University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-1976 Lumped Parameter, State Variable Dynamic Models for U-tube Recirculation Type Nuclear Steam Generators Mohamed Rabie Ahmed Ali University of Tennessee - Knoxville Recommended Citation Ali, Mohamed Rabie Ahmed, "Lumped Parameter, State Variable Dynamic Models for U-tube Recirculation Type Nuclear Steam Generators. " PhD diss., University of Tennessee, 1976. http://trace.tennessee.edu/utk_graddiss/2548 This Dissertation is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Mohamed Rabie Ahmed Ali entitled "Lumped Parameter, State Variable Dynamic Models for U-tube Recirculation Type Nuclear Steam Generators." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Nuclear Engineering. T. W. Kerlin, Major Professor We have read this dissertation and recommend its acceptance: P. F. Pasqua, J. C. Robinson, Kike Kiser, Jivan Thakkar Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official student records.) July 9, 1976 To t h e G ra d u a t e C o u nc i l : I am s u bm i t t i n g herewi t h a d i s s er ta t i o n wr i t t e n by Mo hamed Ra b i e A hm e d Al i E n t i tl ed 11 L umped P a rameter , Sta t e V a r i a b l e Dynam i c t·� od el s for U - t u be R e c i r c u l at i o n Typ e N uc l ea r S t eam G e n erators . " I r ecomm e n d t ha t i t b e accep ted i n p a r t i a l ful f i l l me n t o f t h e req u i remen t s fo r t h e d egree o f Doctor o f P h i l o s o p hy , w i t h a ma j o r in Nucl ear E n g i neeri n g . T . W. Kerl i n , Maj o r P rofe s s o r We rta t i o n ta n c e: Accep ted fo r t he Co u n c i l : V i ce Chancel l or G ra d u a t e S tu d i e s a n d R e s ea r c h ·' ..... ../ ,.·� - ....,.: ..... ,_.: L UM P E D PARAMETE R , STATE VARI A B L E DYNAMI C MO DELS FOR U-TUBE RE C I RCULATION TYP E N UC L EA R STEAt� GEN E RATORS A D i s s e rta t i o n P re se n t e d fo r t h e Doc t o r o f P h i l o so p hy De gree The Un i ve r s i ty of Tenne s se e , Kno x v i l l e Mo hame d Ra b i e Ahme d Al i August 1976 1300528 ACKN OWL E D GE ME NTS T h e a u t h o r wo u l d l i k e to t h a n k D r . T . W . Ke rl i n , t h e maj o r ) ro fe s s o r a n d t he re s e a rc h a dv i s o r , fo r h i s pat i en ce i n s mo o t h i n g � h e ro u g h s po t s d u ri n g t he co u rs e o f t h i s wo rk . H i s g u i d a n ce i n d e n cou ra geme n t toge t h e r w i t h the val u a b l e s u gge s t i o n s o f t h e lthe r membe r s o f t h e do cto ral commi t tee c o n t ri b uted t o t h e ; u c ce s s fu l c ompl e t i o n o f t h i s d i s s e rt at i on . ,f H e wi s he s to e x p res s h i s g rat i t u de t o D r . P . F . P as q u a , h e a d t h e N ucl e a r E n g i n e e ri n g Depa rtme n t fo r ma k i n g t he compl e t i o n o f : h e res i dent req u i reme n t s fo r t h e P h . D . p rogram po s s i ble t h ro u gh a r ra d u a t e a s s i s ta n ts h i p . T he a s s i s t a n c e o f M s s rs . Mi ke K i s e r a n d J i van T h a k k a r i n . h e c k i n g t h e s te a dy s t a t e c a l c u l a t i o n a l go ri thm a n d co upl i n g t h e t e a m genera t o r a n d rea ct o r mode l s i s dee p l y a pp reci ated . Many t ha n ks go to Mrs . J ua n i ta Rye fo r he r e ffo rt i n ty p i n g h e ro u g h d r a ft s and t h e fi n a l fo rm o f t h e di s s e rtat i o n re p o rt . T h e u s e o f The U n i vers i ty o f Ten n e s s ee Comput i n g C e n t e r a c i l i t i es i s h i g h l y a c knowl e d ge d . ii ABSTRACT A n umber of 1 umped paramet e r dynamic model s were d evelo ped for a ver t i cal U-tube reci rcu l ati on steam g enerato r ( UTS G ) of the type u s ed i n most pre s s u rized water reacto r n ucl ear steam supply systems. . T h e mode l s ran ged i n compl exity f rom a simplifie d model ( Model A) wi th onl y three l umps to re present th e primary fl uid ( reactor coo l ant ) , t u be me tal and the s econ dary f l uid to a d etail e d model ( Model D) with fo u rteen l umps an d a movin g boun dary between the subcool ed and boil i n g s ections of the lleat exchange region. The mode ls are l in ear and are in the state variable fo rm which is con venie n t for u sin g standard general purpo s e computer cod es for time or fre que ncy domain anal y sis. Th e adequacy of the mode l s was t ested in several ways. The cal c u l ated r e s pon s e f rom the models was s t u died fo r physical pl au s i b i lity. The adequacy of the anal ytical work was t e s t e d by comparin g re s u l t s from pro gre s sivel y more detail ed models. The detail ed model re s pon s e was compared wit h the result s of other UTS G dynamic mod els Ro bin son (739 ( 6,32) and with t e s t results obtain ed at the H . B . MWe PWR ) pl an t . (3,4,S) Al l of the ch eck s on model validity demon strated the adequacy of the l umped parameter approach fo r the simul ation of the dynamic res pon s e of a UTS G fo r norma l operatin g t ran sie n t s in volvin g small deviation s from the steady state con ditio n s. iii TABLE OF CONTENTS CHAPTER I. PAGE I NTRODUCT I ON . . . . . . Gen eral Con s i derat i on s . . I I. Descr i p t i on of the Phys i cal Sys t em 3 S tatemen t of the Problem . . 8 I m portance of the S tudy 8 Scope and Organ i zation of the Text . 9 REV I EW OF PERTINENT L I TERATURE . . 11 I ntroduct i on . 11 Dynam i c Models for Heat Exchang er s and Fos s i l Fueled Bo i lers . . . . . . . . . . 11 • • Dynami c Models for Bo i li ng Water Reactor ( BWR ) Sys terns . . 14 Dynam i c Models for Reci rculat i on Typ e Nuclear S t eam Gen erators . 18 Remarks I I I. DEVELOPI1ENT OF THE r1ATHEMAT I CAL MODELS • In troduct i on . . . . • 24 • 25 • Bas i c As sumpt i on s • S tructure of the Mathemat i cal Models . . 25 25 26 S i mpli f i ed S team Ge n erat i ng Sys tem Model ( Model A ) . . • • . F i rs t I n t ermed iate t�odel iv . . 27 . ( Model B ) . . . 30 v :HAPTER PAGE S eco n d I n t e rmed i a te Mo del ( Mo d e l C ) 30 The Oeta i l ed t1o d e 1 ( r1o de 1 D ) 33 Go v ern i ng E q u a t i on s fo r Mo d e l A 35 P ri mary L ump ( PR L ) 35 T u b e Met a l L um p ( MT L ) 36 S econ da ry Fl u i d L u�p ( S FL ) 37 S umma ry o f t h e t1o d e l E q ua t i on s 42 Go v ern i n g Equat i on s fo r Mo del B 43 P r i mary L um p ( P RLl ) . 43 P r i ma ry L um p ( PRL2 ) . 43 T u b e Meta l L ump ( MTL l ) 44 Tube Meta l L ump ( MTL2 ) 44 Secondary F l u i d L um p ( S FL ) 44 S ummary of t he t�od el E q ua t i o n s 46 Go v ern i ng E qua t i o n s fo r t1o d e l C 48 Gen era 1 . . . . . . 48 P r i ma ry L ump ( P R L l ) 48 P r i ma ry L um p ( P RL 2) 49 T u b e Meta 1 L ump ( MTL 1 ) 49 T u b e Meta l L ump ( MTL 2 ) 49 E ffec t i v e H ea t E x c ha n g e S econ d a ry F l u i d L ump ( SFEH E L ) . . . . . . . . . . . D ru m Equ i va l ent S e con dary F l u i d L ump (SFORL) 49 56 vi CHAPTER PAGE Down comer Secondary Fl u i d L um p ( S FDCL ) . Th e R ec i rc ul a t i on Loop E q ua t i on • . 65 S umma ry o f the Model E q ua t i o n s . 69 Go v ern i n g E q ua t i on s fo r Mod e l D 74 P r i ma ry S i d e E q ua t i on s . 74 Tu b e Metal E quat i o n s . . . 83 Sec o n d a ry S i d e E quat i on s . 87 The Re c i rcu l a t i o n Loop E q uat i o n • Summ a ry o f t h e Mo del Equa t i on s . IV. 64 95 97 CALCULAT I ON P ROCEDURE AND RESULTS . . 106 I n t ro d u ct i on . 106 Cal c u l a t i on P rocedure fo r the P u re D i ffer e n ti a l Formu l a t i o n . . . . . . . . 107 Ca l cul a t i on P ro c ed u re fo r t h e Mi xed D i fferen t i a l and A l g ebra i c Fo rmu l a t i on Ti me R e s po n s e Cal c u l a t i o n .111 . . . . . F r eq u e n cy R e s pon s e Ca l c u l a t i on . . 112 .114 Geomet r i ca l Cal c u l a t i on P r i rna ry S i d e . Tube t·1 eta 1 . Sec o n d a ry S i d e • • . . • 115 116 . .118 o . . . 119 Res u l t s fo r H . B . Ro bi n so n S t eam Genera to r Ca l c ul a tion o f H ea t Tra n s fer C o effi c i en ts . F i l m H e a t Tra n s fer Co e ff i c i en t s . . 121 . • • 1 22 . 1 23 vi i riAP T E R PAGE Tube Metal Con ductance . . • . . • . • 1 25 O v e ra l l Heat T ran s fe r Coe ffi c i e n t s 1 25 Comb i ne d F i l m a n d T u be Me t a l Con d uc ta n ces 1 26 Res u l t s fo r H . B . Rob i nson Steam Gene rato r . • S t e a dy S t a t e C a l cul at i ons . 1 29 1 29 I n tro d u c t i o n . 1 29 Sol u t i o n U s i n g t he F i n i te D i ffe re nce A p p ro a c h 1 32 So l ut i o n U s i n g Lo ga ri thmi c Mean Tempe rat u re D i ffe ren ce ( U1TO) • • 1 35 • Res u l t s fo r H . B . Ro b i nson S team Ge n e rato r . . . 1 3 7 Gene ral Rema r k s fo r Dynami c Re s po n s e Cal cu l a t io n s 1 39 Dyn a m i c Res po n s e Res u l t s 1 41 . . Re s po n s e o f �1ode 1 A V. . . 1 41 Res pon s e o f Mode l B 1 43 Re s pon s e o f �1o d e l 1 46 c Re s po n s e o f Mode 1 D 1 51 Comp a ri son o f t1ode 1 s Res po n s e s . 1 58 COfv1PARI SOrl O F DETA I LE D t10DE L PRE O I CT I OiJS \�I TH 160 E X P E R I M E NTAL RE SULTS I nt roduc t i o n • . . 160 • De s c ri p t i o n of t hP. Sys tem . 160 P WR t•lo de 1 . 1 61 Co u p l i n g o f Reacto r a n d Stea� Ge n e rato r Mo de l s 167 Res u l ts 1 70 • . . . . . . . vi i i HAPTER VI . PAGE COMPARISON O F D E TA I L E D MODELS W I TH OTH E R UTSG MODELS . . . 1 83 . I n t roduct i on 1 83 Comp a r i s o n w i t h C h r i sten sen 1 s UTSG Mo del 1 84 1 84 System De s c r i pt i on Model D e sc r i pt i o n 1 34 • 1 86 Compa r i son o f Model Formu l a t i on Compa r i son o f Dyn am i c Res po n s e s • • . . Compa r i s o n w i t h A rwood1 s I E UTSG Model VII . 1 88 1 88 Desc r i p t i on of t h e IEUTSG System 1 90 Compa r i son of Dyn a mi c Re s pon s e s . . 1 92 REt�ARKS AN D CGriCLUSIONS • . • . . . 1 95 E va l uat i on o f t h e Devel o pmen t P ro c edure 1 95 Po s s i bl e U s es of the C u r ren t Work 1 96 Re commenda t i o n s 1 97 fo r F u t u re Wo rk 1 93 Con c l u s io n s I ST O F REFERENCES . 1 99 PPEIW I XES . 205 A. NARROW RAtiGE LINEAR APPROX IMATIGrl OF SATURATION, ��AT E R B. C. ANO TH E CRITICAL FLO\� AS SUMPT I On . BAS I C C Ofi SE RVAT I Oil E QU AT I O t l S FOR TWO PHASE FLO\J SYSTEI� S D. STEA11 P ROPE RTI ES . . • . . . . . . RECIRCULATION LOOP EQUAT I ON 206 21 6 218 228 ix PAGE : HAPTE R E. AVERAGE DENS I TY I N TH E TWO - PHASE RE G I ON F. S U MMARY OF DY NArHC RESPONSE RESULTS G. I NSTRUC T I ONS FOR US I NG TH E DETA I LE D MO D E L DY NAM I C RES PONSE COMPUT E R PROGRAM V I TA . . . . . . 2 32 . . . 2 36 . . 271 280 L I ST O F TAB L E S PAGE \BL E [1 . 1 Sys tem Vari a b l e s fo r Mode l C [1 . 2 Sys tem Vari a b l e s f o r the De tai l e d Mo de l (Model D ) [V. l H. B. Rob i n s o n Steam Ge ne ra t o r De s i gn Data [V . 2 [V . 3 v. 1 V.2 • • • . • • . Mod e l c . 98 1 17 . . . . . . . . . . . . . . . . . . . • 1 47 0 . 0 . . 1 52 . ? . . . 1 63 Non z e ro E l eme n t s o f t h e t1at r i ce s Al and A2 fo r Mo de l 0 0 0 0 . 0 0 . . De f i n i t i on o f t h e State V a r i ab l e s U s e d i n t h e Reac t o r Mo de l . 0 0 . . . . . 0 . 0 . . . . Nonz e ro E l eme n t s o f t h e A Mat r i x fo r the Re a c t o r 0 0 . . 0 . . . . . . 1 64 . . 1 66 . . 1 69 • • 1 71 . N on z e ro E l e me n t s o f t h e Fo rc i n g Vecto r fo r the Re a c t o r �1o de l . . 0 . . . . . . . . . . . . V.4 Sy s tem Vari a b l e s fo r the Ste am Ge ne rato r Mo de l Vo 5 Fo r c i n g Funct i o n fo r S team V a l ve P e rt u rba t i o n ( + 1 0% Chan ge i n Ste am Fl ow Rate ) F. l 70 • N on z e ro E l eme n t s o f t h e r�at ri ce s A l a n d A2 fo r Mod e l . V. 3 • S umma ry o f Dyn amic Re s po n s e Re s u l t s X . 0 ? . 237 L I ST O F F I GURES : I GURE PAGE 1. 1 . P re s s uri z e d W a te r Re a c t o r Coo l a n t Loop 1 . 2. D e t ai l s o f a Ve rt i c a l U-T ube Re c i rc u l a t i o n Steam Ge ne rator 1 . 3. • 2 • ( UTSG ) 4 S ch e ma t i c Di agram fo r a Ve rt i c a l U-T ube Re c i rcul a t i o n ( UTS G ) 5 I I . l. S i mp l i fi e d Steam Ge ne ra t o r System fo r t1o de l A 28 I ! . 2. S c h e ma t i c D i a g ram for Model A 29 I I . 3. S c hemat i c Di a g ram fo r Mode l 8 31 I I . 4. S ch emat i c Di a g ram fo r Mo del II.5. S c h e ma t i c Di a gram fo r Mo de l D II.6. S e co n da ry L umps fo r t1o de l C I I . 7. V a r i a t i on o f T he rmo dyn ami c P ro pe rt i es o f t h e Steam Ge n e rator c 32 34 - 50 S e co n d a ry Fl u i d i n t h e E ffe ct i ve H e a t E x c h a n ge 53 L ump II .8. T h e D rum E q u i val e n t Secondary Fl u i d L ump • 57 IV. l . Comb i n i n g Fi l m a n d T ube Me tal Con d u ct an ce s . . . . 128 I V . 2. S c h emat i c o f t h e E ffe c t i ve H e a t E xc h a n g e Re g i o n ( Core ) IV. 3. . . . . . . . . . • . . . . . . • . Tempe rat ures a n d Ma s s Q u a l i ty P ro fi l e s Ca l c u l ated by , 1 38 t h e Steady St ate P ro g ram IV.4. 1 31 Ste p Re s po n s e o f f�ode l V a l ve Coeffi c i e n t xi • A to + 1 0% Cha n ge i n Steam • . • 1 42 xi i ;uRE I. 5 . PAGE Ste p Res po n s e o f Mode l B to +1 0% C h a n g e i n Ste am Va l ve Coe ff i c i e n t I. 6. {. 7 . Va l ve Coe ffi c i e n t • 1.2. 1.3. 1.4. ,.5. Compa ri s o n o f T . . . . . . . . . • . . . . . . . . . . . . • • . . • s . 0 • • • • • • 0 • • 1 59 • • 1 62 1 48 1 53 Re s po n s es i n t h e Fo ur . . . . . 1 68 Lumpe d Struc t u re fo r a PWR Sys tem Mo d e l Re acto r Powe r/ Rea c t i v i ty ( o P/ P / o p ) F reque n cy 0 Re s po n s e • • • • • • • • • . • • • • • . • . 1 72 . • • • • • 1 74 • • • 0 176 • 0 • • Steam P re s s u re/ Rea c t i v i ty ( o P /o p ) F re q uency s Re s po n s e • • • • • • Rea cto r Powe r/ Ste am Fl ow ( o P/ P / o W s ) Fre q ue n cy 0 0 Re s po n s e • • . Steam P re s s u re/Steam Fl ow ( oP /6W s . . . . . . . . . . s0 ) Fre q uency . . . Col d Le g Tempe rat u re/Steam Fl ow ( oT CL . . / 6W s0 . • 178 ) 1 80 F requency Re s po n s e I 1 1 44 . Schema t i c o f the H . B . Rob i n son P l a n t Re s po n s e V .l . • and P Po . • �.6. . Ste p Re s po n s e o f r�o de l D to + 1 0% C h a n g e i n Ste am t�o de 1 s I. 1 . Ste p Re s po n s e o f Mode l C to +1 0% C h a n g e i n Ste am Va l ve Co effi c i e n t 1.8. • Si mpl i fi e d Di a gram o f t h e Phys i ca l Sy s t e m • • 1 85 1 .2. Compa ri s o n Betwee n Mo de l D and Ch ri s tens en•s Mode l . • 1 89 I .3. Schemat i c Di a gram o f a n I E UTS G 1 .4 . Compa ri s o n B e twe en UTSG a n d I E UTSG �1ode l s Us i n g t h e • • Same Mode l i n g Appro a c h 1\ . 1 . Vari a t i on o f T 1\ .2 . Va ri a t i on o f V sat f wi t h P re s s ure w i t h Pre s s u re • 1 91 • . • • 1 93 • 208 2 09 xi i i iURE v9 3. Va r i a t i o n o f 4. Va ri a t i o n o f V 5 . Va r i a t i o n o f h .6. Va ria t i o n o f h • 7. Va r i a t i o n o f h • 1 �. �. . • 2. f g • . w i t h P res s u re . w i t h P re s s u re . . . . . . . . . . . . . . . . . . . . . 212 . . . • 21 3 . . . . . . . . . . . . . 21 9 . . . . . . . . . . 222 . . . . . a . . . . . . 226 Con t ra 1 Vo l ume fo r the Appl i cat i o n o f t h e . . . . . . . Ca l cu l a t i o n o f t he D r i v i n g P re s s u re Head fo r t h e Re c i r c u l a t i o n L o o p • . . . . . .1 . S t e p Re s po n s e fo r Ca s e A . l 2. S t e p Res po n s e fo r C a s e A . 2 3. S t e p Re s po n s e fo r C a s e A . 3 4. S t e p Re s po n s e fo r C a s e B . 1 5. S t e p Re s pon s e fo r Ca s e B . 2 6. S te p Re s po n s e fo r C a s e 8 . 3 . . . . 7. S t e p Re s po n s e fo r Ca s e . . . . 8. S t e p Re s po n s e fo r Ca s e C . 2 . . . 9. S t e p Re s po n s e fo r C a s e C 3 0 . 1 0. S t e p Re s po n s e fo r C a s e 11. S t e p Re s po n s e fo r Ca s e 0 . 2 . S t e p Re s po n s e fo r C a s e 0 . 3 . 12. . 211 . Con t ro l Volume fo r t h e Appl i ca t i o n o f th e E n e rgy Mome n t u m E q u a t i on '1 . 21 0 . w i th P re s s u re fg E q ua t i o n . . .3. w i t h P re s s u re wi th P re s s u re . . 21 4 fg Cont ro 1 Vo l ume fo r t h e Appl i ca t i on o f the Cont i n u i ty Equat ion • PAGE . . . . . . . . . . . . . . . . . . , 2 30 . . . 2 38 . . . 239 . . . 240 241 . . c. 1 . . . . Da 1 . . . . 243 . 245 . . 247 . 253 . . . 256 . . 261 . . . . . 250 . . . . . . . . . . . . 266 CHAPT E R I INT RO DU CT I ON I.l Gen e r a l Co n s i de rat i on s Al t ho u g h s t e am ge ne rato rs have been u s e d i n powe r ge n e rat i n g pl a n t s fo r a l on g t i me , t he i n t e re s t i n t he i r dyn ami c beh a v i o r ha s g rown o n l y s i n c e n u c l ea r ene rgy became a fe as i b l e s u b s t i t u te fo r fo s s i l fuel s as a l oa d- fo l l ow i n g heat s o u rce fo r steam s u p p l y sys tems. l oo p . F i g u re 1 . 1 s hows a p r e s s u r i zed wa ter rea c t o r ( PWR ) coo l a n t I t i s c l e a r t ha t t h e s team gen e rato r i n t h i s l oo p acts a s a t h e rmal c o u pl i n g betwe e n t he reacto r p r i ma ry coo l a n t sys tem a n d t h e s e co n da ry s team cyc l e . O n t h e p ri ma ry s i de , t h e re i s t h e n u c l e a r powe r reacto r w h e re e ffi c i en t and s a fe h e a t remo val from the reac to r c o re i s o f p ri ma ry co n ce rn to the re a c t o r de s i gn e r . On tl1e s eco n d a ry s i de , t he re i s t h e e l e ct ri c a l e n e rgy c o n s ume r who s e ma i n i n te re s t i s t h e re l i a bi l i ty o f s e rvi ce . It i s bec a u s e o f t h i s s t ra t e g i c po s i t i on o f the s t e am gene rato r between t he s e two s i de s that i t s dyn ami c behavi o r bec ame of con s i de rabl e i n te re s t fo r the s a fe des i g n a n d re l i a bl e o pe ra t i o n o f P\�R n u c l e a r powe r p l a n t s . T he wo r k reported i n t h i s d i s s ertat i o n was a pa rt o f a l a r ge r tas k fo r the dyn ami c a n a l y s i s o f both s i n g l e a n d d u a l p u r po s e ( gen e rati ng e l e c t r i c i ty a n d des a l i na t i o n o f s e a w a t e r ) , n uc l e a r powe r p l a n t s t ha t w a s c a r r i e d o ut a t t h e N u c l e a r E n g i n ee r i n g De pa rtme n t 1 2 r Steam Generator Steam Valve Secondary Steam Cyc 1 e ,..._.