> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL BayesianFitting ProbabilisticMorphableModels SummerSchool,June2017 SandroSchönborn UniversityofBasel > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL Uncertainty:ProbabilityDistributions • ProbabilisticModels • UncertainObservation(noise,outlier,occlusion,…) • Fitting:Modelexplanationofobserveddata– probabilistic? Tellsusabouttheoutcome’scertainty! Observations Fit&Certainty Groundtruth BishopPRML,2006 2 > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL Probability:AnExample • Dentistexample:Doesthepatienthaveacavity? 𝑃 cavity = 0.1 𝑃 cavity toothache) = 0.8 Certainty 𝑃 cavity toothache, gumproblems) = 0.4 Butthepatienteitherhasacavityordoesnot • Thereisno80%cavity! • Havingacavityshouldnotdependonwhetherthe patienthasatoothacheorgumproblems Allthesestatementsdonotcontradicteachother,they summarizethedentist’sknowledge aboutthepatient AIMA:Russell&Norvig,ArtificialIntelligence.AModernApproach, 3rd edition, 3 > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL Uncertainty:BayesianProbability • Howareprobabilitiestobeinterpreted? Theyaresometimescontradictory:Whydoesthedistributionchangewhen wehavemoredata?Shouldn’ttherebeareal distributionof𝑃 𝜃 ? • Bayesianprobabilitiesrelyonasubjectiveperspective: Probabilityisusedtoexpressourcurrentknowledge.Itcanchangewhenwe learnorseemore:Withmoredata,wearemorecertainaboutourresult. Subjectivity: There is no single, real underlying distribution. A probability distribution expresses our knowledge – It is different in different situations and for different observers since they have different knowledge. • Notsubjectiveinthesensethatitisarbitrary! Therearequantitativerulestofollowmathematically • Probabilityexpressesanobserverscertainty,oftencalledbelief 4 > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL TowardsBayesianInference PosteriorModels:GaussianProcessRegression ProbabilisticFit:Probabilisticinterpretationofdata ObservedPoints Updateofpriortoposteriormodel: BayesianInference PosteriorModel 5 > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL BeliefUpdates Model Facedistribution Observation Concretepoints Possiblyuncertain Posterior Facedistribution consistentwithobservation Priorbelief Moreknowledge Posteriorbelief Consistency:Lawsofprobabilitycalculus! 6 > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL JointDistribution Probabilisticmodel:jointdistributionofpoints 𝑃 𝑥> , 𝑥@ Marginal Conditional Distributionofcertainpointsonly Distributionofpointsconditionedon known valuesofothers 𝑃 𝑥> = A 𝑃(𝑥> , 𝑥@ ) DE 𝑃 𝑥> |𝑥@ 𝑃 𝑥> , 𝑥@ = 𝑃 𝑥@ Bothcanbeeasilycalculated forGaussianmodels 7 > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL CertainObservation • Observationsareknown values • Distributionof𝑥> after observing 𝑥@ , … , 𝑥G : 𝑃 𝑥> |𝑥@ … 𝑥G 𝑃 𝑥> , 𝑥@ , … , 𝑥G = 𝑃 𝑥@ , … , 𝑥G • Conditionalprobability 8 > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL TowardsBayesianInference • Updatebeliefabout𝑥> byobserving𝑥@ , … , 𝑥G 𝑃 𝑥> → 𝑃 𝑥> 𝑥@ … 𝑥G • Factorizejointdistribution 