid or gas flowrate by measuring the differential pressure P1-P2 across the orifice plate 2( p1 p2 )1/ 2 Q Cd A2 2 (1 ) 1 0.95 0.9 0.85 Cd 0.8 0.75 0.7 0.65 0.6 102 103 P1 D d Flow 105 104 Re Reynolds number based on orifice diameter Red P2 106 107 ROTAMETER Tansparent tapered tube with diameter D0+Bz Solid ball with diameter D0 Density B 3 2 2 1 z=0 Fluid with density F 0 Fgravity Ftekananatas Fboyancy Ftekananbawah 0 6 D b g P3D 3 0 2 0 6 D03 f g P1D02 ROTAMETER 0 6 D b g P3D 3 0 6 2 0 6 D03 f g P1D02 D D0 B.z D0+Bz Solid ball D0 Density B D ( b f ) g D ( P1 P3 ) 3 0 2 0 3 2 jika P3 P2 2 1 D0 ( b f ) g ( P1 P2 ) 6 F z=0 dWother V2 ( gz ) F 2 dm P A22 jika 2 0 A1 V22 P1 P2 f 2 D0 g b f V2 3 f V22 V12 V22 A22 P1 P2 f ( ) f (1 2 ) 2 2 2 A1 1 2 Only one possible value that keep the ball steaduly suspended A2 4 D0 B.z 2 D02 ROTAMETER D D0 B.z D0+Bz For any rate the ball must move to that elevation in the tapered tube where Solid ball D0 Density B 3 D0 g b f V2 3 f Q2 V2 A2 Q2 V2 2 Bz 2 1 2 2 1 A2 A2 B.z z=0 D0 B.z 2 D02 4 4 2 F [ 2 Bz ( B.z ] 0 2 A2 The height z at which the ball stands, is linearly proportional to the volumetric flowrate Q 2 Bz TEKANAN ABSOLUT NEGATIF ? 2 40ft dWother V2 ( gz ) F 2 dm P 1 10ft 3 Applying the equation between point 1 and 3 V3 2 g (h1 h3 ) 12 2(32.2)(10) 25.3 ft / s Applying the equation between point 1 and 2 V22 P2 P1 g ( z2 z2 ) 2 2 14.7 21.6 6.9lbf / in 47.6kPa ? negatif This flow is physically impossible. It is unreal Because the siphone can never lift water more than 34 ft (10.4 m) above the water surface It will not flow at all
© Copyright 2026 Paperzz