___.._..., Turbine Generato Pressurizer UTSG FWT 1--....,-' Feedwater Train Hot Leg Cold Leg PWR Pressurized Water Reactor F i g u re I . l Primary Systern Pre s s ur i z e d W a t e r Reactor Coo l a n t Loo p . Load 3 F The U n i ver s i ty o f Ten n e s s ee wi t h the c o o pe ra t i on o f O a k Ri dge 1 t i o n a l Labo r a to ry and the Powe r Sys tems D i vi s i on o f Com b u s tion 1 g i nee ri n g , I n c . Des c ri pt i o n o f t h e P hys i ca l Sys tem 2 T he s te a m gen e rator co n s i dered i n t h i s wo rk i s a ve rt i cal , t u be , rec i rc u l a t i on type s team gen e ra t o r UTS GJ . ( h e re a fte r a b b re v i ated I t i s t h e type u s e d i n mo s t o f t h e c u rre n t PWR n u c l ea r earn s u p p l y sys tems ( NSSS ) . The deta i l s o f s uc h a s team generator a re s hown i n F i g u re I . 2 d a s c hemat i c i s s hown i n F i g u re I . 3 . Th e ho t reac to r cool a n t r ry i n g t h e h e a t gene rat e d i n t h e co re e n t e rs a t t he bottom o f e s team ge n e ra t o r t h ro u g h t he i n l et noz z l e t o a n i n l e t p l e n um , Jws t h ro u g h t he U- t u be s , t ran s fe rri n g h ea t to t h e s e co nda ry fl u i � it flows o u t s i de t he t u b e s a n d t h e n e n t e rs a n o u t l e t p l en um fo re l ea v i n g the s team gene rato r t h ro u g h the o u t l e t nozz l e ( s ) . � s e co n da ry feedwa te r to t h e s team ge n e ra t o r e n t e r s a t a l e ve l ;t a bo ve t h e U-tubes t h ro u g h a feedwa te r r i n g . � I t mi x e s wi t h re c i rc u l a t e d water a n d t h e s l i g h t l y s u bcoo l ed mi x t u re pa s s e s tnwa rd t h ro u g h t h e a n n u l a r re g i on betwee n t h e t u be wrappe r a n d ! i s h e l l b e fo re ente r i n g t h e U - t u be re g i o n . H e a t i s t ra n s fe rre d the seco n da ry fl u i d as i t fl ows upwa rd o u t s i de the U-t ub e s , a steam wa te r mixt u re i s fo rme d . The steam wa ter mi x t u re then ses t h ro u g h steam s epa rato rs and d rye rs t h a t l imi t t he moi s t u re ten t of t he s t eam l e a v i n g t h e steam gene ra tor to l e s s t h a n 0.25%}2) 4 TEJ.t-4 OUTLET TO MOISTURE SEPARATO� URSINE GENERATOR UPPH Si!EL.l. SWIRL 'HMEI-IOISTURE SEPARATOR FEEOW.lTER I MLE ----- AMTI-YIBRATIOII BJ.RS -- SHELL TUBE SU�PORTS TUBE BUNDLE PUT I TION TUBE PLATE SUPPORT FOOT CHA��EL HEAD PRI�.lRY COOLAIIT INLET F i g u re I . 2 PRif.!,I.RY COOU!H OUTLET Deta i l s of a Ve rtical U - T u b e Rec i rc u l at i o n Steam Gen e ra t o r (UTS G ) ( from Referen c e 1). 5 Steam O u t l e t U p p er Shel l S e co n d a ry S e pa ra to rs Swi rl va n e S e p a ra t o rs -"" - Fee dwa t e r I nlet U-Tube ' Bundl e U- t u b e \� ra p pe r L ower She1 1 I n l et P l e n um Ou t l e t P l e n ur1 - P r i ma ry I nlet Figure I.3 P r i mary O ut l e t Schematic Diag ram for a Ve rt i ca l U-t ube Reci rcu l a t ion Steam Gene ra tor (UTSG). 6 The s e p a ra t e d wat e r ret u r n s t o mi x w i t h t he fee dwat e r fo r a n o t h e r pa s s t h ro u g h t h e t u be b u n d l e re g i o n . Refe r r i n g to F i gu re 1 . 3 , o n e c a n summa r i z e t h e d i fferen t proces s e s e nco un t e re d i n t h e fun ct i o n i n g o f th i s UTS G a s fo l l ows: A. P ri ma ry S i de 1. E n t ra n ce o f t he p r i ma ry wate r f rom t h e rea cto r hot l eg to t h e i n l et p l en um . 2. Fl ow o f t h e pri ma ry wate r t h ro u g h the U- t u be b u n dl e a n d h e a t t ra n s fe r a l o n g i t s pat h to t h e s e co n da ry fl u i d. No t i ce t h a t fl ow o f t he p r i ma ry fl u i d i s paral l e l to t he s e conda ry fl ow i n t h e i n l et b ra n c h o f t h e U - t u bes a n d oppo s i te to i t i n t h e e x i t b r a n c h o f t h e U- t u be s . T h e re fo re , t h e U - t u b e s t eam gen e ra t o r ca n b e co n s i dered a s compo s e d o f a p a r a l l e l fl ow s team ge n e ra t o r a n d a counte r fl ow s team gene rato r wi t h a common s e con da ry fl u i d . 3. B. O ut l e t o f t h e p r i ma ry water t h ro u g h t h e o ut l e t pl e n um . T u be Meta l Wal l s 1. The t u be met a l s e p a rates t he p r i ma ry water a n d the s e c o n d a ry fl u i d . The t u be con d uctan ce toge t h e r wi t h t h e fi l m h e a t t ra n s fe r coe ffi c i e n t s determi n e t he effec t i ve heat tra n s fer co effi c i e n t s r e l a t i ng the b u l k mea n t empe rat u re s i n t h e p r i ma ry a n d s e con d a ry s i de s a n d t h e t u be met a l tempera t u re . 7 C. S e co n da ry S i de 1. Fee dwate r e n t e rs t h ro u g h the fe e dwat e r r i n g i n to t h e a n n u l us between t he U- t u be wra p pe r a n d t h e s h ell , refe r re d to a s t h e down come r s e ct i o n i n t h i s s t udy . 2. Fee dwa t e r m i xes wi th s a t u ra t e d wat e r s e pa ra t e d fro m t h e s team-wa ter mi x t u re i n t h e s team s e p a ra t e rs . 3. Seconda ry wa t e r e n t e rs f ro m t he downcom e r i nto t h e tube b u n dle re g i o n . 4. Seco n da ry wa te r i s heated a s i t fl ows u pward a ro un d t h e U - t u b e s a n d t h e tempe ra t u re i s ra i s e d t o t he bo i l i n g po i n t . 5. B o i l i n g o c c u rs i n t h e fl ow i n g s e co n d a ry fl u i d a n d s tea� i s fo rme d as mo re h e a t i s t rans fe r red t h ro u g h t he U-tubes fro m t he p r i ma ry f l ui d . 6. T he s t eam-wa te r m i xtu re conti n u e s to fl ow u pwa rd to t h e s team s e p a ra t o r s where s team i s s eparated a n d col l ected i n t h e upper pa rt o f the s team ge ne rato r s h e l l and s eparated w a t e r i s mi xed wi t h feedwa t e r, t hen fl ows downwa rd i n the downcomer . 7. Steam e x i t s from the u ppe r pa rt o f t h e s tea� ge n e ra to r at a rate dete rmi ned by t h e t u rb i n e s to p va l ve o pe n i n g . 8 S ta temen t o f t h e P robl em The purpo s e o f t he s t u dy a nd researc h wo rk re po rted in t h is s e rt at io n was to inves t i gate the dynamic beha vio r o f a vert i cal G u s i ng the s tate va ri a bl e, l umpe d pa ramete r techni q ue . The hemat i ca l mode l s devel o pe d were req u ired to be in a fo rm s uita bl e us i ng e x i s t i ng state va riabl e dig i tal compu ter code s to obta i n dyna mic res ponse in t he t ime and freq uen cy doma in s . Al so , y we re req u i red to be in a fo rm s u i tabl e fo r co u pl i n g wi t h e l s fo r othe r subsys tems s o t ha t t h e dynami c re sponse o f t he e g ra te d P W R system can be obta ine d us i n g t h e same comput e r code s . val i dity o f t he mode l wa s to be checked a ga in s t a va i l ab l e eri menta l data from dynami c tests on t h e H . B . Robi nson Nuc l e ir e r P l a nt . ( 3 , 4 , 5 ) Impo rtan c e o f the Study The need fo r e ffi c i e nt a nd pract i ca l te chniq ues fo r a s ses smen t t he dynami c beha v i o r o f n u c l e a r steam gene rators is g row i n g with g rowth o f the n u c l ear po we r i ndust ry . The de s ign o f a s team era to r wit h in a n u c l ea r powe r pl ant dema n ds a deta i le d knowl edge the t he rmo hyd raul ic p ro ce s s es a ffecti n g its perfo rma n ce , not o n l y steady sta te , but a l so du r i ng t ra n s i en t s . S in ce a d i gita l computer 1 be nece s s a ry to pred i ct the dynami c re s ponse of l a rge compl e x terns, a n effi ci ent mat hema t i cal mo del must have the fo l l owin g racterist i cs. 1. The numbe r of equa t i o ns sho ul d be the min i mum t ha t a deq uatel y si mul ates t h e dynamic be h a v io r o f the sys tem . 9 2. T h e fo rm o f t he mo del sho u l d a l l ow t h e u s e o f s ta n d a rd g e n e ra l p u rpo s e computer codes . 3. It s ho u l d b e e a sy to co u p l e mo de l s fo r o t h e r s u b sy s t ems . 4. T he s ame mo del s ho u l d be u s ea bl e fo r t r a n s i en t , fre q u e n cy res pon s e o r s t ab i l i ty a n a l y s i s . T he l a c k o f dynam i c mo del s w i t h t h e a bo ve c h a racte r i s t i c s fo r n u c l e a r UTs G•s s t i mu l a t e d t he n ee d fo r the w o r k re ported i n t h i s d i s s e rt a t i o n . ! . 5 Sco p e a n d O rgan i za tion of t he Text Fol l ow i n g t h i s i n t ro d u c t o ry c h a pt e r , a re v i ew of p e rt i n e n t l i t e ra t u re i s p re s e n t ed i n C h a p t e r II . T he de velnpment o f t h e ma t hema t i c a l mo de l s i s g i v e n i n Cha pte r II I . I n Chapter I V, t he c a l cula t i o n pro ce d u re i s de s c r i bed a n d t h e a p pl i c a t i on o f t h e s e mo d e l s fo r dynami c re s po n s e s i mu l a t i o n o f a n i s o l ated U T S G i s demo n s tra te d . The re s po n s e o f a co u p l e d PWR/ s team ge n e ra t o r system i s exami ned i n C ha p t e r V fo r t he p u rp o s e o f te s t i n g t h e v a l i d i ty of t he mo de l s . I n t h i s c h a p te r , t h e co rrel at i o n between t he mat he mat i ca l mo del •s pred i c t i o n a n d t h e r e s u l t s obta i n ed from dyna� i c te s t s o n H . B . Ro b i ns o n N uc l ea r Powe r P l a n t ( 3 ) i s d i s c u s s ed . In Chapte r VI , the d eta i l ed mod el r e s pon s e i s compared wi t h t h e resul t s 32 o bt ained f rom a f i n i te d i ffer ence mod e l . ( ) C h a p ter VI a l s o con ta i n s t he com pa r i son b etween t h e d e ta i l ed U T S G mod e l a n d a dynam i c mo d el fo r an Integral Economi z er U - t u b e Steam Ge nerato r ( I EUTSG ) w h i c h wa s de v e l o p ed u s i n g t h e same mo de l i n g a ppro a c h . (6) In C ha pter V I I a summary of t h e mo d e l eval u a t i o n i s p r e s en ted to g e t h er wi t h some con c l u d i ng rema r k s . 10 The A p p end i xe s co n ta i n t h e ba s i c i n fo r ma t i on a n d deta i l ed :a l c u l at i o n s t ha t wo u l d o t h erwi s e i n terfere wi t h t he smo o t h :o n t i n u i ty o f t h e d i scu s s i on i n t he ma i n t ex t . CHAPTER I I RE V I EW O F P E RT I N E NT L I TE RATURE II.1 I n tro d u c t i on The pro b l em o f d evel o p i n g dyna m i c mod e l s to pred i c t t he dyn a m i c beha v i or o f n u c l ea r s t eam g en era t o r s ha s r ec e i v e d con s i d e ra b l e atten t i o n i n t h e p a s t d ec a de . I n t h i s c ha p t er , a n umb er o f p u b l i ca t i o n s wi l l be re v i ewed fo r t he purpo s e of pre s en t i n g a sampl e of t he ava i l a bl e l i t e ra t u r e p ert i n en t to the a rea o f dyn a m i c s i m ul a t i o n o f two- p ha s e n a tu ra l c i rc u l a t i on sys tems i n g en eral a n d o f U - t u b e rec i rcu l at i o n t y p e s t ea m gen erators i n pa r t i cu l a r . rev i ew i s p r e s en t ed i n t hr ee part s . The l i t era ture In S ec t i on 1 1 . 2 , a r ev i ew o f some dyn am i c mod e l i n g a p pro a c hes for h ea t exc han g er s a n d fo s s i l fu el ed bo i l e r s a r e d i s c u s s ed . I n S ec t i on I I . 3 , some o f t he dyn am i c model s for bo i l i n g wa t e r r ea c t o r ( BWR ) sys t e m s a re d i scu s s ed wi th the empha s i s o n t he s i m i l a r i ty between BWR and UTS G system s . In Sect i on I I . 4 , some o f t h e model i n g t e c hn i q u e s fo r n uc l e a r s t eam gen era t o r sys t em s a r e re v i ewed w i t h the emp ha s i s on model i n g a p proa c he s and t h e scarc i ty o f p u b l i s hed mode l de s c ri pti o n s t hut s t i mu l a t e d t h e n eed fo r t h e st udy a n d r e s ea rch wo rk repo r t ed i n t h i s d i s s erta t i on . Gen era l rema r k s a bo ut t he l i t erat ure re v i ew a re g i ve n i n S e ct i on I I . S . 1 1 .2 Dyn a mi c Mo d el s for Heat E x c hange r s a n d Fo s s i l Fuel ed B o i l ers T he intere st in t h e dyn amic be havio r of h ea t excha n g e r s and fo ssil fueled boilers ha s grown in t he pa st two decades and a n u mber of publication s ha ve been r eported in t he o pe n l i t era ture . 11 12 Cl a r k et a l . ( ?) p r e s en ted a n umbe r o f pa pers where t hey d er i ved ana l yt i ca l s o l u t i on s fo r t h e dyn am i c re s pon s e of hea t excha n g e r s a s a fun c t i o n o f po s i t i on and t i me to t hree d i ff e re n t pert u rba t i on s i n t he h e a t g e n era t i on r a t e ( t he perturbat i on s were a s te p , a n a rb i t ra ry fu n ct i o n , a n d a s i n u so i d ) . C h i en et a l . (S) p r e s e n t ed the t ra n s i en t a n a l ys i s fo r a bo i l er wi th a n i n t e rn a l r e c i rcu l a t i n g l oo p and a s u perheater b a n k i n t he l oa d l oo p . The model i n cl ude s a pre s s u re d r o p e q ua t i o n fo r t h e s u pe r - heat e r a n d r ec i rcu l a t i n g l oo p toget her wi th a s t ea m d ru m wa t e r l evel ca l cu l a t i on . A n a l o g s o l ut i o n s o f t h e sys t em were obta i n ed for o pe n l oo p a n d cl o s ed l oo p t ra n s i en t respo n s e s o f t h e d rum pr e s s u r e a n d wat er l ev el t o c ha n g e s i n s t ea m f l ow , fuel s u p p l y a n d feedwa ter fl ow . Tha l - L a rson ( g) e xa m i n ed t he dynami c b e ha v i o r o f hea t exchan g e r s b y d er i v i n g t ra n s fer f u n ct i on s fo r freque n cy r e s po n s e an a l ys i s u s i n g s i mpl e ma t hema t i ca l mode l s . Impo rta n t sys t em t i m e co n s t a n t s were i d en t i f i ed fo r ea ch mod e l p r e s en t ed . A d e ta i l ed s t u dy by Ma s u buc h i ( l O) t r ea t ed t h e dynam i c a na l ys i s o f d i fferen t con f i g u ra t i on s o f h ea t excha n g e r s . of a Tran s fer fu n ct i o n s compl ex mod el were d e r i ved fo r fre qu ency r e s pon s e a na l ys i s . a l s o presen t ed a s i m pl i f i e d model fo r s i mu l a t i n g t h e tra n s i en t re s po n s e . Enn s ( ll ) cl a s s i f i ed the many t h eo re t i ca l mode l s o f heat excha n g er s i n t o d i s t r i b uted pa rameter a nd l umped pa ra meter mo de l s . Tra n s fe r f u n ct i on s were d e r i ved w h i c h s how t he a de q u a cy o f l um�ed He 13 pa rameter mo del s fo r f l ow r a t e o r heat fl u x i n d u c ed tran s i e n t s w h i l e a d i s t r i b u t ed paramet er mod el i s recommended for t emperat ure i n d u c e d tra n s i en t s . D u s i n be rre ( 1 2) a pproac hed t h e h ea t exc h a n g er dynam i c s prob l em by pr e s en t i n g a n umer i ca l t ec hn i q ue fo r cal c ul a t i n g tran s i en t tempe r a t u re s . H e i n d i ca t ed t h a t n umer i ca l met h o d s a re a n excel l en t way fo r gen era t i n g a fami l y o f s o l u t i on s to a pa rt i c u l a r prob l em . H e a l so h i n t ed t ha t t here i s o ft en a great sa v i n g of t i me and effo rt i n pro c e s s i n g o n a f i n i t e d i fferen c e ba s i s t hro u g ho u t w h en a n a na l yt i c a l sol u t i o n i s not o bta i na b l e a n d when a d i g i ta l comp u t er i s a v a i l a b l e . A s trom ( l3 ) pres en t ed a s i mp l e n o n l i n ea r mo del fo r a drum b o i l er- t u r b i n e u n i t where the d rum press ure i s t h e s t a t e var i a b l e a n d f u e l fl ow , control va l ve s et t i n g a n d feedwa t e r f l ow are t h e con tro l va r i a b l e s . T h e model wa s s hown to a g re e wel l w i t h mea s u remen t s fo r an a c t u a l bo i l er i n the ra n g e hal f power t o f u l l powe r . T he mo del ca n be deri v ed u s i n g phy s i c a l a rgume n t s and i s t h u s c h a r a c t er i zed by several pa rameter s . A der i v at i o n o f t h e s i mpl i f i e d mo del b a s ed o n p hy s i c a l co n s i d era t i o n wa s g i ve n toget h er wi t h t he a s s um pt i o n s req u i red to a rr i ve at the s i mp l i f i ed model . A c r u d e met hod o f e s t i ma t i n g t he mod el pa rameters wa s a l so g i v en . Be fore l e a v i n g t h i s s ec t i o n , t h e a u t ho r wo u l d l i k e to c a l l a t t en t i o n to a n u mber o f excel l en t papers o n t h e s ubj ec t o f b o i l er mod e l i n g g i ven i n Refe r en c e 1 4 . 14 1.3 Dynamic Models for Boiling Water Reactor ( BWR ) Systems An extensive research effort has been undertaken in the past .wenty years in support of the boiling water reactor program with �mphasis on hydrodynamic stability of natural circulation boiling ;ystems. The heat exchange process in a BWR core is somewhat similar :o that in the tube bundle region of a UTSG. In both cases, heat is added from a primary source of heat to a flowing secondary fluid Nhich enters the heat exchange region as subcooled water and leaves it as a two phase steam/water mixture. Some of the references dealing with the dynamic behavior of BWR systems are given below. lS Thie ( ) presented a theoretical analysis of the kinetic behavior of a number of operating boiling water reactors based on a simple model where steam void feedbacks dominate. It was concluded that it is possible within the framework of existing experimental and theoretical BWR dynamic technology to design these reactors with reduced instability limitations on the power. Akcasu ( l6 ) investigated the dynamic behavior of boiling water reactors in a systematic way. General expressions for the transfer functions associated with the individual feedback mechanisms were obtained for an arbitrary flux distribution, weighting function and steam velocity distribution. Specific forms of the transfer functions were obtained anJ simplified by single time constant transfer functions. The error involved in the lumped time constant approximation was examined and was shown to be as large as 4 db in amplitude. The theoretical results were compared with experimental power-void transfer 15 1ct i o n s a n d t h e agreemen t i n some ca s e s wa s proven to b e b et t e r tn 5 d b i n a m p 1 i tu d e a nd 1 0 deg r e e s i n p ha s e i n th e en t i r e !qu ency ran g e f rom 0 . 