𝑃 𝑥> , 𝑥@ , … , 𝑥G = 𝑃 𝑥@ , … , 𝑥G |𝑥> 𝑃 𝑥> • Rewriteconditionaldistribution 𝑃 𝑥> |𝑥@ … 𝑥G = 𝑃 𝑥> , 𝑥@ , … , 𝑥G 𝑃 𝑥@ , … , 𝑥G |𝑥> 𝑃 𝑥> = 𝑃 𝑥@ , … , 𝑥G 𝑃 𝑥@ , … , 𝑥G • General:Query(𝑄)andEvidence(𝐸) 𝑃 𝑄|𝐸 = 𝑃 𝑄, 𝐸 𝑃 𝐸|𝑄 𝑃 𝑄 = 𝑃 𝐸 𝑃 𝐸 9 > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL UncertainObservation • Observationswithuncertainty Modelneedstodescribehow observationsaredistributed withjointdistribution𝑃 𝑄, 𝐸 • Stillconditionalprobability Butjointdistributionismorecomplex • Jointdistributionfactorized 𝑃 𝑄, 𝐸 = 𝑃 𝐸|𝑄 𝑃 𝑄 • Likelihood𝑃 𝐸|𝑄 • Prior𝑃 𝑄 10 > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL Likelihood Joint Likelihood Prior 𝑃 𝑄, 𝐸 = 𝑃 𝐸|𝑄 𝑃 𝑄 • Likelihoodxprior: factorizationismoreflexiblethanfulljoint • Prior:distributionofcoremodelwithoutobservation • Likelihood:describeshowobservationsaredistributed • Commonexample:Gaussiandistributedpoints 𝑸 𝑬 𝑃 𝑄 𝑃 𝐸|𝑄 11 > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL BayesianInference • Conditional/Bayesrule:methodtoupdatebeliefs Posterior Likelihood Prior 𝑃 𝐸|𝑄 𝑃 𝑄 𝑃 𝑄|𝐸 = 𝑃 𝐸 MarginalLikelihood • Eachobservationupdatesourbelief(changesknowledge!) 𝑃 𝑄 → 𝑃 𝑄 𝐸 → 𝑃 𝑄 𝐸, 𝐹 → 𝑃 𝑄 𝐸, 𝐹, 𝐺 → ⋯ • BayesianInference:Howbeliefsevolvewithobservation • Recursive:Posteriorbecomespriorofnextinferencestep 12 > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL Marginalization • Modelscontainirrelevant/hiddenvariables e.g.pointsonchinwhennoseisqueried • Marginalizeoverhiddenvariables(𝐻) 𝑃 𝑄 𝐸 = A 𝑃 𝑄, 𝐻 𝐸 = A Q Q 𝑃 𝐸, 𝐻|𝑄 𝑃 𝑄 𝑃 𝐸, 𝐻 13 > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL GeneralBayesianInference • Observationofadditionalvariables • Commoncase,e.g.facerendering,landmarklocations • Coupledtocoremodelvialikelihoodfactorization • GeneralBayesianinferencecase: • Distributionofdata𝐷 (formerlyEvidence) • Parameters𝜃 (formerlyQuery) 𝑃 𝐷|𝜃 𝑃 𝜃 𝑃 𝜃|𝐷 = 𝑃 𝐷 𝑃 𝜃|𝐷 ∝ 𝑃 𝐷|𝜃 𝑃 𝜃 14 > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL Example:BayesianCurveFitting • CurveFitting:Datainterpretationwithamodel • Posteriordistributionexpressescertainty • inparameterspace • inthepredictivedistribution 15 > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL PosteriorofRegressionParameters 𝑃 𝑤 Nodata 𝑃 𝐷> |𝑤 𝑃 𝑤 𝐷> N=1 𝑃 𝐷@ |𝑤 N=2 𝑃 𝑤 𝐷> , 𝐷@ N=19 𝑃 𝑤 𝐷> , 𝐷@ , … BishopPRML,2006 16 > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL MoreBayesianInferenceExamples BishopPRML,2006 Non-LinearCurveFitting e.g.GaussianProcessRegression Classification e.g.Bayesclassifier 17 > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE PROBABILISTIC MORPHABLE MODELS | JUNE 2017 | BASEL Summary:BayesianInference • Belief:formalexpressionofanobserver’sknowledge • Subjectivestateofknowledgeabouttheworld • Beliefsareexpressedasprobability distributions • Formallynotarbitrary:Consistencyrequireslawsofprobability • Observationschangeknowledgeandthusbeliefs • Bayesianinferenceformallyupdatespriorbeliefstoposteriors • ConditionalProbability • Integrationofobservationvialikelihoodxprior factorization 𝑃 𝐷|𝜃 𝑃 𝜃 𝑃 𝜃|𝐷 = 𝑃 𝐷 18
© Copyright 2026 Paperzz