Regularization Methods:
an application in Matrix Completion
with Lipschitz loss
Vincent Cottet (with P. Alquier and G. Lecué)
PhD Supervisor: N. Chopin
Rencontres ENSAE/ENSAI, Rennes, 26.01.2017
Alquier, Cottet, Lecué
Matrix Completion with Lipschitz loss
Problem
Ingredients
data: (Xi , Yi )N
i=1 i.i.d. from distribution P
set of predictors : F ⊂ L2 = f : E(f (X )2 ) < +∞
loss function: `(f (X ), Y )
Oracle:
f ∗ ∈ arg min E [`(f (X ), Y )]
f ∈F
E(f ) = E [`(f (X ), Y )] − E [`(f ∗ (X ), Y )]
Regularization norm k·k over F .
Alquier, Cottet, Lecué
Matrix Completion with Lipschitz loss
Problem
Ingredients
data: (Xi , Yi )N
i=1 i.i.d. from distribution P
set of predictors : F ⊂ L2 = f : E(f (X )2 ) < +∞
loss function: `(f (X ), Y )
Oracle:
f ∗ ∈ arg min E [`(f (X ), Y )]
f ∈F
E(f ) = E [`(f (X ), Y )] − E [`(f ∗ (X ), Y )]
Regularization norm k·k over F .
Regularized Empirical Risk Minimizer (RERM)
(
)
N
1 X
b
f = arg min
`(f (Xi ), Yi ) + λ kf k
N
f ∈F
i=1
Alquier, Cottet, Lecué
Matrix Completion with Lipschitz loss
Introduction
Lipschitz Property
0
`(y1 , y ) − `(y20 , y ) ≤ y10 − y20 Alquier, Cottet, Lecué
Matrix Completion with Lipschitz loss
Introduction
Lipschitz Property
0
`(y1 , y ) − `(y20 , y ) ≤ y10 − y20 Examples:
Logistic loss: for all y ∈ {−1, +1}, y 0 ∈ R
`(y 0 , y ) = log(1 + exp(−y 0 y )),
Hinge loss: for all y ∈ {−1, +1}, y 0 ∈ R
`(y 0 , y ) = (1 − y 0 y )+ ,
Quantile loss (level τ ∈ (0, 1)): for all y ∈ R, y 0 ∈ R
`(y 0 , y ) = τ (y 0 − y )+ + (1 − τ )(y − y 0 )+ ,
Alquier, Cottet, Lecué
Matrix Completion with Lipschitz loss
Strategy
(
fb = arg min
f ∈F
N
1 X
`(f (Xi ), Yi ) + λ kf k
N
)
i=1
Alquier, Cottet, Lecué
Matrix Completion with Lipschitz loss
Strategy
(
fb = arg min
f ∈F
N
1 X
`(f (Xi ), Yi ) + λ kf k
N
)
i=1
Bernstein Parameter: κ
∀f ∈ F
kf − f ∗ k2κ
L2 ≤ AE(f )
Alquier, Cottet, Lecué
Matrix Completion with Lipschitz loss
Strategy
(
fb = arg min
f ∈F
N
1 X
`(f (Xi ), Yi ) + λ kf k
N
)
i=1
Bernstein Parameter: κ
Complexity function: r (ρ)
Rad(B) 1/2κ
r (ρ) = C ρ √
,
N
Alquier, Cottet, Lecué
B = {f : kf k ≤ 1}
Matrix Completion with Lipschitz loss
Strategy
(
fb = arg min
f ∈F
N
1 X
`(f (Xi ), Yi ) + λ kf k
N
)
i=1
Bernstein Parameter: κ
Complexity function: r (ρ)
Sparsity equation: fixed point ρ∗
(
)
∆(ρ) = inf
sup
h, g : h ∈ ρS ∩ r (2ρ)BL2
g ∈∂k·k(f ∗ )
Alquier, Cottet, Lecué
Matrix Completion with Lipschitz loss
Strategy
(
fb = arg min
f ∈F
N
1 X
`(f (Xi ), Yi ) + λ kf k
N
)
i=1
Bernstein Parameter: κ
Complexity function: r (ρ)
Sparsity equation: fixed point ρ∗
(
)
∆(ρ) = inf
sup
h, g : h ∈ ρS ∩ r (2ρ)BL2
g ∈∂k·k(f ∗ )
4
∆(ρ∗ ) ≥ ρ∗
5
Alquier, Cottet, Lecué
Matrix Completion with Lipschitz loss
Strategy
(
fb = arg min
f ∈F
N
1 X
`(f (Xi ), Yi ) + λ kf k
N
)
i=1
Bernstein Parameter: κ
Complexity function: r (ρ)
Sparsity equation: fixed point ρ∗
Final Result, w/ high prob.