0 1 to 1 00 rad/ s ec . F l ec k ( l ?) u se d t he l aw s o f co n s ervat i o n o f ma s s , energy , a n d 1en t um i n t h e i n t egral fo rm to der i ve a s e t o f o rd i na ry d i ffe ren t i a l 1at i o n s go vern i n g t h e hydro dyn ami c s o f n a t u r a l c i rc ul a t i o n bo i l i n g ;terns . T h e eq u a t i o n s c a n b e s o l ved fo r t h e wa ter vel o c i t i e s a t i n l e t a n d o u t l et o f t h e h eat ed s ect i o n , t h e o ut l et vo i d fra ct i o n t he to tal fl u i d mome n t um . T h e s e equat i o n s ca n b e a dded t o t h e .cto r k i n et i c s equa t i on a n d t h e equat i o n s gov ern i n g t h e t r a n sfer hea t from re a ctor fuel e l ement s to wat er a n d the rel a t i o n b e tween tct i v i ty and t he a ve ra g e vo i d fra c t i o n to o b ta i n a mode l for t h e 1am i c s o f a b o i l i n g wa t e r re a c to r . The cal cul ati ons u s i n g t h i s lel i nd i c a ted t h a t u n d e r ce rta i n con d i t i on s , bo i l i n g \'late r re actors 1 o pera t e s ta b l y even fo r very s u b s ta n t i a l reac t i v i ty add i t i o n s . a n a l ys i s a l s o revea l ed t h a t u n d e r p ro p e r c o n d i t i on s , pu re l y hyd r o - 1am i c i n s ta b i l i ty c a n occ u r i n de penden t l y o f a n y co u pl i n g b etwee n id a n d wa ter . The o n set o f t h i s u n sta b l e b eha v i o r woul d b e lep en dent o f n uc l ea r a n d t h erma l parameters a l t ho u g h t he dyn am i c 1a v i o r o f t h e rea c t o r wo u l d depend o n t he m . ( l S) Mu s c etto l a pre sented a t h eo r et i ca l fo rmu l a t i o n fo r t h e 1am i c s o f a bo i l i n g wa ter reactor o f t h e p r e s s u re t u b e a n d fo rc ed ·cu l at i o n type . The model treated t he n eu t ro n k i n e t i c s, fue l �men t h ea t t ra n s fe r dynam i c s , t h e b o i l i n g c ha n n el , steam d rum , mcome r and r ec i rc u l a t i n g p ump . T h e a ut ho r empha s i zed the n eed fo r �ore t i c a l mode l s to s u ppo rt b o t h d e s i gn a n d e x p er i me n t a l p ro g rams . 16 M i da a n d S u da ( lg ) pre s en t ed s i mpl i f i ed ve r s i o n s o f t h e t ra n s fe r func t i o n mode l s d er i ve d b y t h em i n an o t he r r e po rt . T h e s i mpl i f i ed mod e l s were u s ed to i n ve s t i ga t e t he dynam i c c ha ract e r i st i c s o f a BWR syst em from d e s i gn pa rameter s . Th e dyn am i c c ha ra c t e r i st i c s o f t h e feedbac k t ra n s fe r funct i o n s a n d the sys tem s t a b i l i ty were a l so i n ve s t i ga te d a n d some compa r i son w i t h o t h e r s t ud i e s were g i ven . An d er s o n e t a l . ( 20 ) exam i n ed t h e tran s i en t r e s po n s e a nd sta b i l i ty o f a two pha s e n a t ural c i rc u l a t i on sy stem for a ppl i ca t i o n to a bo i l i n g wat e r reacto r . The t r ea t ment i s ve ry s i m i l a r t o t h a t req u i red for a n a t u ra l c i rc u l a t i on steam gen erato r . The mod e l d e s c r i bed the con s ervat i o n of ma s s , en ergy , and momen tum fo r a two - p ha s e l o o p . T h e res u l t i n g equ a t i o n s were s o l ved s i mu l t a n eo u s l y w i t h a n a na l o g :ompu t e r . The mod el u s es a s l i p ra t i o co r rela t i on fo r det ermi n i n g the two pha s e fl ow i n t h e bo i l i n g port i on o f t h e l oo p . Naha va n d i a n d van llo l l en ( 2l ) d i sc u s s ed t h e u s e o f s pa c e-dependent jyn am i c a na l ys i s t o study the dynami c b e h a v i o r and s ta b i l i ty o f Ja i l i n g water rea c t o r sys t ems wh ere d i sc re t e s pa ce node s a l o n g t h e 1xi s o f t he c o re w ere u s ed to d e t e rmi n e l o c a l vo i d fract i o n a nd thermo hyd ra u l i c fe edba c k effec t s . Neal and Zi vi ( 22 ) pre s en t ed a compa ra t i ve s t u dy o f a na l yt i ca l 1o del s a n d expe r i me n t a l da ta fo r the hydro dynami c sta b i l i ty o f 1a t u ra l c i rc u l a t i o n bo i l i n g sys t ems . Th e a u t ho r s exa m i n ed t h e ;ta b i l i ty pro b l em i n n a t u ra l c i rc ula tio n b o i l i n g sys t ems a n d i n d i c ated :ha t a l a rge n umb e r of paramet er s in bo t h the bo i l i n g a n d n o n - bo i l i n g Jort i o n s o f s u c h a system j o i n t l y de term i n e i t s sta b i l i ty , h e n c e t h e :ompl ex i ty o f t h e dyn am i c mo d e l s . The s t u dy o f hyd rodyn am i c sta b i l i ty 17 pro b l em wa s pre s e n t ed i n t h re e part s . I n t h e fi r s t part , t h e mecha n i sms o f i n st a b i l i ty con s i de red by a n umb er o f a ut h o r s we re d i s c u s s ed a n d the expe r i me n ta l l y o b s e rved effe c t s of va r i o u s sys t em pa ramet e r s were s umma r i zed . I n t he s ec o n d p a r t , t h e b a s i c c o n s erva- t i o n eq u a t i on s were d e r i ved in general fo rm , a n d e a c h mod el wa s desc r i bed r e l a t i ve to t he s e equat i on s . F i n a l l y , t he mod e l predi c t i o n s were compa r e d w i t h e x pe r i mental data , a n d t h e rel a t i ve p re d i c t i n g power o f e a c h mod e l wa s p r e s en ted . 23 S p i gt ( ) p r e s en t ed t h e r e s u l t s o f a n e x pe r i mental and t h eo r e t i c a l s t u dy o n t h e hyd r a u l i c c h a racter i st i c s o f a s i n gl e c oo l ant c ha n n el of s i mpl e a n n u l a r g eometry i n a bo i l i n g water reactor w i t h ma i n empha s i s o n t h e sta b i l i ty c h a ra c teri s t i c s o f t h e fl ow pro c e s s i n s u c h a c ha n ne l . T h e re po rt i n cl uded a d e s c r i pt i o n o f t h e pre s s u r i z ed a n d a tmo s p h e r i c bo i l i ng l oo p s wh i c h w e r e u s ed i n t h e expe r i menta 1 pa r t o f t h e s t udy . I n t h e t h eo r e t i c a 1 pa rt o f t h e study , t h e g e n e ra l e q u at i o n s de s c ri bi n g t h e pe rfo rma n ce c h a racte r i s t i cs of a bo i l i n g sys t em under steady sta t e a n d n o n - st ea dy state were de r i ve d w i t h s pec i a l a tten t i o n t o the formul a t i o n o f bo unda ry con d i t i o n s a n d the i n t roduct i o n o f p re s s u re e ffe c t s i nt o t h e equat i o n s . The dyn am i c equa t i on s w e re l i n ea r i z ed by a s s um i n g sma l l d i st u rb a n c e s from ste ady state and t h en n umeri c a l l y i n t e g ra t ed by mea n s of a di g i ta l computer. Vassier ( 24 ) de ve l ope d a n a n a l o g mod e l to s t udy t h e dyn am i c be ha v i o r of a bo i l i n g l oo p w i th n a t u ra l c i rc u l a t i o n . T h e mod e l was constructed for a l on ger t e s t l oop then t ho s e u s ed by Fl eck ( Zivi ( 22 l? ) and ) a n d was k e p t as s i mpl e a s po ss i bl e by i so l a ting t h e mo st 18 i mpo rta n t facto r s a n d n egl ect i n g the o t h e r facto rs . Th e mod e l s howed ZJ a ra t h e r g o o d a greeme n t w i t h t h e expe r i men t s of S p i g t ( ) rega rd i n g t h e p red i c t i on o f t h e o n s e t o f i n s ta b i l i ty a s wel l a s t h e pow er/ i n l et ve l o c i ty t ra n sfe r f u n c t i o n . T h e mo del ha s been expanded to i n c l ude the n eutro n k i n et i c s equat i on s , fuel el emen t a nd vo i d fe edba c k a n d t h e c o n t ro l system . T h e a u t ho r ind i cated t h a t w h en deal i n g w i th some phenomen a i n ce rta i n fre q u e n cy ran g e s , i t i s not n e ce s sa ry to co n s i de r other compo n e n t s o f t h e pl a nt w h i c h ha ve muc h l ower n a t u r a l freq u en c i e s . 1 1 .4 Dynami c Mode l s fo r Re c i rc u l at i on Type Nucl ear Steam Gen e ra tors T h e probl em o f s i mu l a t i n g t h e dynami c beha v i o r of st eam gen era t o r compo n e n t s of n uc l ea r power pl a n t s h a s recent l y rec e i ved a co n s i de ra b l e a tten t i on bo t h from i n d u st ry and u t i l i ty pa rt i e s . Z5 We s tmo re l a n d ( ) d e ve l o pe d a n a t u ra l c i rc u l a t i o n s t eam generator mo de l w here he emph a s i zed r i s er l i qu i d - va por vo l ume fra c t i o n s and c i rc u i t pre s s u re l o s s es i n desc r i b i n g a c l o s ed s eco n d a ry l oo p . Th i s d i g i ta l compute r mo d e l o f a s h el l a n d t u b e type un i t u s ed a n a n n u l a r two pha s e f l ow t r eatme n t i n c omput i n g t h e steady state a n d tra n s i e n t s t eam fl ow , t h e r ec i rc u l a t i on rat i o a n d t he wa t er l e ve l . 26 Mc Gwan and Bodo i a ( ) h a v e perfo rmed e x pe r i mental s t u d i e s o f t h e s ta b i l i ty o f a n a t u ra l c i rc u l a t i o n st eam g en erato r . E x p e r i me n t a l da ta from t h e t e s t l oo p w ere compared to pre d i c t i o n s from a d i g i t a l computer mo del o f a s t eam gen erato r . I t wa s fo u n d t h a t i n c re a s e d power l e ve l and ri s e r resi stance have a d v e r s e effect s o n s t a bil ity whil e additio nal downcomer re sistance i mpro v e d s t a b i lity . 2? C l a r k ( ) p re sented a ma thema tical mo d el fo r t h e steady s t a t e and tra n sien t ana l ys i s of a n at u ra l circ u l ation , s eparate d rum , 19 hor i zo n t a l s team g en e ra t o r o f t h e type u s ed i n t h e S h i p p i n g po rt N uc l ea r Pow e r P l a n t . E q ua t i on s d e s c ri b i n g t he con s ervat i o n o f ma s s , e n e rgy , a n d mome n t um were w r i t t en fo r a seco nda ry s i de sys tem to match a p r i ma ry s i de h e a t ba l a n c e a n d secon dary powe r d e l i vere d to a t u rb i n e- g e n erator l oa d . Maj o r a s pe c t s o f t h e mo del i n c l ude s teady s t a t e and t ra n s i e n t rec i rc u l a t i o n fl ow , s i n gl e p h a s e de n s i ty a n d p re s s u re d ro p ca l c u l a t i o n a n d a utoma t i c co n t ro l o f t h e s t eam d r um wate r l e vel . B o t h st eady state con d i t i o n s a n d t h e t r an s i e n t re s po n se o f t h e s team gene rato r model w e re obta i n e d by mea n s o f a d i git a l com p ut e r p rogram , u s i n g a f i n i t e d i ffe re n c i n g me t ho d . The mod e l res po n s e wa s compa re d w i t h e x pe r i men t a l da ta from t h e S h i p p i n g por t N uc l e a r Power P l an t . Na h a vanJ i a nd B a t e n b u r g ( ZB ) p re s e n t ed a comb i n ed d i g i ta l - an a l o g mathemat i ca l mo del fo r t h e dyn ami c a n a l ys i s o f ve rt i c a l U - t u b e n a t u ral c i rc ul a t i on s t eam g e n e ra to r . I n t h e f i rst pa rt , a s pa c e - de pen d e n t d i g i t a l program s i mu l a t i o n wa s u s e d t o d e s c r i b e t h e dyn am i c beha v i o r of t h e s t eam gen era t o r re c i rc u l a t i o n l oo p . I n t h e s econd pa r t, an a n a l o g s i mul a t o r con s i s t i n g o f f i ve d i s t i n c t b l o c k s was used fo r feedwat e r con t ro l l er pa rameter o pt i mi z a t i o n s t u d i e s . The fi ve b l o c k s of t h e a n a l og s i mu l a to r were ( a ) feedwa t e r l i ne; ( b ) s team drum , (c) steam ma i n to t u rb i n e; ( d ) water l e vel contro l l e r , a n d ( e ) rec i rc u l at i on l oo p mod e l . I n t h e a n a l o g mo de l , t h e re c i rc u l a t i o n loop was represented by six tra nsfer f u n ct i o n s obta i n e d by u s i n g analog/digital techniques a n d the time res pon s e from t he d i g i t a l program to specified inp�t perturba tions. The o t h e r fo u r bloc k s were represented by analytica l e xpre s s i on s u s i n g lum pe d parameter 20 o de l s . T h e fundamen t a l e qu a t i o n s a n d method o f so l ut i o n fo r t h e ec i rcul a t i on l oo p s pa c e- de pe n d e n t d i g i ta l mo de l ·were a l s o p re s e n t e d y t h e auth o r s . Ha rgro v ( 2g ) pre s en t ed a pro gram to c a l cul ate mul t i l o o p d eta i l ed ra n s i en t be h a v i o r o f a PWR sys tem. T h e program s i mu l a t e d two eactor cool a n t l oo p i nc l ud i n g two steam gene rators a n d a s so c i a ted ystem s . I t a l so s i mul ated reacto r ki n et i c s , re acto r con t ro l a n d rotec t i on s y s t em s . The t h e rma l a n d hyd raul i c c h a ra cte r i s t i c s o f h e r ea c t o r c o o l a n t sys tem were d e s cr i b ed by t i me a n d s pa ce i ffe r en t i a l e q ua t i on s , t h e n re duced to noda l fo rms, t h e so l ut i o n f w h i c h a re t racta bl e by mean s o f fi n i te d i ffere n c e s . E a c h st eam en erato r wa s re p r e s en t ed by s i x node s , an i n l et h eade r , a n out l et ea d e r and four p r i ma ry/ s econ da ry h ea t t ra n s fer node s . T h e h ea t ra n s fe r ra t e from each fl ow s ec t i o n to t he s econdary s i d e wa s c a l cu a t ed u s i n g t h e l o ga r i t hmi c mea n t empe rature di ffe re n ce ( L tiTD ) s o h a t t h e powe r t ra n s fe r re d wa s comput ed co rrec t l y even a t v e ry l ow The h ea t t ra n s fer co effi c i e n t a n d h e a t t ra n s fe r l ow con d i t i on s . rea we re t re a ted a s vari a b l e s a n d e va l uated a s fun c t i o n s o f t h e epre s e n ta t i ve pa rameters. Pe rturbat i o n s rel a t ed to t he s team en era to r He re taken as p r i ma ry wate r i n l e t temre ra t u re ( re a c t o r h o t e g t empera tu r e , steam fl ow ra t e, feedwa t e r fl ow r a t e anG feedw a t e r n t ha l py . ) Ten Wo l de ( 30 ) i n ve s t i ga t e d va r i ou s a s pe c t s o f t h e s i mul a t i o n f t h e n o n l i n e a r t ra n s i e n t t h erma l beha v i o r o f s t eam gene rato r s . h e e va po ra to r i n a sod i um co o l e d fa s t b re e d e r rea c to r pow e r pl a n t Both 21 ( LMFB R ) a n d t h e steam generator i n a p re s suri z ed water reacto r pl a nt ( PW R ) a re c o n s i dered i n t h e i n ve st i gat i o n . Both a hyb r i d conti nuous s pa c e d i s c rete t i me ( CS O T ) d i st r i buted pa ramet er mo del and a l umpe d pa rameter mo del w ere con s i dered i n t h e stu dy. Th e resu l t s from t h e s e mode l s were compa red w i t h experi menta l r esul t s o bta i n ed from a 6 t·1W PWR steam g enerato r . Bauer et a l . ( Jl ) de s c r i bed a d i g i t a l mo del o f th e dynami c pe rfo rma n c e o f ga s a n d pre s su r i z ed water reacto rs d e s i g n ed a n d deve l o pe d by E l ectri c i te De F ra n ce fo r i t s equ i pment stud i es . The mod e l equat i o n s were pa rt i a l d i fferent i a l e quat i o n s a n d were sol ved by t h e f i n i te d i ffere n c e tec h n i que. The pa pe r s howed t h e mo d e l equat i on s, t h e method o f s o l ut i o n , a n d t h e a p pl i cat i o n o f t h e mo del fo r two c a se s . a. E x pl a n at i o n o f t h e pul sat i n g b e h a v i o r o f t h e h e at exc h a n g e r o r i g i na l l y i nten d ed fo r t h e Bugey g ra p h i te g a s p l ant. b. An a l ys i s o f i n st a b i l ity of wat e r l evel in t he Chooz PWR steam generato r u n d e r l ow out put . ( JZ ) C h r i s t en s en deve l o pe d a o n e d i men s i o n a l mo del o f a UTSG us i n g a m i xed d i st r i buted a n d l umped fo rmu l at i o n . The gove rn i n g e quat i o n s fo r t h e h eat t ra n s fe r zon e a n d t h e downcomer were de s c r i b ed by pa rt i a l d i ffere nt i a l e quat i o n s wh i l e t h e ot h e r sect i o n s of t h e steam generato r were d e s c r i bed by o rd i na ry d i ffe r ent i a l equat i o n s . The part i a l diffe rent i a l e quat i o n s were s o l ved by sampl i n g i n t i me a n d d i v i s i on i nto subs ect i on s i n s pa ce , thus tra n s fo rmi ng t h e e quat i o n s i nto a l g e b ra i c equat i o ns . T h e equat i on s c a n b e s o l ve d by pu re d i g i t a l o r hyb r i d t�c h n i que s . T h e mo del ha s the adva nta ge o f 22 ca l cu l at i n g t h e steady state re s po n s e a s wel l a s t h e dynam i c re s po n s e to s pec i fi ed pertu rbat i o n s . The wo r k re ported i n th i s d i s s e rtat i on wa s deve l o pe d i n d e pe n dent l y from the wo r k reported by C h r i sten s en . A compa r i s o n between t he re s u l t s pre sented i n Re fe re n c e 32 a n d t h e re s u l t s o bt a i ned f ro m t h e deta i l ed l umpe d pa rameter mo del i s g i ven i n C ha pt e r V I . Oe l e n e ( 33 ) deve l o pe d a d i g i tal s i m u l ato r fo r d u a l p u r po s e d e sa l i n at i o n p l a n t s i n w h i c h m ul t i stage f l a sh ( MS F ) eva porat o rs ( PW R ) n uc l ear power p l ant are cou p l e d to a P re s s u r i z e d Water Rea cto r th ro u g h a b a c k p r e s s u re t u rb i n e . T h i s s i mu l ator i nc l uded a state va ri a b l e mo d e l fo r a U -t u be , drum type rec i rc ul at i n g b o i l e r . The p r i ma ry l i q u i d wa s d i v i de d i nto th ree s e ct i o n s , e a c h descr i b ed by two o rd i n a ry d i f fe re nt i a l equat i o n s w i t h o ut l et a n d a v era ge temperat u re s of e a c h s ect i on as the state va r i a bl e s. The s eco n d a ry s i de was re pres ented by fo u r equat i o n s , two fo r t h e s u b cool ed ( n o n - bo i l i n g s ect i o n ) , o n e fo r the down come r tem perat u re , a n d o n e fo r t h e ste a m ma s s . T h e a ut h o r state d t h at 11 s everal s i mp l i fy i n g a s s umpt i o n s a re ma d e i n t h e steam gen e rato r mo del w h i c h may l i m i t the s i mu l ator• s ab i l i ty t o pre d i ct t h e re s u l t s o f w i de r a n g i n g tran s i e n t s . 11 The mo d e l wa s deve l o pe d o n l y fo r the p u r po s e o f a n o v e ra l l system repre sentat i o n a n d h a s not been exp l i c i t l y t ested a ga i n st ot h er models o r test result s . Murrel ( 34 ) presented a descri pt i on o f t h e compo n ents compri s i n g the s i mulat i on o f PWR nuclea r power plant s . Th e reacto r wa s represented by a s i ngle a v era ge channel def i ned as a fuel el ement and the coolant a rea a s soci ated w i t h it . Average den s ity i n t h e 23 pr i ma ry c i rc u i t wa s ca l cul at ed a s a fun c t i o n o f a ve ra ge tempe rature a n d pre s su re . T h e f l ow from t h e pri ma ry c i r cu i t i n to t h e p re s su r i ze r wa s o bta i n ed from t he rat e o f c h a n g e o f p r i ma ry c i rcu i t den s i ty . The re c i r cu l a t i o n fl ow i n t h e UTS G w a s c a l cu l a t e d from a p re s su re b a l a n ce o f s ta t i c hea d d i fferen c e a g a i n s t fri ct i o n a l an d a c ce l era t i o n head l o s s e s w h i c h w ere a s sume d pro po rt i on a l t o t h e s qua re o f t h e fl ow . Fre i e t a l . ( 3S ) pre s e n t e d a de s c r i pt i on o f a compu t e r mo del fo r a 660 MWe nuc l e a r power pl a n t . The model i n c l uded t h e p re s su r i z ed wa t e r reacto r , s t eam g e n e rato r , pre s su r i z er , s ec o n da ry s i de power pl a n t s i de ) and con t ro l s . ( s team The re sul t s obta i n e d f rom t he dynami c mo d e l were com pa r e d a g a i n st t e s t re sul t s obta i n ed dur i n g t h e comm i s s i o n i n g o f t h e pl a n t . Ma tause k ( 36 ) d e ve l o pe d a n o n l i ne a r l umped pa ramete r mo del ( S I NO D ) for a n a l y s i s o f two pha s e f l ow i n n a tural c i rcul a t i o n b o i l i n g w a t er l oo ps . T h e mod e l con s i s t s o f t he equa t i o n s for t he con s er va t i on o f ma s s , momen tum , a n d e n ergy. T h e resu l t i n g e qua t i o n s a re s o l ved w i t h t i me a n d l en g t h a l on g t h e l oo p a s t he o n l y i n de pe n de n t va r i a b l es . T h e s t ea dy state c a l cu l a t i o n s wa s pe rformed by s o l v i n g t h e same s et o f e quat i on s w i th t h e t i me de r i va t i ve terms s et equa l to z e ro . The i n put d a t a to t h e mo d e l a re t h e pa ramet e r s s pe c i fyin g t h e geome try of t h e sy s t em u n d e r co n s i de ra t i o n , p hy s i ca l p ro pe r t i e s o f t he fl u i d and pre s sure dro p coeff i c i en t s a l o n g t h e l oo p . O pt i o n a l corre l a t i o n s a re pro v i ded for t he ca l cu l a t i o n of s l i p ra t i o a n d two p h a s e f r i ct i o n mul t i pl i er s . T h e mode l s h a ve a t h o roug h i n v e s t i g a t i o n o f t he i nt e r ac t i o n between ma s s vel o c i ty a n d vo i d f ra ct i o n w h i c h i s co n s i de r ed 24 the ba s i c mecha n i sm of hydrodyn ami c i n s t a b i l i ty . When u s i n g t h e mo d e l , c a re mu s t b e t a ken to i n s u re that t h e a s s umpt i o n s b u i l t i n to i t a re re a so n a bl e fo r t h e p hys i ca l sys t em under i n vest i ga t i o n . 11. 5 Rema r k s From t h e prev i o u s d i scu s s i on , i t c a n b e s ee n t hat t h e pro b l em o f a n a l yt i ca l a n d n umer i c a l s i mul a t i o n o f t h e dyna m i c b e h a v i o r o f n uc l ea r s t e am g e n e ra to r s h a s recen t l y rece i ve d con s i derabl e a t t en t i o n a s a tool for d e s i gn a n d t e st i n g o f PW R nucl e a r power p l an t s . T h re e mo d e l i n g a p proa c h e s a re n ow i n compet i t i o n . 1. T ra n s f e r fun c t i o n a p proac h . 2. N um e r i ca l 3. State va r i a bl e l umpe d pa rame te r a pproa c h . ( fi n i t e d i fference ) a p proac h . T h e f i r s t a pp roa c h i s ma i n l y a n a na l yti c a l a pp roa c h s u i t a b l e fo r t h e so l ut i o n o n a na l o g compute r s . The sys t em charact e r i s t i c s a re h i dden i n t h e c ompl e x expre s s i on s o f t h e t ra n s fer f u n c t i o n s wh i ch ma ke the i n ter preta t i o n o f r e su l t s ra t h er d i ff i c u l t . Th e s econ d a p proa c h i s a n umer i ca l a pp ro ac h wh ere t h e sy stem o f d i ffe re n t i a l e qua t i o n s des c r i b i n g t h e system a re d i s c re t i z e d i n s pace a n d / o r t i me t o o bta i n l o c a l e f fe c t s o f a g i ven perturbat i o n t o t he system . The t h i rd a pp roac h comb i n es some o f t h e adva n tage s o f t he anal yti c a l a p p roach and t h e numer i ca l a p proa c h . A p hy s i cal i n s i g h t i n to t h e system c a n b e ac h i eved by exami n i n g t h e dynami c b eha v i o r o f the system state vari a b l es . T h e wo rk re port ed i n t h i s d i s s e rtat i o n i s an i n de pe n d en t con t r i bu t i on in t h e area of s i mu l a t i n g t he dyn am i c behav i o r of PWR nuc l e a r power systems u s i n g th e l umped paramete r state v a r i a b l e a p proa ch . CHAPT E R I I I DEVELOPMENT OF THE MATHOlA. T I CAL r�O DEL S III.l I n t ro d uc t i o n An e s s en t i a l pa rt o f the dynami c a n al ys i s o f a n e n g i n e e r i n g sys tem i s mod el i n g t h e phys i ca l p roc e s s ta k i n g pl ace w i th i n th e sys t em d u r i n g a t ra n s i en t . The p urpose o f th e mo de l i n g p ro ce s s i s t o o b ta i n a ma t he ma t i ca l de s c r i pt i o n tha t can pred i c t the re s po n s e o f the phys i ca l sys tem to a l l a n t i c i pated i n pu t s . Fo r a t h e rma l hyd rau l i c sys tem l i ke a n uc l e a r s team gene rato r , the ma t h ema tica l mod e l co n s i s t s o f the equat i o n s go vern i n g th e sto ra g e a n d t ra n s po rta t i o n o f ma s s , momen t um a n d energy ( ma i n l y t h e rma l ) wi t h i n t h e sy s tem d u r i n g a t ra n s i en t . I n th i s cha pt e r , a n umbe r o f ma thema t i cal mo de l s fo r a UTS G a re devel o p e d u s i n g the s t a t e v a r i a b l e l umped parameter a pp ro a c h . The mo de l s ra n g e from a t h ree - l ump mo del o f a s i mpl i fi ed s team gen e ra t i n g sys tem to a fo u rteen - l um p deta i l e d mo de l of a UTS G sys t em . III.2 B a s i c Ass u mpt i o n s I n t h e proce s s o f deve l o p i n g ma the�a t i cal mo de l s fo r a comp l e x sys t em s u ch a s a UTS G , s e ve ra l a s s umpt i o n s h a ve to b e mad e . The Fol l ow i n g l i s t i n c l u d e s the a s s umpt i o n s used in th i s work : 1. One d i men s i o n a l fl ow fo r both p r i ma ry a n d s e co n d a ry flu i d s . This me a n s that ra d i al var i a tio n s o f th erma l a n d hyd ra u l i c propert i e s of t h e p rima ry a n d s e condary fl u i d s are n e g l e cted . 25 26 2. Fo r t h e p re s su r i z e d p r i ma ry water a n d the s u bcoo l ed s e co n da ry fl ui d , co n s ta nt de n s i ty and s pe c i fi c heat a re a s sume d . 3. T h e rma l c o n d u c t i vi ty o f t h e tube b u n d l e metal i s a s sumed t o be co n s t a n t. 4. H e a t t ra n s fe r coe ff i c i en t s a re a dj u s t e d to f i t t h e h e a t t ra n s fe r ra tes a n d tempe ra t u re d i fferences reported by t he s team gen erato r manufa c t u rer. Heat t ra n s fe r c o e ff i c i en t s a re a s s umed to b e co n s t a n t du r i n g t ra n s i en t s . 5. T h e rmodyn ami c p ro p e rt i e s o f s a t u ra t e d wate r a n d s atura t e d s team a re a s s ume d t o b e l i n ea r f u n ct i o n s o f pre s su re o ve r a n a r row ran ge a b o u t t h e s t ea dy s tate o pe rat i n g po i n t . 6. T h e e n t ha l py a n d ma s s q u a l i ty o f t h e s te am wate r mi xt u re i n t he s e condary fl u i d bo i l i n g reg i o n a re taken a s l i nea r funct i o n s o f pos i t i on a l on g t h e h eat t ran s fe r p at h . 7. N o heat t ra n s fe r t a ke s pl a c e between the t u be b u n d l e re g i o n a n d t h e downcome r . III . 3 S t ructu re o f t he Ma t h ema t i ca l Mo de l s From t h e d i s cus s i o n i n C h a pter I , page 3 , i t c a n be s e e n t h a t the UTS G i s cou p l e d t o t he rea c t o r coo l a n t sy s t em t h ro u g h t h e pri ma ry cool a n t fl ow ra te a n d tempe ra t u re . T h e s e p r i ma ry l o o p co n d i t i o n s det e rm i n e t h e rate a t wh i c h t h e rma l e n e rgy i s i n put to t h e s team ge n e ra t o r sys tem . I n t h e deve l o pment t h a t f o l l ow s , t h e pri ma ry cool a n t f l ow ra te i s a s s ume d co n s tan t . T h e UTS G i s a l so 27 cou p l ed t o the s team cyc l e t h ro u g h t h e s team o u t l e t fl ow rate a n d t h e feedw at e r i n put con d i t i on s . The s te am o u t l et fl ow rate i s d e t e rmi n e d by the steam dema n d s i g n a l to t h e t u rb i ne s to p va l ve . T h e fee dwa t e r i n pu t c o n d i t i on s , ma i n l y fee dwater fl ow rate a n d t h e fee dw a t e r tempe rat u re , a re determi ned by fe e dwater pump s pee d , feedwate r h e a te r s , a n d fe edwate r control syste m . S i nce t h e ma i n empha s i s i n t h i s wo rk w a s t h e devel o pme n t of UTS G mode l s , the fe e d wate r c o n t ro l system i s n o t i n cl uded i n t h e mode l s a n d t h e fee dwa t e r fl ow ra te w a s ma de e q u a l t o t h e steam fl ow ra te . T h u s , t h e t u rb i ne v a l ve c o e f f i c i ent a n d t h e fee dwater tempe ra t u re a re t h e o n l y a l l owab l e s e conda ry s i de fo rc i n g funct i o n s . The mode l i n g a pp roach u s ed i n the d e ve l o pme nt o f the ma thema t i c a l mode l s do c ume n te d i n t h i s c h a pte r i s t h e s t e pwi s e l umped pa rame t e r s t a t e v a r i a b l e a pproa c h . T h e mo del s range from a t h ree l ump mo de l fo r a s i mp l i fi e d steam genera t i n g sys tem ( t1o d e l A ) to a fo urteen l ump det a i l ed mo d e l ( Mo del D) fo r a UTS G system w i th two mo de l s o f i n t e r med i a te com p l e x i ty ( B a n d C ) . P ro gre s s i ve devel o pment o f i n crea s i n g l y comp l e x mo de l s a n d compa r i son o f re s u l t s c re a t e d con fi dence i n t h e va l i d i ty o f the fo rmu l a t i on o f the de ta i l e d mo de l . T h e l umped s t ru c t u re o f t h e s e mode l s a re de s c r i bed bel ow . 1 1 1 . 3.1 S i mp l i fi ed S team Gen e ra t i n g Sy s tem Mo del ( Mo del A) Mode l A w a s de ve l o pe d a s a fi r s t s te p fo r the p u r po s e o f p ro v i d i n g a 11 fe e l 11 for the dyn ami c re s po n s e o f t h e UT SG deta i l e d mo del . I n th i s mo de l � the steam gene ra tor i s re pre s e n t e d by t h e s i mpl i f i ed s t e a m gen e ra t i n g system s hown i n F i gure I I I . l o T h e mo del co n s i s t s o f t h e fo l l ow i n g t h re e l umps a s s hown i n F i g u r e I I I , 2 . 28 St eam val ve -----r:::>'C:o-J- ---;>o- H S t eam vol ume sg S a t u ra ted wa ter poo 1 Hea t i n <;L__ _ S ec t i o n P n0 ma r y i n l et F i gu re I I I . l S team o u t l e t • P r i ma ry outl et '------ -<--- F e edi-Ja t er i n l e t S i mp l i f i ed S team Gen e ra t o r System fo r Mode l A . 29 p P r i ma ry Lump ( P RL ) T ......___]_ __ Wp T P i • ----->---·---- Fi gure I I I . 2 T m ___, _ ___ _ T u b e me ta l l ump ( rn L ) S c h ema t i c D i a g ram fo r r 1o d e l A . s sat S e con da ry F l u i d L um p ( S FL ) 30 l. P r i ma ry fl u i d l um p ( P RL ) . 2. H e a t c o n duct i ng tube metal l ump ( MT L ) . 3. S e co n da ry fl u i d l ump ( S FL ) . I 1 I . 3. 2 F i r s t I n te rme d i a te Model ( Model B ) _ I n Mod e l B, t h e p r i ma ry fl u i d l ump a n d t h e con duct i n g tube meta l l um p o f Mo de l A a re eac h b ro k e n i nto two l um p s t o s i mul a t e t h e two bra n c h e s o f t h e U-tube bun dl e . b y o n e l um p . The secondary f l u i d i s s t i l l repre s e n t e d The mo de l con s i s t s o f t h e fo l l ow i n g f i ve l umps ( a l so s e e n i n F i gure I I I . 3 ) : 1. P a ra l l e l fl ow b ra n c h p r i ma ry fl u i d l ump ( P RLl ) 2. Counte r fl ow b ra n ch p r i ma ry fl u i d l um p ( P RL2 ) 3. P a ra l l e l fl ow b ra n ch conduct i n g tube met a l l ump ( MTL l ) 4. Cou n te r fl ow b ra n c h conduc t i ng tube me t a l l ump ( MTL2 ) 5. S e co n d a ry fl u i d l um p ( S FL ) . II1.3.3 S e c o n d I nt e rme d i ate Mode l ( Model C ) I n t h i s mo de l , t h e s ec o n d a ry fl u i d l um p i n Mode l B i s b ro k e n i nt o t h re e l umps a s s hown i n Fi gure I I I . 4 . The mo de l t hu s c o n s i st s o f the fo l l ow i n g s e ve n l um p s . 1. P a ra l l e l fl ow b ra nc h p r i ma ry fl u i d l um p ( P RLl ) 2. Counte rfl ow b ra n ch p r i ma ry fl u i d l ump ( P RL2 ) 3. P a r a l l e l fl ow b r a n c h conduc t i n g tub e me ta l l um p ( tiT L l ) 4. Counte rfl ow b ra n ch conduct i n g t u be met a l l ump ( MTL2 ) 5. E ffe ct i ve h e a t e xcha n ge secon dary fl u i d l ump ( S FE H E L ) 6. Drum equ i va l e n t s e co n d a ry fl u i d l ump ( S F DRL ) 7. Downcome r secondary fl u i d l ump ( S FDC L ) . 31 ,. i T 'RL 1 ) Pl T 1- sa t ,, l 2 47 -· TP 2 ( P�L2 ) ( S FL ) • T ; p ( rlfTL 1 ) ( t�T L 2 ) ... gure III.3 \�p ,. S c h ema t i c D i a g ram for t1o de l B . 32 �� s �� p s 1 7 �I.J --- -- / -- / -- / I T pl ..,.., . / �� 2 ' H x P U1TL l ) 111.4 wl - --- __,. w �� F i ... �� l T m2 T ' T T ' Fi dw p2 T ( PRL 2 ) ( S F DC L ) d �----- � ( MTL2 ) ,T Ld -1 ( S FEH E L ) Ll ) �- - T k- - ->- f.-- _� w r ' !< p s , Ts , h s ml r--� i gu r e w g s t -- )I\ o - d S c h ema t i c Di a gram fo r Mo d e l C . ' 33 I I I . 3.4 T h e Det a i l ed t·1o del ( Mode l D ) I n t h e deta i l e d mo del , the e ffe ct i ve heat e xc h a n g e re g i o n ( tube bun d l e re g i on ) i s d i v i de d i n to a subcoo l e d h ea t t ra n s fe r sect i on a n d a bo i l i n g h e a t t ra n s fe r s ect i o n w i t h a dynami c boun da ry between t h e two s e ct i o n s . A l s o , t h e e ffect o f p r i ma ry coo l a n t i n l e t a n d outl e t p l e nums i s exami n e d by a d d i n g a l um p fo r e a ch pl e num . T h e deta i l ed mo del s t ru c t u re i s s hown i n F i gure I I I . 5 a n d i s compo s e d o f t h e fol l ow i n g l umps . a. P r i ma ry s i de l um p s 1. p r i ma ry i n l e t p l e num ( P R I N ) 2. p a ra l l e l fl ow b ra nc h subcoo l e d heat t ra n s fe r s e ct i o n p r i ma ry l ump ( P RLl ) 3. pa ra l l e l fl ow b ra n ch bo i l i n g heat t ra n s fe r s e c t i o n p r i ma ry l um p ( P RL2 ) 4. counte r fl ow branch bo i l i n g h eat t r a n s fe r s ec t i o n pr i ma ry l um p ( P RL 3 ) 5. coun t e r fl ow b ra n ch subcoo l e d heat t ra n s fe r s ec t i o n p r i ma ry l um p ( P RL4 ) 6. b. p r i ma ry out l et p l enum ( P ROUT ) Conduct i n g tube metal l ump s . 7. 8. pa ra l l e l fl ow b ra n c h subcoo l e d h ea t t ra n s fe r s e ct i on tube meta l l ump ( ttfT L l ) paral l e l fl ow b ra n c h b o i l i n g heat t ra n s fe r s e ct i o n tub e meta l l ump ( MTL 2 ) 9. counter fl ow b ra nc h b o i l i n g h eat t ra n s fe r s e ct i o n tube me t a l l um p ( riT L 3 ) 10. cou n t e r fl ow b ra n c h subcoo l e d h ea t t ra n s fe r s ec t i o n tube met a l l ump ( MTL4 ) \� 34 so Ld w �---- L } ( P RL 2 ) L - - - '[_ Tp -t ( P RL 1 ) cr m3 t Tm !----+- ��' T...sa c - T s ( SF SLl t w 1 , Td r+- ( P RL 3 ) - _j_ -, - Tm4 � ( �1TL 4 ) ( PR I N ) pl � T sa - - -- - - - - ( t1TL 1 ) -� T - ( S FBL ) t--· - � 1 ( MTL 3 ) x, m2 H p, F i gu r e ll . 1 III.5 ___, . ___ _ ( t1TL 2 ) T H F i ' TF i S c h ema t i c D i a g ram fo r r 1o d e l D . -_t- - - T [J 4 ( P RL4 ) ( S FD C LJ J r Tp ( P RO UT ) o fvJ [J ,T po 35 c. I I I .4 S e c o n d a ry s i de l umps 11 . s u bcoo l e d s econda ry fl u i d l um p ( S FSL ) 12. bo i l i n g s econd a ry fl u i d l um p ( S FB L ) 13. d rum eq u i va l en t s e c o n d a ry fl u i d l ump ( S FD R L ) 14. down come r s econda ry fl u i d l ump ( S FDC L ) . Govern i ng Equ a t i o n s fo r Model A I I I .4. 1 P r i ma ry L ump ( P R L ) An ene rgy bal a n ce o n t h e p r i ma ry wa te r l ump yi el d s t h e fol l ow i n g equati on ( I I I .4.1 ) w h e re , t1 c p pl T p w p T pi u pm mas s o f p r i ma ry water = s pe c i fi c h e a t o f p r i ma ry wate r = b u l k me a n tempe rat u re o f t h e p ri ma ry w a t e r l ump = ma s s fl ow ra t e o f pri ma ry wate r = i n l e t p r i ma ry water tempe ra t u re = e ffec t i ve h e a t t ra n s fe r coe ffi c i e n t between p r i ma ry wa t e r a n d t u be me ta l l umps S pm = h e a t t ran s fe r a re a betwe e n t h e p r i ma ry wa t e r a n d t u b e me t a l l umps T m = a ve ra ge tempe ra t u re o f t u be me ta l l ump . S i nce t he den s i ty a n d s pe c i fi c h e a t o f t h e p r i ma ry wate r a re a s sume d to be c o n s t an t , t h e n E q u a t i o n ( I I I . 4 . l ) c a n be wri tten i n the form ( I I I .4.2) 36 · tP - whe re , M __£_ - res i den ce t i me of the pri ma ry wat e r i n the h e at i n g wP - sect i on . I n t roduc i n g pe rturbat i on va r i a b l es , o n e obt a i n s : ( I I I . 4. 3) whe re 6 mea n s the devi a t i o n o f the va ri a b l e from i t s val ue at s te ady s t at e . I I I .4.2 T u be Meta l L ump ( MTL ) An e n e rgy bal a nce o n t he tube metal l ump y i e l ds t h e fo l l owi n g equat i o n du 1 M C T ) dt m m m � = where , MM C m U ms U - ) - U ms S ms ( T m- T s ) S pm pm ( T p T m ( I I I .4 .4) = mas s o f t u be metal = s pec i fi c hea t o f t ube metal = e ffecti ve heat t ra n s fer coe ffi c i e n t between t h e tube meta l a n d s econ d a ry fl u i d l umps S ms = heat t ra n s fe r a rea between t he tube met a l and s econdary fl u i d l umps T s = b u l k mean tempe ra t u re i n the s e con da ry l ump , and other t e rms a re a s defi n e d be fo re . Fo r co n s tant tube met a l den s i ty and s pe c i fi c heat , we h a ve \· ( I I I .4.5) 37 T hu s , t h e d cS T m pe rturba t i o n fo rm o f t he equa t i o n be come s ( U pm Spm ) O T M C _ dt - m m ( p U pm S +U S pm ms ms eS T ) + M C m m m u s ms ms �T . I I I . 4 . 6 ) u s ( M C m m I t i s a s sumed t h a t t h e f l u i d i n the s e co n d a ry l ump i s a s te am-wate r mi xtu re a t t he rmo dyn ami c e qu i 1 i bri um . Therefo re , a pre s sure c h a n g e re sul t s i n a c h a n g e i n s a tu ra t i o n tempe ra tu re : 6 whe re P ( s = ( * sat ) oP aP aT ( I I I . 4 . 7) = s team pres s u re = s l o pe o f t h e s t ra i ght l i ne a p proxi ma t i o n o f t he cu rve aT sat ) aP T of T s at a ga i n s t P ( s ee Ap pe n d i x A ) . T hu s Equa t i on ( I I I . 4 . 6 ) b ecome s d6T m ---eft _ - I I I . 4. 