b
∗
f
−
f
≤ ρ∗
b
∗
f
−
f
≤ r (2ρ∗ )
L2
E(fb) ≤ C (r (2ρ∗ ))2κ
Alquier, Cottet, Lecué
Matrix Completion with Lipschitz loss
Application – Matrix Completion
m1 × m2 Matrix:
black cells: known
white cells: unknown
Observations:
Xi : location
Yi : value in R or {−1, +1}
Trace Regression
ith-location (u, v ): Xi = eu ⊗ ev
approximation: Yi by f (Xi ) = Xi , M = Tr(Xi> M) = Mu,v
Alquier, Cottet, Lecué
Matrix Completion with Lipschitz loss
Application – Matrix Completion
Regularized problem
predictor: f = ·, M
Lipschitz loss function `
Regularization: ·, M = kMk
S1
=
Pm1 ∧m2
i=1
σi (M)
Estimator
(
b = arg min
M
M
N
1 X `( Xi , M , Yi ) + λ kMkS1
N
)
i=1
Alquier, Cottet, Lecué
Matrix Completion with Lipschitz loss
Application – Matrix Completion (2)
Bernstein Parameter: κ = 1 (logistic: True, Hinge: mild ass.,
Quantile: mild ass.)
Alquier, Cottet, Lecué
Matrix Completion with Lipschitz loss
Application – Matrix Completion (2)
Bernstein Parameter: κ = 1 (logistic: True, Hinge: mild ass.,
Quantile: mild ass.)
q
1/2
1 +m2 )
Complexity function: r (ρ) = C ρ Nlog(m
min(m1 ,m2 )
s
Rad(B) = C
Alquier, Cottet, Lecué
log(m1 + m2 )
min(m1 , m2 )
Matrix Completion with Lipschitz loss
Application – Matrix Completion (2)
Bernstein Parameter: κ = 1 (logistic: True, Hinge: mild ass.,
Quantile: mild ass.)
q
1/2
1 +m2 )
Complexity function: r (ρ) = C ρ Nlog(m
min(m1 ,m2 )
Sparsity equation (s = rank(M ∗ )), fixed point:
s
log(m1 + m2 )
4
ρ∗ = Csm1 m2
⇒ ∆(ρ∗ ) ≥ ρ∗
N min(m1 , m2 )
5
Alquier, Cottet, Lecué
Matrix Completion with Lipschitz loss
Application – Matrix Completion (2)
Bernstein Parameter: κ = 1 (logistic: True, Hinge: mild ass.,
Quantile: mild ass.)
q
1/2
1 +m2 )
Complexity function: r (ρ) = C ρ Nlog(m
min(m1 ,m2 )
Sparsity equation (s = rank(M ∗ )), fixed point:
s
log(m1 + m2 )
4
ρ∗ = Csm1 m2
⇒ ∆(ρ∗ ) ≥ ρ∗
N min(m1 , m2 )
5
Final Result, w/ high prob.
2
1 s(m1 + m2 ) log(m1 + m2 )
b
M − M ∗ ≤ C
m1 m2
N
S2
b ≤ C s(m1 + m2 ) log(m1 + m2 )
E(M)
N
Alquier, Cottet, Lecué
Matrix Completion with Lipschitz loss
Illustration – Median Reconstruction
Example:
20 % of known entries from a 200 × 200 matrix
rank 3 matrix with small noise
10% of corrupted entries w/ different magnitude
1.25
method
Least Squares
Median loss
L1 Risk
1.00
0.75
0.50
0
10
20
30
Outliers Magnitude
Alquier, Cottet, Lecué
Matrix Completion with Lipschitz loss
Key Points
General case
General study of RERM with Lipschitz loss
2 settings:
Subgaussian, computation of 2 objects : w (B) and ρ∗
Bounded, computation of 2 objects : Rad(B) and ρ∗
Estimation and Excess risk bounds
Applications
Matrix Completion:
binary with logistic and hinge loss
quantile reconstruction
Logistic LASSO and Logistic SLOPE
SVM without induced sparsity
Alquier, Cottet, Lecué
Matrix Completion with Lipschitz loss
© Copyright 2026 Paperzz