3 ( U pm p m S M C m m ) o Tp _ ( Secon d a ry Fl u i d U S S pm pm+ U ms ms ) eS T M C m m m + ( U S ms ms ) t1 C m m a Ts a t aP cS P • ( I I I .4.8) L ump ( S FL ) T he gove rn i n g equa t i o n fo r t h e s e co n d a ry fl u i d l ump i s obta i n e d by a p p l y i n g ma s s b a l a n c e s fo r t he wate r a n d s te am compo n e n ts , a vol ume ba l a n c e , a n d a n equa t i o n rel a t i n g t h e st eam ge n e rat i o n rate W sg to the heat t ran s fe r rate to the s e c o n d a ry fl u i d a n d t he degre e o f subcool i n g o f t h e feedwa te r e n te r i n g t h e sy s tem ( he a t b a l a n ce ) . *Al thoug h T s a t a n d o t h e r s a tu rat i o n p ro pe rt i e s a re co n s i d e re d a s fun c t i o n s o f o n e va n a b l e ( P ) , t h e p a rt i a l de r i v a t i ve symbo l ( a/ ;:J P ) i s used fo r c l a r i ty o f equat i o n s . 38 a. Ma s s b a l a n ce l. W ater p h a s e (III.4.9) w h e re , r1 sw w sg = mas s o f water i n t h e s e co n d a ry l ump W Fi = i n l e t feedwa t e r fl ow ra te 2. = s t eam gen e rat i n g ( e va po rat i o n ) ra te S t eam ph a s e ( III .4. 10) w h e re , M = ma s s o f s team i n t he s e c o n d a ry l u mp ss W s o = o u t l e t s t e am fl ow ra te b. Vo l ume b a l a n ce d v sw dt -- + d v ss dt d v = dt st = 0 ( I I I . 4. l l ) w he re , V = vo l u me o f wate r i n the s e co n da ry l ump SW v s s = vo l ume of s team i n t h e s e con da ry l ump v s t = tota l vol ume o c c u p i ed by t h e seco n da ry fl u i d . S u bs t i t u t i n g v s w = M sw and vs s = Ms s . . v f v ' g w he re , v v f g = s pec i fi c vo l ume o f s a t u rated wa ter = s pe c i fi c vol ume o f s a t u rated s team 39 we get v d M f dt sw + M d v d M f v s w (ft + g dt ss d v �= + Ms s 0. ( III . 4 . 1 2 ) N e g l e ct i n g t he c h a n ge i n the s pe c i fi c vol u me o f s a t u ra t e d wat e r d u ri n g a t ran s i e n t , o n e o b ta i ns : v d M f s-'w __ dt d v u s i n g ____]_ dt + v d g dt �v = ( __g_ ) ss d v M __g_ + s s dt = 0 ( III . 4 . 1 3 ) dP dt dP we ge t dt ' l --a v Ms s • ;l P an d so l v 1. n g f or M � { vf d M sw dt + v d M g dt ss } ( III . 4 . 1 4 ) a n d s u b s t i t u t i n g from E q ua t i o n s ( III . 4 . 9 ) a n d ( III . 4 . 1 0 ) i n to Eq u at i o n ( III . 4 . 1 4 ) a n d u s i n g the a s s umpt i o n W Fi W = we h a v e so ' ( III . 4 . 1 5 ) whe re , - v . f 9 U s i n g t he c r i ti c a l fl ow a s s umpt i o n ( see Appe n d i x v fg v have w so = c L . p B ) , we 40 whe re , C L = s team v a l ve coe ffi ci e n t . T h e r e fo r e , �� = c. d dt M -1 ss � H e a t b a l ance + ( M SW e f 3P {v - CL . P ) } . ( fg W s g ( I I I . 4. 1 6) M e ) = U S ( T - T ) + W F . c 2T F . - W h ms ms m s 1 P 1 so g SS g ( I I I .4. 1 7) w h e re , = i n t e rn a 1 e n e rgy o f s at u ra t e d water = i nt e rn a l e n e rgy o f s a t u rated steam C P2 = s pec i fi c heat o f feedwate r T Fi = i n l et tempe rat u re o f feedwat e r e e f g a n d o t h e r t e rms a re a s defi ned be fo re . e n ergy t e rms e T he i nt e rn a l a n d e 9 can b e re p l a c e d by t h e e n t h a l py 2 t e rms h a n d h 9 wi t hout s i gn i fi ca n t e rro r ( 2 ) d ue to f v the s ma l l val u e of the fl ow wo rk te rm ( j ) ( s ee Appen di x C). f S i n ce h f a n d h a re p res s u re de p e n dent , we h a ve g d M 3 hf d sw _E. + h M sw ap . dt f dt + h d M ss d t g = U + M h 3__g_ ss 3 p • d _E. dt + + WF . c TF . - W h . S ( ms ms T m - T s ) 1 P2 1 s0 g ( I I I . 4. 1 8) S u bs t i t ut i n g from E q u at i o n s ( I I I . 4 . 9 ) a n d ( I I I . 4 . 1 0 ) i nto Eq uat i on ( I I I . 4 . 1 8 ) a n d us i n g t h e a s s umpt i o n 41 Ms w a hf dP aP · d t + M � ss a P + � • dt (W - w sg so ) (h g - h ) f = ( III.4.19) F rom E q u a t i o n ( I I I . 4 . 1 5 ) we h a ve ( Ws g - Ws o ) av M a �J - = v fg dP dt - · P T h u s , E q ua t i o n ( I I I . 4 . 1 9 ) be come s ( r� sw a hf - aP + r� ah _g_ ss a P - M h f . ...J:.9. ss v av • _ _g_) d P aP fg dt ( I I I . 4 . 20 ) w h e re , h fg = h g hf. - An d , the p er t u r ba t i o n equ a t i o n becomes (M w s = U ah - f + - aP S ( OT ms m s m M ah = (M sw g oT 5 = ss v av _ ...9.) d o P • aP fg - dt _ - a hf aP - - a T s at aP ( I I I . 4 . 21 ) - C P 2T F } � W so · i + and s u b s t i t u t e o W so and h f ___!_9_ ah o T s ) - W s o ( -a_g_P o P - C p 2 o T F 1. ) - - (h Let K _g_ - M ss a P _ M ss = ah - _9_ aP - t1 f ___I_9_ ss v fg C o P + PoC L L o P t o o bta i n : h • av _ ..9.) aP 42 I I I . 4. 4 S u mma ry o f t h e Mo de l Equat i o n s T h e f i rs t s i mpl i fi e d mo del c a n be re p re s e n te d i n t h e fo rm o f t h re e fi rs t o rder d i ffe re n t i a l e q u a t i o n s t h a t c a n b e w r i tte n i n the ma t ri x fo rm dx A dt _ X - oT - B u ( I I I . 4. 23) rH 1 w h e re oT X + - Pi P - u m Fi OT = lo cl J oP E a c h o f t he ma t r i ces, A a n d � i s a 3 x 3 matr i x g i v i n g t h e coe ffi c i e n t s o f t h e s t a t e v a r i a b l e ve cto r x and t h e fo rc i n g ve c t o r u . T he n on z e ro e l eme n t s o f A and B a re l i s te d a s fo l l ows : 1 (Tp u s + �m [2m ) A(l ,l ) = A(l ,2) = u m s �m 2 A( 2 , l ) = u�m s pm Pl MP C P l Mm C m u s + u s m pm ms ms ) ( � C Mm m aT sat A(2 , 2 ) A( 2 , 3) 3P A(3,2) = A(3,3) = B(l ,l ) MP C - u s ms ms K l - (U S K ms m s 1 T - p aT sat 3P + w so � + C L ( h g -C P 2 T F i ) ) ah 8 ( 3 ,2 ) 8(3,3) Go ve r n i ng Equat i o n s fo r t1o del 8 III.5 P r i ma ry L ump ( P RL l ) III .S. 1 Heat ba l an c e �t ( r� W C T C T ) U (5 ) ( ) P l P l P l = P P l P i - pm pm 1 T Pl - T ml - W P C PT Pl ( III.5.1 ) whe re , M ma s s o f p ri ma ry water i n P Rl Pl = T P l = bu l k mea n tempe ra t u re o f P Rl (S ) = heat t ra n s fe r a re a between P Rl a n d MT L l pm l Tm = ave rage temp e ra t u re o f MT L 1 , 1 and other te rms a re a s defi n e d befo re . Fo l l owi n g the s ame p roce dure as i n t he f i rs t s i mp l i fi ed model , we h a ve where : M l = res i den ce t i me o f the p ri ma ry fl u i d i n P Rl . 'P l = w III.5.2 P r i ma ry Lump { P RL2 ) The eq uati o n fo r p r i ma ry l ump P RL 2 can be obta i n ed f rom E q ua t i on ( I I I . 5 . 2 ) by re pl a c i n g T p ; by T , T by T and T by T Pl Pl P2 m2 as fo l l ows : ml dOT P2 1 -.,..:....=. = - or Pl dt ' p2 44 I II . 5.3 T u be Met a 1 L ump U1TL 1 ) Hea t bal a n ce where , M ml T s = mas s o f t ube met a l l ump t1TL 1 = bul k mean tempe ra t u re o f t he s e co n d a ry fl u i d l ump . As s umi n g t hat T s i s equal to T s at ' t he s a t u ra t i o n tempe ra t u re , and us i n g t he same p ro cedure a s i n the case of the fi rst s i mpl i fi ed model ( Mo d e l A ) , we get : ( I I I . 5 . 5) III .5.4 Tu be Met a l L ump ( MT L 2 ) T h e e q ua t i o n fo r t ube metal l ump t.frL 2 c a n b e obta i n ed , by s i mi l a ri ty , from Eq uat i o n ( I I I . 5 . 5 ) as fo l l ows : d 6T m2 dt aT sat aP 111.5.5 • 6P • ( II I .5.6) S econ dary Fl u i d Lump ( S F L ) The only d i ffe rence i n the fo rmu l a t i o n o f t h e s e co n d a ry l um p eq u at i o n between t h i s mo d e l a n d t h e f i rs t one i s t h a t the heat i s 45 t ra n s fe rred to t he s e conda ry l ump from both me t a l l umps M 1 a n d M2 . T h u s , t h e heat ba l a n ce e q ua t i on become s . h ) - U ( S ) ( T -T ) s!_ ( h ms ms 1 ml s a t d t M sw f + M s s g - ( I I I . 5 . 7) That i s : d M SW dh d MS S d hf M SW � h + + h f ---d�t- + M S S � g dt dt ( I I I . 5 . 8) By us i n g t he re l a t i on s a dh -at --a1= and h dP · dt dM dM and s u bs t i tuti n g fo r d �w and d� s f rom E q u a t i on ( I I I . 4 . 9 ) a n d Equa t i on ( I I I . 4 . 1 0 ) we get dhf dp 2 ) ( M sw -aP + M s s �) d P d t = U ms ( S ms ) 1 ( T m 1 +T m2 - T sa t + W Fi C P 2 T Fi - h g ( W s g - W s o ) - h f ( W Fi - W s g ) - w s o h g . (III .5.9) 46 Us i n g t h e a s s umpt i on t h a t fee dwa te r i s a dj u s te d to mat c h s team fl ow (W Fi = W s0 } , a n d s ubs t i t ut i n g fo r ( W sg - W s0 } from E q u a t i o n ( I I I . 4 . 1 5 } , we get (M dh sw dh h f f + M ..29. _9. - M ss v s s dP dP fg - • dv dP _9.) dP dt _ - ( III .S. lO} I ntroduc i n g per tu r ba t i o n var i a bl es , we get : ( III.5. l l } 111 .5.6 S umma ry of t he Mod e l Equat i on s t� d e l B c an be rep re sented i n the fo rm o f fi ve , f i rst o rde r d i ffe re n t i a l eq u at i o n s t h a t can be wri tten i n t h e mat r i x fo rm g i ven i n Equat i on ( ! ! 1 . 4 . 2 3 ) whe re OTP l 6T X = - oT P2 ml oTm - u = 6T Pi 6T Fi 6C L 2 oP I n t h i s ca s e , A i s a 5 x 5 mat r i x and B i s a 5x3 ma tr i x g i v i n g t he coe ffi c i en t s o f the s tate vari a b l e ve cto r i a n d the fo rc i n g vecto r u , r e s p ec t i v el y . 47 T h e n o nz e ro e l eme n t s o f A a n d B a re l i s t e d a s fo l l ows : A( l , l ) = A( l , 3 ) = A(2 ,1 ) A( 2 , 2 ) A( 2 , 4 ) A( 3 ,3 ) _ u 1 ( -TPl �m (5 _ U = ) �m 1 1 - Tp l T P2 = (S ) p m pm ) MP l cP , MP C l Pl - - = U + ( , ) U (S m �m 2 ) + Mp C T P2 P2 P 1 -- (S ) p m pm 2 M P2 C P l = = A( l , l ) A( l , 3) U (S ) + U (5 ) ms ms l l -, m---pm�p-:-: - ( --'-M C ml m __ _ _ A( 3,5) U m A(4,4) - - ( p A(4 , 5) = (S ) + U (S ) ms ms 2 pm 2 ) M m2 C m A( 3,5) A( 5,3) A( 5 , 4 ) = A( 5 ,3) = A( 3 , 3) B(l ,l ) B ( 5 , 3) 111.6 Go v e rn i n g Equa t i on s fo r Model C III.6.1 General T he s t ru c t u re of t h i s seco n d i n te rme d i ate mo d e l was de s c ri bed i n Sect i on 1 1 1 . 3 , page 2 6 , and s hown s c h ema t i c a l l y in F i g u re I I I . 4 , pa ge 32 . The d i ffe re n ce between th i s mo del a n d the fi rst i n te rme d i ate mo de l ( Model B ) i s that a mo re deta i l e d l ump s t ru c t u re o f t h e secon dary s i de i s u s e d . The go vern i n g equat i ons fo r t h e p ri ma ry fl ui d a n d t u be meta l l umps i n Mode l C a re s i mi l a r t o those i n Mo d e l B a n d a re repea ted i n t h i s sect i on for conve n i en c e . The govern i n g e q u a t i o ns fo r t h e secondary fl u i d l umps a re deri ved i n de ta i l s i n ce t h ey wi l l be u s e d i n the deve l o pmen t o f the det a i l e d model ( Model D ) . 111.6.2 P r i ma ry Lu mp ( PRLl ) The equat i o n fo r t he p r i ma ry l um p P RLl i n Mo de l C i s s i mi l a r to E q u at i o n ( 1 1 1 . 5 . 2 ) . That i s : (III.6.1 ) 49 I I I . 6. 3 P r i ma ry L ump ( P RL2 ) T h e e q u at i o n fo r t h e p ri ma ry l um p P RL 2 i n r1o de l C i s s i m i l a r to E q u at i on ( I I I . 5 . 3 ) . III.6.4 T hat i s : T u be Met a l L ump ( MTL l ) T h e e q u at i o n fo r t h e t u be met a l l ump MTL l i n Mo de l C i s s i mi l a r t o E q u at i on ( I I I . 5 . 5 ) e xc e pt t h a t T s i s con s i de red a s tate v a r i a b l e ( i n s t ea d o f p re s s u r e ) t o a c count for t h e c h a n ge i n s e co n d a ry tempe rat u re between t h e s ub cool ed a n d bo i l i n g re g i o n s o f t h e e f fe c t i ve h e a t exc h a n ge s e c o n d a ry fl u i d l ump . d o Tml u �- = dt III.6.5 s pm pml M 1 cm m 0 T Pl That i s : U S +U S U S ( pm ml ms ms l ) oT , + ms ms l o T . ( I I I . 6 . 3 ) m s c Mml c m . ml m M T u b e Met a l L um p ( MT L 2 ) The e q u a t i o n for t h e t u be met a l l ump MTL 2 i n r�o de l C i s s i m i l a r to E q u at i o n ( 1 ! ! . 5 . 6 ) e xc e pt fo r t h e u s e o f T s a s a s tate v a r i a b l e ( s e e abo ve ) . That i s : d0T m2 dt III.6.6 E f fect i ve H e a t E x c h a n ge S e c o n d a ry F l u i d L ump ( S FEH E L ) T h i s l ump re p re s e n t s the core o f t h e s te am gen e ra t o r s e co n d a ry f l u i d whe re t h e ma i n h e a t e x c h a n ge p ro ce s s t a k e s p l ace as s hown i n F i g u re I I I . 6 . T he s e c o n d a ry fl u i d t h a t e n t e rs from the downcome r 50 [) rum v a 1 en t L um p S F DR L ) 1'-l!!!!!!-�a=i w .h 2 xe E ffec t i ve Heat Exchan ge Lump ( S FEH E L ) F i g ure I I I . 6 S econdary L umps fo r Mo del C . Down comer L um p ( S FD C L ) 51 s e ct i o n re ce i ves h e a t f rom both bran c h e s o f t h e U - t u be b u n d l e a n d i s co n ve r t e d from a s l i gh t l y s ubco o l e d l i q u i d i n to a two p h a s e mi xt u re t h at r i s e s to e n t e r t h e d r um e q u i val e n t s e ct i o n . A n ene rgy b a l a n c e o n t h e con t ro l vol ume e n c l o s i n g t he e f fe c t i ve h e a t e xcha n ge l ump y i e l d s t he fol l ow i n g e q u a t i o n ( III .6.5) w h e re , �\ h s = ma s s o f s e c o n d a ry fl u i d = a ve rage e n t ha l py o f s e co n da ry fl u i d . Q ms l = heat t ran s fe r rate from t h e p a ra l l e l fl ow t u be me t a l b r a n c h t o t h e s e co n d a ry fl u i d = U S ( T -T ) ms ms m 1 s . Q ms 2 - heat t ra n s fe r rate from t h e co u n t e r fl ow t u be me tal - w b r a n c h t o t he s e conda ry fl u i d = U 1 S ( T -T ) ms ms m 2 s = ma s s fl ow rate o f s e conda ry fl u i d from t h e down come r to t h e ri s e r c p 2 = s pe c i fi c h e a t o f the s u b coo l e d l i q u i d l e a v i n g t h e down come r s e ct i o n T w d = temp e r a t u re o f t h e s u bcoo l e d l i q u i d l ea v i n g the down come r s e ct i o n 2 = o u t l e t s e con da ry f l u i d ma s s fl ow rate h xe = e n t h a l py of the out l e t s e c o n da ry fl u i d . S i n c e t h e e ffe c t i ve heat exc h a n ge l ump i s b o u n de d a t t h e bottom by t h e t u be s heet and at the top by a hypo t h et i cal p l a n e j u s t a bo ve 52 t he t u be b u n d l e , t he v o l ume o f t h e l ump i s con s t a n t a n d E q u a t i o n ( I I I . 6 . 5 ) become s U S (T + T 2 - 2T ) + w 1 cP Z T - W2 h d ms ms m l m s e (111 .6.6) w h e re , V s = vo l u me o f t h e s e c o n d a ry fl u i d i n t h e e ffe ct i ve h e a t exc h a n ge l um p ps = a v e ra ge den s i ty o f t h e s e co n d a ry f l u i d i n t h e e ffe c t i ve h e a t e x c ha n ge l ump T s = ave ra ge tempe rat u re o f the s e c o n d a ry fl u i d i n the e f fe c t i ve h e a t e xc h a n ge l ump . T h e s e c o n d a ry f l u i d i n t he e ffect i ve heat e xc h a n ge l um p i s compo s e d o f two reg i o n s , a s u bc o o l e d re g i o n whe re t h e b u l k me a n tempe rat u re o f t he s u bcool e d wa te r i s ra i s e d from the down come r tempe rat u re to t h e s a t u rat i o n tempe rat u re and a bo i l i n g re g i o n w h e re p a rt o f t h e s at u rated wa t e r i s c o n ve rted i n to s te a m . 1 -- +- 1 L... C: l..o L.. s u b b" c t h e l e n o,J t h of b e t h e l e n g t h o f t h e bo i l i n g re g i o n . s u bcool e d re g i o n a n d L bo i l L s ub ( t h e l e vel at w h i c h t h e bo i l i n g proce s s s t a rt s ) c a n b e dete rm i ned from a c a l c u l a t i on o f t h e s e c o n d a ry tempe ra t u re p ro f i l e i n the e ffec t i ve heat e x c h a n g e l ump a t s tea dy s ta te . S i n c e the dynami c re s po n s e o f t h e s u bcoo l e d / bo i l i n g i n te rface L b s u ) i s a s s ume d to L ( a n d h e n c e i n t h i s model , not c o n s i d e re d is L s ub bo i 1 the rmo dynami c p ro pe rt i e s o f t h e s e co n d a ry be c o n s t a n t . T he a ve ra g e fl u i d i n the e ffect i ve h e at e x c h a n ge l ump a re de r i ve d from the we i ghted a verage of t h e propert i e s i n t h e s u b co o l e d a n d b o i l i n g re g i o n s . Fi g u re I I I . ? s hows the v a r i a t i on o f t h e t h e rmodynami c 53 S u bcool ed T �-- Temper a t u r e T · r I d B o i l i ng sat pd De n s i ty -- .. .... ... E n t ha l py hd . t�a s s Q u a l 1 ty x * d �-· -- - ------ --- - t1 ·--- - - - -- ----- ----- -- _ _j ---- - --- - ----------1I i I I -------- - -- - - ·- - -�- - - I - I o . o ' - --�� - -- - L 0 - -- ' sub I ! '------ --· --·- _ - _j_ Fi gure I I I . ? --- - - - - ------ -- · - -----+ p xe Lsl - · --- I -- -- -- --� - -_ __ _ _ · _ _ ... - ·· - -· .- : I I _ U pwa rd Fl ow -- - _j L V a r i a t i on o f T hermo dyna m i c Pro pe r t i e s o f t he S ec o n d a ry F l u i d i n t he E ffe c t i v e H eat E xc h a n g e L u m p . x, 54 p ro p e rt i es o f the s econda ry fl u i d i n the s u bcoo l e d a n d bo i l i n g re g i o n s o f t h e effe c t i v e h e a t e x c h a n g e l ump . From t h i s f i g u re , t h e fol l owi n g eq u a t i o n s a re obta i ne d fo r t he a ve ra g e t h e rmo dynami c p ro pe rt i es o f t h e s ec on d a ry fl u i d i n t h e effec t i v e h e a t exc ha n g e l ump . T ( s = L �+ T s at L T +T d s at ) 2 L h s = C T +T d sat ) P2 2 ( • sub + L L ( I I I .6 . 7) ( I I I . 6 . 8) _ _ _ _ X s ub + (h + � h ) L f 2 fg X L �+ � 2 L L . bo i l L ( III.6.9) ( II I .6.10) I n t h e a bo ve e q u a t i o n s , t he s u b s c r i pt ( s ) i n d i cates a ve ra ge p ro pe rt i es i n the e ffect i ve he a t e x c h a n ge re gi o n a n d t h e s u bs c r i pt ( d ) i n d i cates down come r e x i t p ro pe rt i e s . S u b s t i t ut i n g from Eq uat i o n s ( I I I . 6 . 7 ) t o ( I I I . 6 . 1 0 ) i n to E qu a t i o n ( I I I . 6 . 6 ) a n d n e g l ec t i n g t he c ha n g e s i n t h e s u bcool ed d en s i ty d u r i n g t he tran s i en t , o n e o b ta i n s t h e fo l l owi ng equ a t i on : T +T d sa t ) [C P ( 2 Ms � dt 2 L sub + (h + L f -2e h fg ) d - [--+ V h x s s dt e v f + 2 v fg . L L x sub . + T s at L . L L bo i l ] L boi l ] L bo i l ) ] + l·'� C T L l P2 d ( III.6.ll ) 55 P e r fo rmi n g t h e d i ffe ren t i a t i o n i n E q u a t i o n ( I I I . 6 . 1 1 ) a n d u s i n g t h e a s s umpt i o n o f l i n ea r c ha n ge o f t h e t h e rmodyn ami c p ro pe rt i e s o f s a t u rate d wate r a n d s team wi t h t h e s team gen e ra t o r p re s s u re ( s ee Appen d i x A ) o n e can wr i te the eq ua t i o n de sc r i b i n g t h e h ea t ba l a n c e o f the effec t i v e h ea t exc ha n g e l ump i n t h e form : L dcP bo i l ] dt L (III.6.12) of o P and ox e i n the de r i va t i ve o f t h e a ve rage den s i ty i n the bo i l i n g re g i o n ( s e e A p pen d i x E ) . F ro m E q ua t i o n ( I I I . 6 . 7 ) we h a ve 0 T L s = s ub a T 2L d + L ( s ub 2L + L T h e rel a t i o n between t h e fl ow rates w boi l ) L 1 aT s at aP 0 P . ( I I I . 6 . 1 3) a n d w 2 c a n be o b ta i n e d from t h e ma s s ba l a n ce e q ua t i o n a s fo l l ows ( I I I . 6.14) 56 S u b s t i t u t i n g fo r p s from E qu a t i on ( I I I . 6 . 8 ) and i ntrod u ci n g the per turba t i o n va r i abl e s V Equat i on s dox L do e) J b0 . 1 ____.E. + c 1 (C [ 2b d t s L 1 b dt = - oWz . ow , ( I I I .6. 1 5) ( I I I . 6 . 1 2 ) , ( I I I . 6 . 1 3 ) , a n d ( I I I . 6 . 1 5 ) a re t h e de s c ri b i n g equat i o n s fo r the e ffect i ve heat excha n ge l ump . III.6.7 Drum Equ i va l en t Secon d a ry Fl u i d L umr ( S FD RL ) T he d rum eq u i va l en t s e conda ry fl u i d l um p i n t h i s mo de l i s bo u n de d by t he hypothe t i cal pl ane abo ve the U-tube b u n d l e a n d t h e s team generator s he l l i nn e r s u rface as s hown i n F i g u re I I I . S . T h i s l ump can be d i v i de d i nto t h ree parts 1. Ri s e r/ s eparato r vol ume 2. Drum wate r vol ume 3. Drum s team vo l ume . The ri s e r/ s e pa rato r vo l ume rep re s e n t s t he con t ro l vo l ume bo unde d by t h e hy pothe t i c a l pl ane at t h e e x i t o f t h e e ffe c t i ve heat e xcha n ge l ump . t he U-tube wrappe r and t he i n n e r s u rface o f the s team s eparators . The d rum wate r vol ume re pre s e n t s the con t ro l vol ume bo unded by the hy pot het i cal pl ane a t t he e x i t o f the effe c t i ve heat excha n ge l ump , the s team wate r i n te rfa ce , the hous i n g o f the s team s e p a rators and the s team gen e rator s he l l i n n e r s u rface ( s ee F i g u re I I I . 8 ) . The d rum s team vo l ume re p re s ents the contro l vol ume bounded by the s team wa t e r i n te rface , t he s team s e p a rators a n d the s team gen e rator i n ne r s u rfa c e . I n t h e ri s e r/ s e p a rator vo l ume , the two pha s e mi xture l e avi ng the effe c t i ve heat exchan ge r l ump i s t ra n s po rte d to the steam s e p a rato rs whe re t he s a t u rated s team part enters the d rum s team vol ume a n d t h e s a t u rated wate r p a rt e n t e r s t he drum wa t e r vol ume . I n the drum wate r 57 S t ea m O u t l e t w ,h g so D r um S t e a m --+----+ Vo l u me D r u mwater V o l ume � i ser/ S e p a r a t o r -- - ----1----�Vol ume F i xed - - - B o u n d a ry H·-+--- U - t u b e Wra p p er F i g u re I I I . 8 The Drum E q u i v a l e n t S e c o n da ry Fl u i d L ump . 58 vol ume , t he s a t u ra t e d w a t e r f rom t h e s team s e pa rat o r s i s mi xed wi t h t he fee dw a te r e n t e r i n g t h ro u g h t h e feedwa te r ri n g a n d t h e s l i g h t l y s u bcoo l e d l i qu i d t h u s fo rmed fl ows downwa rd t o e n t e r t h e down come r l ump . T he drum s team vo l ume a cts a s a s t e am s t o ra ge a n d del i ve ry s e ct i on w h e re t h e s team from t h e s t eam s ep a rato rs e n t e rs a t a rate p ro po rt i on a l to the e x i t q ua l i ty of the e va po ra t o r s ec t i o n a n d l ea ve s a t a ra t e p ro po rt i o n a l t o t h e t u rb i n e l oa d dema n d . T h e govern i n g e q uat i on s fo r t h e a bo ve t h re e vo l ume s c o n s t i t ut i n g t h e d rum e q u i va l en t l um p a re d e v el o ped bel o w . Ri s e r/ S e p a r a t o r Vol ume I I I . 6 . 7. 1 T h i s vo l ume i s ma i n l y a t ran s p o rt s e c t i o n b e tween t h e e ffe c t i ve h e a t exc h a n ge l um p a n d t h e s team a n d wat e r vol umes o f t he d rum e q u i v a l e n t l um p . The t ra n s po rt t i me del ay a s s o c i ated w i t h t h i s vo l ume can be a cc o u n te d fo r by cons i de r i n g a ma s s bal a n c e o n t h e r i s e r/ s e p a rato r vo l u me a s fo l l ows : ( II I .6. 16) w h e re , V p r r wz w3 = vo l ume o f t h e s e c o n d a ry fl u i d i n t h e ri s e r/ s e p a rato r vo l u me = den s i ty o f t h e s e con da ry fl u i d i n t h e r i s e r/ s e pa rato r vo l ume = ma s s fl ow rate o f t h e s e c o n d a ry fl u i d e n t e r i n g t h e ri s e r/ s e p a ra t o r vo l ume = ma s s fl ow rate of s e co n d a ry fl u i d l e a v i n g t h e r i s e r/ s e p a r a t o r v o 1 ume . 59 T h e den s i ty o f t h e s e c o n da ry fl u i d i n t h e ri s e r/ s e p a rato r vo l ume c a n be e x p re s s e d by t h e fo l l owi n g e q uat i o n : ( I I I . 6 . 1 7) w h e re x e = ma s s q ua l i ty o f the two p h a s e mi xtu re l e a v i n g the e f fe c t i ve h e a t e xc h a n ge l um p v v f g = s pe c i fi c vo l ume o f s a t u rated l i q u i d = s pe c i f i c vo l ume o f s a t u ra t e d va po r . F rom E q uat i o n s ( I I I . 6 . 1 9 ) and ( I I I . 6 . 2 0 ) , we h a ve ( I I I . 6 . 1 8) S i n ce t h e r i s e r/ s e pa ra t o r vol ume i s bou n ded by t h e hy po t h e t i c a l p l a n e a t t he e x i t o f t h e e conomi z e r - e va p o rato r s e c t i o n a n d t h e U - t ube w ra p p e r t h en V r i s con stan t , a n d E q u a t i o n ( I I I . 6 . 1 8 ) becomes ( III .6.19) D i f fe re n t i a t i n g and i n trod u c i n g t h e p e r tu rb a t i o n v a r i a b l e s , we g e t Vr( c d6 P 1 r dt + C d6 x e ) = 6W W 2 - 6 3 2r � whe re and c2 r = - ( v f+x v fg e )2 ---- [v fg ] ( s e e Appen d i x E ) . ( I I I . 6 . 20 ) 60 ! ! ! . 6. 7.2 D rum W a t e r Vo l ume T h e d rum wate r vol ume i s bounded at t h e bottom by t he hypo t he t i ca l p l a n e s e pa rat i n g t h e down come r s e ct i o n from t h e d rum s e ct i o n a n d i s bounded a t t h e t o p by t h e d rum s team/wa t e r S u bcoo l e d wat e r from t h e fee dwa t e r t ra i n e n t e rs t h e i n t e rfa c e . d rum wa t e r vo l ume a n d mi xes wi t h t h e s a t u ra t e d wate r re c i rc u l a t e d from t he s te am s e pa ra to rs . The s l i gh t l y s ub coo l e d wate r re s u l t i n g from t he mi xi n g p roces s l ea ve s t he d rum wat e r vol ume to t h e down come r s e c t i o n . The ma s s a n d e n e rgy con s e rva t i o n e q ua t i o n s a p p l i e d t o t h e d rum wate r vol ume s yi e l d : ( I I I . 6.21 ) and d C C T ( M C T ) = WF C T dw P 2 dw i P 2 F i + W r P2 \ a t - Wdw P2 dw dt ( I I I . 6 . 22 ) whe re dw = ma s s o f d rum water dw = d r um wate r t empe ra t u re = feedwa t e r fl ow rate = feedwa ter i n l et tempe ra t u re r = re c i rcul a t e d wa t e r fl ow rate sat = s a t u rat i o n tempe rat u re W dw = M T WFi T T Fi w d rum wate r vo l ume o ut l e t fl ow rat e The re ci rcul ated wa t e r fl ow rate i s dete rmi n e d by t h e s e co n d a ry fl u i d ma s s fl ow rate e n t e r i n g t h e s team s e p a ra t i o n s e ct i on a n d the e v a p o ra to r exi t q ua l i ty t h u s ( I I I . 6.23) 61 where x and e w3 = e va po ra to r exi t q ua l i ty = s e co n d a ry fl u i d ma s s fl ow ra t e e n te r i n g t h e s t eam s e p a ra t i o n s e ct i on . S ubs t i t u ti n g from Equat i o n ( I I I . 6 . 2 3 ) i n to Eq ua t i o n s ( I I I . 6 . 2 1 ) a n d ( I I I . 6 . 2 2 ) a n d n e g l ecti n g t he d i ffe re n c e i n s pe c i f i c h e a t between s u bcoo l e d a n d s a t u rated wa t e r , we get : ( I I I . 6 . 24 ) and ( I I I . 6 . 25 ) Subst i tuti ng M dw = V dwp dw whe re V dw = vol ume o f d rum wa t e r P dw = den s i ty o f d rum wate r a n d n e g l e c t i n g a ny c ha n ge i n p d u ri n g t h e t ran s i e n t s co n s i de re d i n dw t h i s a n a l ys i s , we get ( I I I . 6 . 26 ) and As s umi n g t h a t t h e d r um wa te r vo l ume h a s a n e ffe c t i ve a rea , A dw a n d t he l e ve l of t he d rum wa t e r i s L w ' t h e n d ( I I I . 6 . 28 ) 62 S u b s t i t u t i n g from E q u at i o n ( I I I . 6 . 2 8 ) i n to E q ua t i o n s ( 1 1 1 . 6 . 2 6 ) a n d ( I I I . 6 . 2 7 ) a n d i n troduc i n g perturba t i o n va r i a b l e s , we get ( I I I . 6 . 29 ) and ( II I . 6 . 3 0 ) E q ua t i o n s ( I I I . 6 . 29 ) a n d ( I I I . 6 . 30 ) a re t h e two go vern i n g e q u a t i o n s fo r t he d ru m water va l u me . III .6.7.3 Drum Steam Vol ume The d r um s team vo l ume i s b o u n d e d by t h e s team g e n e r a t o r s ' s he l l i n s i de s u rfa c e a n d t he s team/wate r i n t e rface i n the d rum e q u i v a l e n t s e c t i on . I t a c t s a s a s t o ra ge a n d de l i ve ry s e c t i o n w i t h t h e s team gen e rato r pre s s u re a s t h e domi n a n t state va r i a b l e . S t e am l e a v i n g t h e s team s e p a ra to rs a c c umu l a t e s i n t he d r um s t e a m vo l ume wh i c h i n c l u d e s the s t eam d ry e r s t h a t l i mi t t h e mo i s t u re c o n t e n t o f t h e s t e a m l e a v i n g t h e s team gen e ra t o r to l es s t h a n 0 . 25% . T h e rate o f steam l e a v i n g t he s team gene rato r f rom t he s team o ut l et n o z z l e i s a fun c t i o n o f t h e tu rb i ne s te am dema n d a n d i s determi n e d by t h e t u rb i ne val ve o pe n i n g wh i c h i s adj u s ted a c c o rd i n g t o the e l e c t ri ca l l o a d deman d . A ma s s bal a n c e o n t h e d rum s t eam vo l ume y i e l d s ( I I I . 6 . 31 ) 63 w h e re , ma s s o f d rum s team M s d X W e 3 W so = ma s s fl ow rate of steam from t he s team = ma s s f l ow rate o f s te am l e a v i n g t h e s t eam g e n e ra to r . s e pa r a t o rs As s umi n g t h a t t h e s team i n t he d rum s t eam vo l ume i s d ry a n d s at u ra te d , t he n ( I I I . 6 . 32 ) where p g = d en s i ty o f d ry s at u rated s team V ds = vol ume of d rum s team. The d ru m s te a m vo l ume can b e re l ated t o t h e d rum wa te r l e vel t h ro u g h the equat i on : ( I I I . 6 . 33 ) where , V A dr = vo l ume o f t h e e q u i va l e n t d rum secti on dw = e f fec t i ve a rea o f drum w a t e r vol ume L dw = d rum wate r l e v e l . S u b s t i t u t i n g f rom E q u a t i o n s ( I I I . 6 . 32 ) a n d ( I I I . 6 . 3 3 ) i n to E q ua t i o n ( I I I . 6 . 3 1 ) a n d d i ffe ren t i a t i n g we get d 0 g dt ( V d r - A d J dw ) + V dp s -Tt = x e W 3 - W so ( I I I . 6. 34 ) E q ua t i on ( I I I . 6 . 34 ) i s t h e govern i n g e q ua t i on fo r t h e d rum s team vol ume , howe ve r , befo re i t can be co u p l e d to t h e o t h e r e q uat i o n s o f t h e mo de l , W50 may b e e i t h e r t reated a s a fo rc i � g e l eme n t o r re l a ted t o o t he r s y s t e m s tate vari a b l e s a n d fo rc i ng e l ement s . In 64 t h i s s t u dy , the c ri t i c a l fl ow equa t i o n i s u s e d to re l a te W so to the s team gene rator p re s s u re ( P ) and the t u rb i ne val ue coe ffi ci ent ( C ) . L Thus W so = C L • P. ( I I I . 6 . 35 ) S u bs t i t ut i n g fro m E q ua t i on ( ! 1 ! . 6 . 35 ) i n to Equa t i o n ( 1 ! ! . 6 . 34 ) and i n trodu c i n g per tu r ba t i o n v a r i a b l e s , we g et ( 1 1 1 . 6 . 36 ) Equat i on ( 1 1 1 . 6 . 36 ) i s t he go vern i n g eq ua t i on fo r the d rum s team vol ume . Oown come r Seco n d a ry F l u i d L ump ( S FDCL ) III .6.8 The down comer s e co n d a ry fl u i d l ump i n t h i s mo de l acts o n l y a s a t i me del ay sect i on between t he exi t o f t he d rum wa ter vol ume t o t h e i n l e t o f t he e ffe ct i ve h eat exchange l ump . S i nce the down con� r s ect i on has a fi xed vol ume and the c h a n ge i n s u bcoo l e d secon da ry water den s i ty i s negl i g i bl e t hen a ma s s bal a n ce o n the downcome r secon d a ry fl u i d l ump y i e l d s w , = w dw " ( I I I . 6 . 37 ) A hea t bal ance o n t he down come r secondary fl u i d l ump re s ul t s i n t he fol l owi n g : ( I I I . 6 . 38 ) where , M d cp2 = mas s o f t h e secondary fl u i d i n t h e down come r l ump = s peci fi c heat of t he secon dary fl u i d i n the down come r l ump 65 T dw = tempe ra t u re o f t h e s u bcool e d fl u i d ente ri n g the downcomer l ump Td = tempe ra t u re of t h e s ubcoo l e d fl u i d l e avi ng t h e down come r l ump . S i n ce M d i s constan t , t hen dT d = w T W T . M -at dw dw - l d d ( I I I . 6 . 39 ) S u bs t i t u t i n g from E q uati on ( I I I . 6 . 3 7 ) i nt o E q uat i on ( I I I . 6 . 39 ) an d i ntrod u c i ng perturba t i on vari abl es , we get ( I I I . 6 . 40 ) E q ua t i o n ( I I I . 6 . 40 ) i s t h e de s c ri bi ng eq ua t i o n fo r t h e down come r secon d a ry fl u i d l um p . 1!1.6.9 T he Rec i rcul at i o n Loop Equati on In o rde r to s o l ve t he equa t i o ns fo r Model C, the va ri a b l e w1 ( t he fl ow f rom t he down comer i n to t he ri s e r ) h a s to be re l ated to o t h e r sys tem s tate va ri a b l e s . The d i re c t method fo r obta i n i n g t h i s re l at i on s h i p i s t o a p pl y t he momentum theo ry o n t h e re c i rcul a t i on secondary fl u i d l oo p between the down come r l ump a n d the e ffe ct i ve hea t exchange l um p . S i nce the rec i rcul a t i on ra t i o i s a s s ume d to be known from the s t eam gen e ra to r des i gn data , t he mome n t um b a l ance can be re p l aced by equat i ng t he dri vi ng pre s s u re d ue to t he s ta t i c head d i ffe rence to the accel e rati on a nd fri cti on p re s s u re d ro ps a l ong the l oo p . S i n ce the dynami c p re s s u re d ro ps ( fri cti on a n d acce l e ra t i o n ) a re p ro po rt i on a l to t he s q u a re of t h e fl ow , then t h e mome n t um bal ance e q u at i on can be repl a ced by t he fo l l ow i n g eq uati on 66 ( I I I . 6 .41 ) w he re , �p C w = d r i v i n g p re s s u re d u e t o s t at i c h e a d d i ffe re n c e d = e ffec t i ve dyn ami c p re s s u re coeffi c i e n t d = rec i rc u l a t i o n ma s s fl ow rat e . 1 From E q ua t i o n ( I I I . 6 .41 ) we h a ve : 1 W 1 = __ Let c 1 = ICd _1_ t he n , lfd /�P d ( I I I . 6 . 42 ) • ( I I I . 6 . 43 ) T he d ri v i n g s ta t i c h e a d p re s s u re � p d can be ca l c u l ated a s fo l l ows : ( I I I . 6 . 44 ) w he re , ( �P ) OT W = p re s s u re h e a d of the re c i rc u l a t i o n l o o p o u t s i de t he t u be w r a p p e r ( � p ) I TW = pres s u re h e a d of the re c i rc u l a t i o n l oo D i n s i de t he t u be w ra p pe r . T he s e con d a ry fl u i d o u t s i de t he t u be w ra p pe r c o n s i s t s o f two p a rt s l. t h e s u bcoo 1 e d l i q u i d i n t he d rum wa t e r vo l ume 2. t he s u bcool e d l i q u i d i n t h e down come r l ump . T h e re fo re , ( 6 P ) O TW ( �P ) OTW c a n be ca l c u l a t e d from t he fo l l ow i n g e q u a t i o n 1 . ps 1 = l ( p dw dw + 1 44 P d c l dc ) • _g_ g c ( I I I . 6 . 45 ) 67 where p dw = d en s i ty o f t he seco n d a ry s u bcoo l e d l i q u i d i n t h e drum wat e r vo l ume L dw = h e i g h t o f t he s e co n d a ry s u bcoo l e d l i q u i d i n t h e drum wat e r vol ume above t he hy po t he t i c a l p l a n e a t t h e e ffect i ve h e a t e x c ha n ge e x i t p d c = den s i ty o f t h e s u bcoo l e d s e co n d a ry l i q u i d i n t h e down come r L dc 1 ump = h e i g ht o f t he down come r l ump me a s u re d from t h e t u be s heet 2 g = g ra v i tat i o n a l a c ce l e rat i o n ( 32 . 2 ft/ sec ) l b m ft / s e c 2 ). g = con ve rs i o n fa cto r ( 32 . 2 lb c f Si nce g and g c are n ume ri c a l l y eq u a l i n t h e foo t - p o u n d - s e co n d ( fp s ) a re e q u a l , t h e n E q u at i o n ( I I I . 6 . 4 5 ) and p u n i t sys tem a n d p dw dc red u c e s to ( I I I . 6 . 46 ) w h e re and T h e s e conda ry fl u i d i n s i de t h e t ub e w ra p pe r cons i s t s o f two pa rts l. t h e s econ d a ry fl ui d i n the e f fe ct i ve heat e xc h a n ge l ump 2. t he s e conda ry f l u i d i n t h e r i s e r/ s e pa ra t o r v o l ume . 68 The re fo re , ( � P ) I TW c a n be cal c u l a t e d f rom t he fo l l owi n g e q u a t i o n : P L + p L s s r r . _9_ 1 44 ( I I I . 6 . 47) whe re Ps = a v e ra g e den s i ty o f s e co n da ry fl u i d i n t h e e ffe c t i ve h e a t e x c ha n ge l um p Ls = 1 e n g t h o f t h e heat e x c ha n ge l ump Pr = d en s i ty o f t h e s econ d a ry fl u i d i n t h e ri s e r/ s e pa ra to r vo l ume L r = h e i g h t o f t h e s econ d a ry fl u i d i n t h e ri s e r/ s e p a ra t o r vol ume . S i n ce g a n d g c a re n ume ri c a l l y e q ua l i n t h e fps u n i t sy s te m , E q u at i o n ( I I I . 6 . 47 ) be come s ( �P ) nw\ . = pS l p L + p L s s r r 1 44 ( I I I . 6 . 48) S u b s t i t u t i n g from E q uat i o n s ( I I I . 6 .46 ) a n d ( I I I . 6 . 48 ) i n t o Eq uati o n ( I I I . 6 . 44 ) a n d u s i n g t he re s u l ts i n E q ua t i o n ( I I I . 6 . 43 ) , we g e t ( I I I . 6 .49) T h e v a l u e o f t h e re ci rc u l a t i o n fl ow coe ffi c i e n t from t he s t e a dy s t ate c o n d i t i o n s . c 1 can b e e s t i ma t e d T h e de v i a t i o n o f w1 from i t s s teady s t ate v a l ue can be o bta i ne d by t a k i n g t h e deri vat i ve o f Equat i o n ( I I I . 6 . 49 ) t h u s oW 1 = c 1 _ 12 o(p l ) - o(p L + P L ) s s r r d d 2 /p d l d - ( P s L s + P rL r ) ( I I I . 6 . 50 ) 1 1 69 W he n s ubs t i t ut i n g the e xpres s i on s fo r (III.6. 8) p5 a n d P r from E q u at i on s a n d ( 1 1 1 . 6 . 1 7 ) a n d a s s umi n g t ha t the change i n v f and v 9 wi t h sys tem p re s s u re i s l i nea r , t hen E q u at i on ( 1 1 1 . 6 . 50 ) can be re duced to t he fo l l owi n g e q u a t i on whi c h i s s u i ta b l e fo r coupl i n g w i t h other model eq u at i o n s ( I I I . 6 . 5l ) w he re ol dw oP ox e = d e v i a t i on o f d rum wat e r l e ve l from s te ady s tate = dev i a t i o n o f s team p re s s u re from s teady s tate = devi at i on of mas s q u a l i ty a t the o utl et of the e ffec t i ve heat exchange l ump from s t e ady s t a te . he e x p re s s i on s fo r t h e coeffi c i ents a , a , a n d a a re deri ve d 2 3 1 1 Appen d i x D . 1 .6 . 1 0 S ummary o f the r�odel Equa t i on s T h e go ve rn i n g equat i on s o f t�de l C t h a t we re de ve l o pe d i n t h e !ce e d i n g secti ons can be rep resented by t h e mat ri x e q ua t i on ·e x 1d A 2 t ( d i fferen t i al + a l g ebra i c ) * vec to r = sys tem v a r i a b l e s = coeffi c i e nt mat ri ces = fo rc i n g vecto r . A l i s t o f t he system v a r i abl e s i s g i ven i n Tabl e I I I . l a n d t he ·o e l emen ts o f the ma t r i ces A 1 and A 2 a n d the fo rci n g ve c t o r t ven bel ow . 1he defi n i t i on o f d i ffe ren t i al a n d a l gebra i c vari ab l e s wi l l be ed i n Chapter I V . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 70 TAB L E I I I . 1 SYSTEM VAR I AB L E S FOR MOD E L C State V a r i a b l e N umbe r Symbol De s c ri pt i o n 1 P a ra l l e l fl ow b ra n c h p ri ma ry wate r t empe ra t u re 2 Co u n t e rfl ow b ran c h p r i ma ry wa t e r temperat u re 3 Pa ra l l e l fl ow b ra n c h t ube me t a l tempe ra t u re 4 Co u n te r fl ow b ra n ch t u be me tal t e mp e ra t u re 5 p S t e am p re s s u re i n t he d r um s t eam vo l ume 6 Ma s s q ua l i ty at t h e e x i t o f the e ffe ct i ve h eat e x c h a n ge l ump 7 Water t e m pe ra t u re i n the d rum wa te r vol u me 8 9 D rum wate r l e vel Down come r tempe ra t u re *10 Avera ge tempe ra t u re i n t h e e ffe c t i ve h e a t e x c h a n ge l um p *11 Ma s s fl ow r a t e a t t h e i n l et o f t h e e ffe c t i ve h e a t e xc h a n ge l um p *12 Ma s s fl ow rate a t t h e e x i t o f t he e ffe ct i ve h e a t exc h a n ge l um p 13 Ma s s fl ow ra te at t h e e x i t o f t h e s e pa ra to r/ r i s e r vol ume *Al g e b ra i c va r i a b l e s . 71 1. T he A 1 Mat r i x A ( 1 ,1 ) = 1 . 0 1 A ( 2 ,2 ) = 1 . 0 1 A (3,3) = 1 . 0 1 A (4,4) = 1 .0 1 L C . � . R A ( 5 , 5 ) = [M 1 5 L + C 1 b Vs h s A1 ( 7 ,5 ) = v A1 ( 7 ,6 ) = v L • s L • s v 2 L • boi l L boi l L . c ,r A (8,6) = v . c 2r r 1 A ( 9 , 8 ) = 0 dwA d 1 A1 ( 8 , 5 ) = r A ( 1 0,7) = M 1 dw A 1 ( 1 0 ,8 ) = T 0 dwA dw dw A ( 1 1 ,5) = 1 A ( 11 ,8) = 1 v s - A ( 1 2 ,9 ) = M 1 d � 3p 3P P g A dw • • bo i l L c, b cz b 3T s at + Ms 3P 72 2. T he A Mat ri x 2 1 A2 ( 1 , 1 ) = ( -'P 1 u _ s pm pml r� 1 C ) P P1 - u pms pml A2 ( 1 , 3 ) = A2 ( 2 , 1 + M C P l Pl ) = - _1_ T Pl s pm pm1 M c m1 m u A2 { 3 , 1 ) = - u = s + u s pm pm 1 ms ms 1 M c m1 m u s ms ms M 1c m m u = s pm pm2 Mm 2 c m _ u = s + u s ms ms 2 pm pm2 r� 2 c m m s ms ms2 M 2c m m u = A2 ( 4 , 1 0 ) A (5 ,3) = 2 A2 ( s , 4 ) A2 ( 5 , 5 ) = = - - U S ms ms - u ms s ms W 3h + 2 [� ,l P x <) h __f£] e aP 73 = A (5,6) 2 A ( 5 ,9) 2 W 2 h fg - w cp 2 1 = A ( 5 , 1 0) 2 = 2 U S ms ms A (5,12) 2 = h + x h e fg aT sat JP L sub - 2L A (6,9) 2 _ A (6 . 1 o) 2 A (7,12) 2 A2 ( s , 1 2 ) A (8, 1 3) 2 A ( 9,6 ) 2 = - 1 .0 = 1 .0 = - 1 .0 = 1 .0 w = ) A (9,1 3) 2 = = A ( 1 0,6) 2 = A ( 10,7) 2 = A ( 1 o,1 1 ) 2 1 - ( 1 - xe ) w3 w T 3 W dw = = w - ( 1 - xe ) = A ( 1 0, 1 3) 2 = 3 1 .o = A2 ( 1 0 , 5 ) A ( 1 1 ,5 ) 2 - 1 .o = A (7,11 ) 2 A (g,1 1 2 Lsub L i1 + bo ) ( 2 L L = A (6,5) 2 f T JT J � at s at = W1 dw (1 - xe ) \ a t C L ( 0 . 0 i n c a s e o W s o i s u s e d a s fo rci n g ) 74 A ( l l ,6) 2 = A2 ( l 1 , 1 3 ) A2 ( 1 2 , 7 ) A2 ( 1 2 , 9 ) A2 ( 1 3 , 5 ) A ( 1 3,6) 3 w - - x = = - w 3 1 e - w, = = w, - a2 - - a - 3 A2 ( 1 3 , 8 ) = - a 1 A ( 1 3,l l ) 2 3. = 1 .0 T h e Forc i n g V ec tor f f( 1 ) 1 T . Tpl o Pl = - f ( 9 ) = oW Fi f( 1 1 ) III.? P o CL ( - cS W so i n case W so i s l e ft a s fo rc i n g ) . Go ve rn i n g Equ a t i on s fo r Mo d e l D III.?. 1 P r i ma ry S i de Equ a t i o n s The p ri ma ry s i de eq ua t i o n s c o n s i s t o f two e q ua t i o n s fo r t h e i n l e t a n d o u t l e t p l en ums a n d fo u r eq u a t i o n s fo r t h e p r i ma ry fl u i d l umps i n the t u be b u n d l e re g i o n , I n de ve l o p i n g t h e eq u a t i on s fo r t he p ri mary l umps i n t h e heat t ra n s fe r re g i o n , s pe c i a l co n s i de ra t i o n i s g i ven to t h e dyn am i c bo unda ry betwe e n t h e pri ma ry l umps i n the 75 s u bcoo l e d r eg i o n a n d t ho s e i n t h e bo i l i n g r eg i o n . B o t h co n t i n u i ty ( ma s s ba l an c e ) a n d en ergy ( hea t ba l an c e ) e q u a t i o n s a re con s i d e r ed fo r d e sc r i b i n g t h e tran s i en t b e ha v i o r o f ea c h l ump . T h e fo rmu l at i o n t h a t r e s u l t s i s a s o - ca l l ed mo v i n g b o u n d a ry mod el . I n thi s case, the bo u n dary i s d e termi n ed by t he h ea t i n g l en g t h req u i red t o b r i n g t he s u bcoo l ed wa t er u p to satu ra t i on t empe r a t u re . T h i s d i s t a n c e a l so f i xes t h e l en g t h of t h e met a l and pr i ma ry l umps t ha t are ad j a c e n t to t h e s u bco o l ed s ec o n d a ry sect i o n . I n l e t P l enum ( P R I N ) I I I .7.1 .1 T he i n l e t p l e n u m i s con s i d e r e d a s a wel l s t i rred tan k . A heat ba l an ce y i el d s the fo l l owi n g equa t i o n ( III.7.1 ) w he r e M T Pi Pi e. 1 = ma s s o f p r i ma ry wat e r i n t h e i n l et pl e n um = bu l k mea n t emperat u r e o f t h e i n l et pl en u m = p r i ma ry water i n l et t em p e ra t u r e a n d o th e r terms a re a s d e f i n ed b e fo r e . . S i n c e t h e d en s i ty a n d s p ec i f i c h ea t o f t h e p r i ma ry water are a s s umed co n s tan t , t h e n ( I I I . 7. 2) D i v i d i n g t hro u gh by M P C P w e g e t i l d Tp . l dt - w h e re 'P i = Mp . W 1 - Pi = l T p - i o T P 1. ( e. 1 - T p ,. ) ( I I I . 7 . 3) = r e s i d en ce t i me o f p r i ma ry wa t e r i n t h e i n l e t pl en u m . A n d t he pertu r ba t i o n form o f t h e e q ua t i o n fo r t h e i n l et pl e n u m b ecome s ( I I I . 7.4) 76 l - __ 6 T P 1 'p; . 111.7.1 . 2 a. + _l_ 'Pi o e. 1 . ( III . 7.4) P r i ma ry L ump ( PR L l ) Ma s s ba l an c e ( I I I . 7 . 5) where MP = ma s s o f p r i ma ry water i n t h e l um p l W P i = ma s s fl ow rate a t t he e n t ra n c e o f t h e l ump W P l = ma s s fl ow r a t e a t the e x i t o f the 1 ump . But , M = p A l Pl p p sl where p A p p ( I I I . 7.6) = d en s i ty o f p r i ma ry wa t e r = fl ow a r ea o f p r i ma ry wa ter L s l = l en g t h o f t h e l ump . S i n c e t he fl ow a r ea a n d t h e d en s i ty o f t h e p r i ma ry wa ter are con sta n t s , t hen E q u a t i on ( I I I . 7 . 5 ) becomes b. �t p PA P H e a t ba l a n c e (M C T Pl Pl Pl ) where T Pl Q pml = dL d 1� � l = Wp ; - WP l . C T P / P l TP i - WP l P l P l - ( I I I. 7 . 7) Q pml ( I I I . 7 . 8) = b u l k mean t emperat u re o f t he l um p = h eat tran s fe r ra t e be tween ( P RL l ) and ( MT L l ) l um p s . S u b s t i tu t i n g from E q ua t i on ( I I I . 7 . 6 ) i n to E q u a t i on ( I I I . 7 . 8 ) we get dT Pl C ( L A pp dt p Pl sl + T dl sl ---eft ) = W P i C P l T P i - �� P l C P l T P l - Q pml ' Pl ( II I . 7.9) 77 S u b s t i t ut i n g Q pm l = U p l (T - T ) pm rl s l P l Ml whe re , P h e a t t ra n s fe r a re a/ un i t l en gt h be t ween p ri ma ry rl = wat e r l ump ( P RLl ) a nd t ube me t a l l um p ( MT L l ) T Ml = a ve rage tempe ra t u re o f l ump ( MT L l ) a n d u s i n g E q u at i on ( I I I . 7 . 7 ) i n to E q u a t i o n ( I I I . 7 . 9 ) , we get ( I I I . 7. 1 0) Re a r ran g i n g a n d d i vi d i n g t h ro u gh by M C , then Pl Pl E q u a t i o n ( 1 1 1 . 7 . 1 0 ) red u ce s t o ( I I I . 7. 1 1 ) whe re , I I I . 7. 1 . 3 a. P r i ma ry L ump ( P RL 2 ) Mas s b a l a n ce ( I I I . 7. 1 2 ) 78 w h e re , M p 2 = mas s o f p ri ma ry wa te r i n t h e l um p W P l , wp 2 = i n l et a n d o ut l e t ma s s fl ow ra t e s . S u bs t i t ut i n g ( II I . 7. 1 3) w h e re , L s2 = l en gt h o f t h e l ump , t h e n p P AP Si nce L 51 dl 2 = WP l - WP 2 . d � ( II I .7. 14) + L 5 2 = con s t an t , t h e n dl 2 s - dl sl crt - - -at ( II I . 7. 1 5) a n d E q u a t i on ( I I I . ? . 1 4 ) re duces to dl sl W P 2 -- W P l + p A P P -ar- . ( III .7. 16) B ut from E q u a t i o n ( I I I . 7 . 7 ) , we h a ve ( I I I . 7. 1 7) The re fo re , t h e ma s s b a l a n c e e q ua t i o n fo r t h e p r i ma ry wate r l ump ( P RL 2 ) bec ome s ( I I I . 7 . 1 8) b. Heat bal ance ( I I I . 7. 1 9) 79 whe re , T = P2 b u l k mea n tempe rat u re o f the l um p Q p mZ = heat t ran s fe r rate between ( P RL 2 ) and ( MT L2 ) 1 umps . S ub s t i t ut i n g fo r M p 2 f rom E q u a t i o n ( 1 1 1 . 7 . 1 3 ) a n d u s i n g E q u a t i o n s ( 1 1 ! . 7 . 1 7 ) a n d ( I I I . 7 . 1 8 ) , w e get ( 1 I I . 7 . 20 ) S ub st i t ut i n g Q Z = U p L ( T P Z - T ) pm r l s 2 M2 pm ( I I I . 7.21 ) where , T M2 = a ve ra ge t empe r a t u re o f l ump ( MT L 2 ) a n d d i v i d i n g t h ro u g h by M Z C , we ge t P Pl ( I I I . 7 . 22 ) whi c h u po n i n t rod u c t i on o f p er t u rba t i o n va r i a b l e s becomes ( I I I . 7. 23) 80 whe re , 1 5 I II . 7. 1 . 4 a. MP 2 P2 - Wp ; = p pm2 rl • L s2 ' P ri ma ry L ump ( P RL 3 ) M a s s b a l a n ce d dt ( M P 3 ) = W P2 - W P 3 ' ( I I I . 7 . 24) = p A L S i n ce M J = M P p2 p p s2 a n d wp = W ' t h e n 2 Pi d L ) = WP i - WP 3 ( dt P p A p s 2 ( II I . 7.25) u s i n g t h e a s s umpt i o n o f c o n s tant p ri ma ry wate r de n s i ty a n d s o l v i n g fo r W P J ' w e get W P 3 = Wp ; - p A P P dL d �2 . ( I I I . 7 . 26 ) S ubs t i t ut i n g from E q ua t i o n ( I I I . 7 . 1 5 ) we get WP 3 = WP i + p A P P b. dl sl -ar- · ( I II . 7. 27) H e a t b a 1 a n ee ( I I I . 7 . 28) U s i n g E q u a t i o n s ( 1 ! 1 . 7 . 1 8 ) a n d ( I I I . 7 . 26 ) to s ub s t i t ute fo r w p and W ' we get PJ 2 P pA p C P l (T dL dT __2_?_ + L s2 _12) P 3 dt dt ( I I I . 7 . 29 ) 81 D i vi d i n g t h ro u g h by M c p3 Pl = p p A p L s 2 c P l , w e get ( I I I . 7 . 30 ) ( I I I . 7 . 3l ) w h e re T and + a verage t empe ra t u re o f l ump ( MT L 3 ) , M3 = i n trod u c in g pert u rba t i on va r i a b l e s , we g e t u s p m pm3 M P lP l 6T M3 = ( I I I . 7 . 32 ) w h e re , III.7. 1 .5 a. P ri ma ry L ump ( P RL4) Ma s s b a l a n ce ( I I I . 7 . 33 ) s u bs t i t u t i n g M p PAP A l P4 = p p p s l , w e get dl d � 1 = W P 3 - W P4 ' ( I I I . 7 . 34 ) From E q ua t i on ( I I I . 7 . 2 7 ) , we h a ve dL sl - ( A ---at - WP i Pp p + P p Ap dL sl ) --at - W P4 ( I I I . 7 . 35 ) 82 from w h i c h we have ( I I I . 7 . 36 ) b. Heat bal a n ce ( I I I . 3. 37) S ub s t i t u t i n g fo r M p4 = p A l and us i ng Equati ons p p sl ( ! ! 1 . 7 . 2 7 ) a n d ( I I I . 7 . 36 ) , w e g e t p Ap C P l p dT dl T ( P4 s1 + L -en:- sl dl P4 sl �) = ( W P i + p P A P �) C P l T P 3 ( I I I . 7 . 38 ) Di v i d i n g t h ro u g h by M c a n d re a r ra n g i n g , we h a v e P4 P l ( I I I . 7 . 39 ) Q pm4 p pm r l l s l per t u r ba t i o n var i a b l e s , we get S u bs t i t u t i n g fo r w h e re , T P4 = T P l s pm4 = s MP 4 = M pml P1 ' = U ( T p4 -T �4 ) a n d i n trod u c i n g t 83 111.7.1 .6 Outl et P l enum ( PROUT) The equat i o n fo r the o u t l et pl enum i s obta i n ed i n the same way a s fo r t h e i n l e t pl enum. The equa t i on i s a s fo l l ows : doT 1 Po -:-:-_ = __ o T dt ' P4 Po 1 __ 0 T ' Po Po _ ( I I I . 7 . 41 ) where = ' Pi = pr i ma ry wat er o ut l et t emperature . 1 1 1 . 7. 2 Tu be Me t a l Equa t i o n s As i n t h e ca se o f t h e pr i ma ry wa ter l umps i n t h e tube bundl e reg i on , s pe c i a l con s i dera t i on i s neces sa ry for the trea tmen t o f t he dynam i c bo undary between the su bcoo l ed and bo i l i n g sect i on s . Howeve r , the t reatmen t of t he mov i n g bou nda ry i s d i ffe r en t from t h e c a s e o f t h e p r i ma ry wa t e r l umps . bo undary i s mo v i n g a t a rate dl H e r e , i t wa s a s s umed that i f the / d t , i t add s (or s ub t ract s ) a dl l quan t i ty of h ea t a t a ra t e p A C i to the meta l l ump under m m m m d s1 con s i d e ra t i on � where Pm = den s i ty of t u b e metal A m = cro s s sect i o n a l ar ea of tube met al l um p C m = s pe c i f i c heat o f tube metal im = a verage t empe ra ture a t t he bo undary . Thi s a ppro a c h res u l ts i n ma i n ta i n i n g a dyna m i c hea t bal ance for each l ump d u r i n g t h e tran s i en t . 84 1 1 1 . 7.2. 1 T ube Meta l Lump ( MT Ll ) Heat ba l ance d (M -- q· (� pml - 4ms l ) 1 + p mAmC mfm 1 ml C mT ml ) dt T + T 2 S u bs t i t u t i n g Mml = p mAm l s l and T ml = m l 2 m t hen dT dl 1 ml s L T p mA mC m ( ml err-- + s l crt) = ( I I I . 7 . 42 ) Q pml T ml + T m2 d l s l ) crt - { Q ms 1 ) l + pmAm C m ( 2 . ( I I I . 7 . 43 ) D i v i di n g t h ro u gh by Mml c a n d col l ec t i n g te rms , then m ( I I I . 7 . 44 ) - u ms 1 P r2 L s 1 ( T m 1 - r s 1 ) ] . ( I I I . 7 . 45 ) 1 I n trodu c i ng pertu rba t i o n var i a bl e s a n d re pl a c i n g oT s l by � o T d + o T sa t ) , a T s at Where .q sat = a P oP the n t h e de scr i b i n g equat i o n for t he fi rst tube u me ta l l ump ( MT Ll ) becomes 85 u s pm pml eS T Pl Mm l C m 111. 7.2.2 _ ( + u S . S U pm p ml + Ums l ms l ) cS T ml Mm l C m s ms l ms l 2 M C ml m aT s a t cS P . aP ( I I I . 7 . 46 ) T u be Metal L ump ( MTL 2 ) Hea t ba l an ce �t (M C T ) m2 m m2 = Q pm2 (Q ) ms 2 2 T ml + T m2 d L s l ( ) - 6 mAm C m 2 -ar- ( I I I . 7. 47) U s i n g t h e s ame p ro cedure as i n l um p MTL l re s u l ts i n the fo l l ow i ng eq u a t i on u s pm pm2 M m 2 C m c5 T P2 _ U S +U S ( pm pm2c ms 2 ms 2 ) c5 T m2 r� 2 m m ( I I I . 7 . 48 ) 86 III.7.2.3 T u be Me t a l L ump ( MT L 3 ) H e a t b a l ance ( I I I . 7 . 49 ) Fo l l owi n g the s ame p rocedure as i n l ump MTL2 , we h a ve d 0 Tm 3 dt u pms pm2 Mm 3 C m o T P 3 = S + U ms 2 S ms 2 pm2 pm ) oT ( m3 Mm 3c m U _ ( I I I . 7 . 50) I I I . 7. 2 .4 T ube Meta l L ump ( MTL 4 ) A ppl y i ng t he h e a t bal ance a n d us i n g t h e s ame p roce d u re , t h e n the govern i n g equ at i o n for l ump MTL 4 c a n be w ri tten a s do T m4 dt u = + + u S s pml o TP 4 r� 4 c m m ( pm pm 1 U _ pm + U ms l S ms l M m4 c m ) n m4 s ms l ms l o 2 M m4 C m T d S U :J T s a t 1 ( 2m s m s l ) :J P M m4 C m ,� P. ( I I I . 7. 51 ) 87 I I I . 7. 3 III.7.3.1 Secon d a ry S i de Equa t i on s Gen e r a l C on s i de ra t i o n s H e a t i s t ra n s ferred from t he hot p r i ma ry fl u i d ( rea cto r coo l ant ) to the s econdary f l u i d ma i nl y i n the t u b e b u n dl e re gi o n s omet i mes referre d to as the 11 Co re . 11( 3 Z ) Part o f the hea t t ran s ferred i s u s ed i n remo v i n g t h e s ubcool i n g o f t h e secondary wa ter e n t e ri n g the t ube re gi on from t h e down come r . The other part i s u s e d i n t h e bo i l i ng p roce s s and con ve rt i n g part of the secondary wate r i nto s team . T he s team water m i x t u re t h u s formed con t i n ues to mo ve u pwards to the s team s e p a ra to rs w he re the s te am i s s e pa rated and mo ves u pwa rds to the steam s to ra ge and del i ve ry sect i on wh i l e the s e pa ra t e d water moves downwa rds to mi x wi t h feedwat e r i n the downcomer . The c i rc u l a t i o n between t he downcome r a n d t he t u be reg i o n i s a ch i e ve d t h ro ugh the n a t u ra l con vect i on p roces s due to the di f fe re n ce i n de n s i ty o f the s e conda ry fl u i d i n these two re g i o n s . Be ca u s e o f t h e two d i ffe re n t heat t ra n s fe r me c h a n i s ms between the t u be me ta l and the secondary fl u i d , t he a c t i ve heat t ran s fer re g i on i s d i v i ded i nto two s e c t i on s ; a s ub cool e d ( o r p reboi l i n g ) secti on a n d a bo i l i n g sect i on ( e va po rato r ) . I n the s ubcool e d sect i on , t he tempe rat u re o f the secon da ry fl u i d ri s e s from T d a t the downcome r o u t l et to T s a t at the s t a rt i n g o f t h e b o i l i n g s e c t i o n . I n t he boi l i n g sect i on , t h e tempe rat u re stays a t T s a t wh i l e t he ma s s qua l i ty ( x ) o r vo i d fra ct i on ( ) i n crea ses a s t h e secondary fl u i d mo ves a u pwards and mo re heat i s t ran s fe rre d to i t . A t the e n d of the heat t ran s fe r reg i o n , the secondary fl u i d l ea ves the boi l i n g sect i o n w i t h an ex i t q ua l i ty ( x e ) . 88 T h e l en g t h of the subcoo l e d sect i on i s de termi ned by the fracti on o f the h e a t t rans fe rre d nece s s a ry to rai se the s econdary fl u i d tempe ra t u re o f the s e conda ry fl u i d from T d to T s a t · T h e go vern i n g equat i on s fo r the boi l i n g sect i o n a re s i mpl i fi ed by a s s um i n g that t he mass q ua l i ty o f t he two p h a s e mi x t u re c hanges l i n ea rl y w i t h d i s t ance from the s ubcoo l e d/ bo i l i n g bo u n da ry . I I I . 7 . 3 . 2 S u bcoo l ed Secondary F l u i d L ump ( SFS L ) S l i gh t l y s u bcool e d wate r from the downcome r enters t h e U -tube re g i on a t a fl ow rate w 1 and tempe rat u re T d . Heat is t ra n s fe r red to t he s e conda ry fl u i d fl owi n g u pwards ( by n a t u ra l re ci rc u l at i on ) from bot h bran ches o f t he U - t u bes . A s a res u l t o f t h i s , the tempe ratu re o f t he s e condary fl u i d ri s e s u n t i l i t re a c h es T s at , wh i c h i s a fun ct i on o f t h e s eco nda ry system pre s s u re , a n d boi l i n g takes T he l eve l at wh i ch boi l i n g s t a rt s i s a fun ct i o n of the p l ace . fol l owi n g . 1. Fl ow rate a n d tempe ra t u re o f s e co n d a ry fl u i d from the down comer 2. Heat t ra n s fe r rate from tube met a l to the s ec o n d a ry fl u i d T • sat S i nce t he l en gt h o f the s ub coo l e d secondary l um p i s dete rmi ned 3. Steam p re s s u re w h i c h dete rmi nes by the s ta rt of t h e boi l i n g l evel , bot h ma s s ba l a n ce a n d heat bal ance equ at i o n s a re req u i red to re p re s e n t the dynami c s o f t h e s u bcoo l ed l ump . a. Ma s s bal a n ce ( I I I . 7 . 52 ) 89 d ( ) dt Psl A fs L s l i .e. , ( I I I . 7. 53) = where , Psl A fs Ls l = den s i ty o f wate r i n the s ub coo l e d 1 ump = s econdary fl u i d f l ow a rea = l en g t h o f s ubcoo l ed l ump . Negl ecti n g the changes of s ubcool ed water den s i ty duri n g t he t rans i en t , o n e obta i n s ( I I I . 7 . 54 ) whi c h yiel ds do l s l dt b. ( I II . 7.55) = Heat ba l an ce ( I I I . 7. 56 ) where , Ms l C P2 Ts 1 ( Q ms 1 ) 1 ( Q ms l ) 4 = = = = = = = mas s o f wate r i n the s ubcool ed l ump s pe c i f i c heat o f secondary water avera ge tempe rat u re o f water i n t h e s ubcoo l ed 1 ump hea t t ra n s fe r rate between r�1 and s 1 U ms l p r2 L s 1 ( T m 1 - T s l ) heat tra n s fe r ra te between M4 a n d s 1 U ms 1 P r 2 L s l ( T m4 - T s l ) . S i n c e t he d i ffe re n ce betwee n T t hen we can a s s ume that T sl = Td + Ts at 2 d and T s at i s us ua l l y s mal l , ( I I I . 7. 57) 90 S u b s t i t u t i n g from E q ua t i o n ( I I I . 7 . 5 7 ) i nto E q uat i on ( I I I . 7 . 56 ) we get T d+T s at [M 1 C ( ) ] = Um s 1 P r 2 L s l ( T ml + T m4 - T d - T s a t ) 2 s P2 df d ( I I I . 7. 58) S i nce Ms l = A fs p s l l s l , then T d + T sat d [ C A l p )] fs s l s l P2 ( 2 dt = U ms l p r 2 L s l ( T ml + T m 4 - T d - T s a t ) ( ! ! ! . 7 . 59 ) U s i n g o T sat = a T sat o P , w e get aP rlT s at o P ] aP ( ! ! ! . 7 . 60 ) ! 1 1 . 7. 3. 3 Bo i l i ng S econda ry Fl u i d L ump ( S FBL ) T he seconda ry boi l i n g s t a rt s when t he tempe ra t u re o f the secon d a ry fl u i d rea ches T s a t a n d e n d s a t the e n d o f t h e acti ve heat t r an s fe r re g i o n at a l e vel j us t above the t ube b u n d l e . A s the seco n da ry fl u i d mo ves u pwards , the q ua l i ty o f t h e two - ph a s e mi x t u re fo rmed by t he bo i l i n g proce s s i n creases from 0 to a n e x i t q ua l i ty x e . 91 A s s umi n g t he homo geneou s fl ow mo de l , we cons i de r the secondary fl u i d i n t he b o i l i n g sect i o n as a homo geneou s s team wate r m i xt u re wi t h a n a ve ra ge q u a l i ty x , dens i ty p b and entha l py h b where ( I I I . 7. 6l ) ( I I I . 7 . 62 ) v + x v g f f - ( II I. 7. 63) and S i nce t he s i ze and the den s i ty o f t he b o i l i n g l ump change d u ri n g t he t ra n s i en t both ma s s bal ance and heat bal ance equat i o n s a re nece s s a ry fo r t he de s cri pt i on o f t h e b o i l i n g l ump . a. Ma s s bal ance ( I I I . 7 . 64 ) S i n ce the fl ow a rea o f the s e co n d a ry fl i ud i s con stant , then ( I I I . 7 . 65 ) o r , i n term s of pertu rba t i on va r i abl es ( I I I . 7 . 66 ) S i n ce L s l + L s 2 con s t an t , then us i n g t h e e q ua t i on fo r 6 p b ( see A ppen d i x E ) , we get = A fs0 b d6 Lsl d <S P l [ dt + A fs s2 C l b dT + d6 x e = 6 C 2 b (ft"] 1-1 2 - 6 W3 . ( I II . 7·67) 92 b. Heat ba l ance ( A4ms 2 ) 2 + ( A4ms 2 ) 3 + W 2 h f - W h 3 e ( 1 1 1 . 7. 68) where , ( Qms 2 ) 2 heat t ra n s fe r rate between M 2 and s 2 = U 2 P r2 L 2 ( T 2 - T ms . s m s at ) ( 0ms 2 ) 3 heat t ra n s fe r rate between M 3 and s 2 Ums 2 P r2 L s 2 ( T m2 - T s a t ) h f ent ha l py o f s at u rated wate r e n te ri n g the = = = = boi l i n g 1 ump h = enthal py of secondary fl u i d l ea v i n g the bo i l i n g l ump ( h x = h f + X e hf g ) e where , h fg xe = l atent heat o f vapo ri z a t i o n . S u bs t i t ut i n g fo r h b ' ( Q ms 2 ) 2 a n d ( Q 2 ) 3 i n E qua ti on ( I I I . 7 . 6 8 ) , ms we get X e d [ A l + h ( f 2 h fg ) ] dt p b fs s 2 = U ms 2 P r 2 L s 2 ( T m 2 Tsat ) ( I I I . 7 . 69 ) w h i c h u pon l i neari z at i on a n d s ome al geb ra i c man i pul at i on y i e l ds t he fol l owi n g equat i on - U ms 2 P r2 [ Tm 2 + T m 3 - 2 T s at ] o l s l + h f o W 2 - h x 0W 3 e ah a hf + w 2 -af o P - w 3 x e � oP 1 1 I . 7. 3. 4 ( I I I . 7 . 70 ) - w 3 h fg o x e . Drum Equ i va l en t Secon da ry Fl u i d L ump ( S F DRL ) T he d rum eq u i val e n t s econda ry fl u i d l ump i n t h i s mo de l has t he s ame geome t ri cal bounda ri e s a s i n Mo del C . I t can al s o b e d i vi ded i nto the fo l l owi n g pa rt s : 1. R i s e r/Separator vol ume 2. D rum water vol ume 3. Drum s team vol ume . T he e q ua t i o n s des c ri b i n g thes e part s a re devel oped us i n g the s ame pro cedure a s i n Model C a re repeated i n t hi s sect i o n fo r con ven i ence . 1. R i se r/Sep a rator Vo l ume The d e s cr i b i n g eq uat i o n fo r the ri s e r/ s e parator vol ume i s the s a me a s Equati o n ( I I I . 6 . 2 0 ) de ri ved i n Se ct i o n I I I . 6 . 7 . 1 , page 58 , wi t h aw 3 a n d o W 4 repl a c i ng o W 2 a n d a w 3 re s pe cti ve l y , thus Vr( Cl r do xe do P + C2 dt r Cl"t) = ( I I I . 7 . 71 ) 94 1 whe re c r = 1 ( see Appe n d i x E ) . and 2. Drum Wate r Vo l ume T he des c ri b i n g equat i on s fo r t h e d rum wat e r vol ume a re obtai ned from a ma s s bal a n ce equat i o n re l a t i n g the fl ows i n , the fl ows o u t , a n d t h e water l e ve l a n d a heat bal ance eq uat i on des c ri bi n g t h e mi x i n g between re c i rcul ated wate r a n d fee dwater . T h e d rum wate r l ump i s coupl e d to t h e seco n da ry l umps i n t he e ffect i ve heat exchan ge re g i on t h ro u g h t h e downcomer l ump a n d t h e re c i rcul a t i on l oop equat i on s . Fol l owi n g t he s ame p rocedure as i n Sect i on I I I . 6 . 7 . 2 , page 6 0 , we have t h e fo l l ow i n g e q ua t i on s ( I I I . 7 . 72 ) ( I I I . 7. 73) The a bo ve eq ua t i ons a re s i mi l a r to Eq ua t i on s ( I I I . 6 . 2 9 ) and ( 1 1 1 . 6 . 3 0 ) wi t h w 3 rep l a ce d by w 4 as t h e mas s fl ow rate o f the two phase mi x t u re l ea vi n g t h e ri s e r/ s e pa rator vo l ume . 95 3o Drum Steam Vo l ume The l i n e a ri zed e q ua t i o n fo r the drum s te am vol ume i s s i mi l a r to E q u at i on ( 1 1 1 . 6 . 36 ) de ve l o pe d i n Sect i on 1 1 1 . 6 . 7 . 3 , pa ge 62, wi t h w 4 re p l aci n g w 3 a s the ma s s fl ow rate o f t h e two p h a s e mi xt u re l ea v i n g t h e r i s e r/ s e p a rator vol ume , t h u s ( 1 1 1 . 7 . 74 ) Down come r Secon dary Fl u i d L ump 1 1 1 . 7.3.5 ( S FDCL ) As i n the case wi t h Model C , the down come r s econ d a ry fl ui d l ump acts a s a tran s po rt t i me del ay between t he d rum water vol ume a n d t he e ffe ct i ve h e a t exchange re gi o n . The equa t i o n for t h e down comer l ump i s t h e same as Equa t i o n ( 1 1 1 . 6 . 4 0 ) and can be wri tten i n the fo rm dOT d 1 -- = - dt whe re r� • d 1 1 1 . 7.4 = d -w l = ' d ( O T dw - OT d ) ( I I I . 7 . 75 ) res i dence t i me o f the secondary fl u i d i n the down come r 1 ump . The Reci rcu l a t i o n Loop Equa t i on T he reci rcul a t i o n l oo p e q u at i o n i s obta i ne d by a p pl y i n g t h e momentum theory to t h e secondary fl u i d o u t s i de a n d i n s i de the t ube wrappe r . Fo l l owi n g the s ame p ro c e d u re de s c ri be d fo r Model C i n S e ct i on I I I . 6 . 9 , page 6 5 , we noti ce that o ut s i de t h e t u be wrap pe r t he p re s s u re head o f the re ci rcul a t i o n l oo p i s i de n t i c a l fo r Mode l C a n d D , howe ver , the s econ dary fl u i d i n s i de the t ube wrappe r i n Model D i s compo s e d o f t h ree pa rts . 96 1. S ubcoo l ed re g i on o f l en gt h L s l , where t h e tempe ra t u re o f t he s ubcoo l e d fl u i d i s ra i se d from T d a t t h e i n l e t to T s at at t he outl et . T he den s i ty i s a s s ume d con s ta n t i n t h i s reg i o n . 2. N ucl eate boi l i n g re g i on o f l ength LB L - L s l , where bo i l i n g o f t h e s at u rated water l ea vi n g the s ubcool e d re g i on ·, = takes p l ace a n d the mas s q ual i ty o f t h e two pha s e mi x t u re i s a s s ume d to c hange l i ne ar l y from 0 a t t h e i n l et to x e a t t he o ut l e t . R i se r/ se p a rator reg i on o f l en gt h L R , whe re t h e two phase mi x t u re l eavi n g the n u c l eate boi l i ng cont i n ues to mo ve 3. upwa rds i n t h e ri s e r/ se pa rato r vol ume . Therefo re ( � P ) OTW can be cal c u l ated i n t h e same way a s i n E q u at i on ( 1 1 1 . 6 . 46 ) , t h u s ( I I I . 7 . 76 ) whe re , pd Ld = = P dw = P dc L dw + L d c = den s i ty o f t he s econ dary fl u i d o ut s i de the t ube w rappe r = hei g h t o f t h e s e conda ry f l u i d i n t h e d rum wat e r vol ume and t h e downcome r t ra n s port 1 ump . Howe ve r , ( � P ) I TW i s now cal cul ated f ro m the fo l l owi n g equat i on . ( �P ) 1 I TW p s i = p L s sl + p bL B 1 44 + p L r r ( 1 I I . 7. 77) 97 whe re , = den s i ty i n t he s u bcoo l e d reg i on = l en gt h o f the s ubcool ed re g i on P bs = a ve ra ge den s i ty i n t he n ucl eate bo i l i n g re g i on L = l en gt h o f t h e boi l i n g re g i o n Ps L sl p B L r = den s i ty i n t he ri s e r/ s e p a rator re g i o n = 1 ength o f t he ri ser/ s eparator re gi o n . r Us i n g t h e s ame met ho d a s d i s cu s s e d o n page 68 , the e q u a t i o n fo r o W 1 can be re duced to t h e fo rm ( I I I . 7 . 78 ) T he expre s s i on s fo r t he coeff i ci e n t s a , a 2 , a , a n d a a re deri ved 1 3 4 i n Appen d i x D . S umma ry o f the t1odel Equa t i o n s III . 7.5 T he govern i ng equat i on s of Mo d e l 0 t h a t we re deve l o ped i n the p receedi n g sect i o n s can be re presented by the ma t ri x e q u a t i o n whe re x A 1 = and A 2 r = system va r i abl e s ( di ffe ren t i a l + a l gebra i c ) * vector = coeffi c i ent matri ces forc i n g vecto r . A l i s t o f t he sys tem vari abl es i s g i ven i n Tabl e I I I . 2 a n d the nonzero e l ements of t he mat r i ces A 1 a n d A 2 a n d the fo rc i ng ve cto r r a re g i ven be l ow . *T he de fi n i t i o n o f di ffe rent i a l and al ge b ra i c vari abl es wi l l be di s c u s sed i n Chapter I V . 98 TABLE I I I . 2 S YSTEM VA R I AB LES FO R TH E DETA I L E D MODEL ( MODEL D ) l. 2. 3. 4. 5. 6. 7. TP i TP l T P2 p ri ma ry wate r i n l et p l e n um tempe ra t u re fi rst pri ma ry wate r l ump tempe ra t u re second pri ma ry wate r l ump tempe rat u re TP3 t h i rd pri ma ry wate r l ump tempe ra t u re TPO p r i ma ry water out l et pl e n um tempe ra t u re TP 4 T ml 8. T m2 fo urth pri ma ry wate r l ump tempe ra t u re fi rs t tube met a l l ump tempe ra t u re second tube met a l l ump tempe ra t u re t h i rd tube meta l l ump tempe ra t u re 10. Tm3 Trn4 fou rt h tube meta l l ump tempe rat u re ll . L dw d rum wa ter l e ve l 9. 12. 13. 14. 1 5. 16. *1 7 . *1 8. *1 9 . *2 0 . Lsl nonbo i l i n g ( s u bcoo l ed ) l en gth p s team p re s s u re xe boi l i n g sect i on e x i t q ua l i ty T dw d rum wate r tempe rat u re w1 f l ow rate to t he n o n bo i l i n g sect i on Td downc ome r out l e t tempe ra t u re w2 fl ow rate to t h e b o i l i n g s ect i o n w3 fl ow rate from t h e b o i l i n g sect i on w4 fl ow rate from the r i s e r/ se pa rato r vol ume *Al g e b ra i c v a ri a b l e s . 99 1. The A , r1a t ri X A1 ( l , l ) A1 ( 2 ,2 ) = l .0 1 .0 = A1 ( 3 , 3 ) = 1 . 0 T 1 -T 2 A1 ( 3 , 1 2 ) = ( PL P ) s2 A1 ( 4 , 4 ) = 1 .0 A1 ( 5 , 5 ) = 1 . 0 T 4-T 3 P P Ls l = A1 ( 5 , 1 2 ) A1 ( 6 , 6 ) = 1 . 0 A1 ( 7 , 7 ) = Al ( 7 , 1 2 ) /\ 1 ( 8 , 8 ) = ( = T ml - T m2 2L s l ) 1 .0 T = A1 ( 8 , 1 2 ) A1 ( 9 , 9 ) l .0 = -T 2L s 2 �� 1 .0 1 .0 A1 ( 1 0 , 1 0 ) = A1 ( 1 0 , 1 2 ) = _ A1 ( 1 1 , 1 1 ) = 1 0 A1 ( 1 2 , 1 2 ) = M T m 3 - T m4 ) ( 2 Ls l • C s l P 3 T dt T s a t ) ( L 2 sl 1 00 A1 ( 1 2 , 1 3 ) A1 ( 1 2 , 1 6 ) Ms 1 C P 2 2 _ aTs a t aP Ms 1 c P 2 2 = A1 (1 3, 1 2 ) = A1 (1 3 , 14) = A fs P b - A 1 ( 1 3 , 1 3 ) = A fs l s 2 c 1 b A ( 1 4 ,1 2) = 1 A 1 ( 1 4 • 1 3) = A fs l s 2 c 2 b - A fs h b p b ahf A f s p bl s 2 (� A 1 ( 1 4 , 1 4 ) = A fs p b l s 2 · A1 ( 1 5 , 1 3 ) = v c1 r r A1 (l 5 ,14) = v rc 2 r A1 ( 1 6 , l l ) = 1 . 0 A1 ( 1 7 , l l ) A1 ( 1 7 , 1 5 ) = = A1 ( 1 8 , 1 1 ) = A1 ( 1 8 , 1 3 ) = T dw L dw - P g A dw Cl p v s _3 aP A1 ( 1 9 , 1 6 ) = 1 . 0 . 2. The A 2 M atri x w P 1. 1 ) 1 1 A2 ( , Mp ; Tp; hf + � xe a h f 2 + af!l) + A fs l s 2 h b C 1 b A fs l s 2 h b C 2 b 1 01 1 + u pms pm 1 A2 ( 2 , 2 ) = ( M P1 C P 1 ) TP1 A2 ( 2 , 7 ) A2 ( 2 , 1 2 ) _ - upm5 pm1 - M C P1 P1 1 02 u A2 ( 7 , 2 ) p u A2 ( 5 , 1 2 ) s pm pm4 r1 P4 C P 1 _ _ pm r1 T MP4 C P 1 ( P4 - T m4 ) = u ( = s p m pm1 M ml C m _ = u + u s s m l ms 1 pms pm1 ) M m1 C m u s s m 1 ms 1 ) ( 2M c m1 m u _ _ s ms 1 ms 1 2M C m1 m _ pm u s pm2 M m2 c m _ = ( u + u 2s s 2 ms m pms pm 2 Mm 2 c m u s 2s 2 ms ) ( Mm m2 c m A 2 ( 9 ,4 ) u = _ aTs at aP s pm pm2 �� m 3c m aTs at aP 1 03 u + u s s ms 2 ms 2 ) ( pm pm2 r1 c m3 m = dT s sat aP u ( ms 2 ms 2 ) r1 3c m m u s p m pm1 r� c m4 m _ _ + ms 1 ms 1 ) ( pm pmM 1 c m4 m u A2 ( 1 0 , 1 0 ) = A2 ( 1 0 , 1 3 ) - - A2 ( 1 0, 1 6 ) - - A2 ( 1 1 , 1 7 ) - A2 ( 1 1 , 1 8 ) = s u s u ( ms 1 ms 1 ) 2 t1m4 c m s aT sat Cl P u - ms l s r1s 1 2M 4 c m m 1 A p s fs l p s A fs u s ms 1 ms 1 u ( ms � s s �s l ) [ Tm l + Tm4 - T d - T s a t ] + W C ) = (U 2 P2 ms 1 5ms l dT at a � 1 04 A2 ( 1 3 , 1 8 ) A2 ( 1 3 , 1 9 ) A2 ( 1 4 , 8 ) - = 1 .0 - - = - A2 ( 1 4 , 9 ) 1 .0 - ms 2 s m s 2 u u ms 2 s ms 2 s u ms 2 m s 2 ( T + T - 2 T s at ) m2 m3 L5 2 ah aT at + x 2 � \·J 3 e A 2 ( 1 4 , 1 3 ) = u ms 2 s ms 2 a A2 ( 1 4 , 1 2 ) A2 ( 1 4 , 1 4 ) A2 ( 1 4 , 1 8 ) A2 ( 1 4 , 1 9 ) = = = = A2 ( 1 s , 1 9 ) = A2 ( 1 6 , 1 4 ) = A2 ( 1 6 , 1 7 ) = � W 3 h fg - hf hx e = h f - + x e h fg 1 .0 A2 ( 1 s , z o ) = 1 . 0 A2 ( 1 6 , 2 0 ) A2 ( 1 7 , 1 3 ) - - A2 ( 1 7 , 1 4 ) = A2 ( 1 7 , 1 6 ) = w4 P dw Adw 1 P dwA dw - - ( 1 - xe ) P dwA dw ( 1 . - x e ) aT s a t P dwA dw a P w4 P dw f.\ dw w1 P dwA dw . T s at 1 05 A2 ( 1 7 , 1 7 ) = Td P dwAdw ( 1 - Xe ) P dw Adw A2 ( 1 7 , 2 0 ) - A2 ( 1 8 , 1 3 ) = cL A2 ( 1 8 , 1 4 ) = - w4 A2 ( 1 8 , 2 0 ) = X Az ( 1 9 , 1 5 ) = A2 ( 1 9 , 1 6 ) = 1 'd = a = a2 A2 ( 2 o , 1 1 ) A2 ( 2 0 , 1 2 ) - 1'd 3. = - 1 e = w - , Md 1 A2 ( 2 0 , 1 3 ) = a 3 A2 ( 2 0 , 1 4 ) = a 4 A2 ( zo , 1 7 ) · 1 .0. The Fo rc i n g Vecto r f wp ; 1 f ( l ) = - 6 8 . = u-1 "'p ; 'p; f( 1 8) = - P oCL . oe . 1 s at C H APTER I V C AL C ULATION P RO C E DURE AN D RESULTS IV. 1 I n t roduc t i on As wa s s een i n C h a pter I I I , pa ge 2 5 , t h e l umped pa rame ter s ta t e va r i abl e a p proach r e su l t s i n two d i fferent type s of mod el formul a t i on s : 1. Pure D i ffere n t i a l F o rmul a t i o n . I n t h i s c a s e , a l l o f the model equa t i on s a r e d i fferen t i a l . Model s A a n d B bel o n g t o t h i s g ro u p . 2. M i x ed D i fferen t i a l and Al g eb ra i c Fo rmu l a t i o n . I n t h i s ca s e , some o f t h e model equa t i o n s a r e d i fferen t i a l a n d some a re a l g ebra i c . T h e sys tem va r i a bl e s con s i st o f d i fferen t i a l ( o r s ta te ) va r i abl es a n d a l g eb ra i c ( o r i n termed i a t e ) va r i a bl es . A d i fferen t i a l va r i a b l e i s def i n ed ( 3 7 ) a s a var i abl e who s e der i va t i ve a ppea r s at l ea s t o n c e i n the syst em equa t i o n s whi l e an a l g ebra i c var i a bl e i s d ef i n ed a s a va r i abl e who se d er i va t i v e does n o t a ppear a nywhere i n t he system equa t i o n s . �1odel s C and D bel ong to t h i s g ro u p . As t he mod e l compl ex i ty i nc r ea s e s , t he m i x ed d i fferen t i a l and a l gebra i c fo rmu l a t i on has the adva n ta g e o f red uc i n g t he amount o f mat hema t i ca l man i pu l a t i on r equ i red by t he sys tem anal yst a n d accord i n g l y r educ i ng t he po s s i b i l i ty o f a l geb ra i c o r n umeri ca l erro r s i n t h e p ro c e s s o f dyn am i c system a n a l ys i s . T h e ca l c u l a t i on p rocedure fo r o b ta i n i ng t h e system t i me respo n s e a n d frequ ency r e s po n s e fo r bo t h l 06 1 07 formu l a t i on g ro u p s a n d t h e res u l t s o b ta i n ed from t h e m a t h ema t i ca l mo d el s a r e d e sc r i b ed i n t h e fo l l ow i n g section s . IV . 2 C a l c u l a t i on P ro cedure fo r t h e P u re D i fferen t i a l Formu l a t i o n A sys tem of c o u p l ed f i r s t o rder d i fferen t i a l equat i o n s can , i n gen eral , b e wri tt en i n t h e fo rm ( IV . l ) where - x = s ta te va r i a b l e s v ec to r f = fo rc i ng v ec t o r C , D a n d E = coeff i c i en t ma tr i x e s . ( ) Pro v i ded tha t C i s a n on s i n g u l a r ma t r i x, 3B b o t h s i d e s of E q u a t i o n ( I V . l ) c a n b e pre-mul t i p l i ed b y C -l ( i n ve r s e of C ) to g et t he fo l l o wi n g e q u a t i o n ( IV . 2 ) w he r e and A = C B = C -1 -l D = s ta t e coeff i c i en t ma t r i x E = fo rc i ng coeff i c i en t ma t r i x . E q u a t i o n ( I V . 2 ) i s t h e " c l a s s i ca l '' form fo r the ma t hema t i c a l represen ta t i o n o f a system o f f i r s t ord e r d i fferen t i a l equa t i on s . T h i s equa t i o n ( ) ( ) fo rm s t h e ba s i s fo r t h e computer codes MATEX P 39 a n d S F R - 3 4 0 t ha t a r e u s ed i n t h i s s t udy t o cal c u l a t e t h e t i me r e s po n s e a n d freq uency r e s po n s e r e s pect i v el y . 1 08 T h e g en eral so l u t i on o f E q u a t i on ( I V . 2 ) i n t h e ti me doma i n i s g i ven by ( 41 ) A ( t- t ) 0 x( t ) 0 x( t) = e + t A ( t- r ) B f( r ) dr t e 0 ( IV . 3) where = x( t ) o i n i t i a l co nd i t i o n s vector and "" {A( t-t ) } 0 L ( IV.4) k! k =O T h e fo l l owi n g co n v en t i o n s a r e u s ed i n t h e ma t r i x ex pon en t i a l i n Equa tion ( I V . 4 ) { A ( t-t ) J 0 and 0 0! = I = i d ent i ty ma t r i x l. = F rom E q u a t i on ( IV . 3 ) , i t ca n b e s e e n t ha t g i ven the i n i t i a l c o n d i t i o n vecto r x ( t 0 ) , t h e co eff i c i en t ma t r i c es A a n d B a nd t h e forc i n g v e c to r f ( t ) , t h e s o l u t i o n a t a l a ter i n s ta n t t can be fo u nd . T h e d eg r ee of a c c u r a cy of t h e s o l u t i on d epend s on t h e number of term s u s ed i n the c a l c u l a t i o n o f the ma t r i x expon e n t i a l i n E q u a t i on ( I V . 4 ) a n d the me tho d of n umer i ca l i n t eg ra t i on u s ed to cal c u l a t e t h e i n tegral i n E qu a t i o n ( I V . 3 ) . T h e m e t hod for ha n d l i ng t h e i n t eg ra l t erm i n t h e t�TE X P computer p ro g ram i s t o a s sume t ha t t h e fo rc i n g funct i o n i s p i e c ewi s e c o n sta n t . t ft o e A ( t - -r ) T h i s g i v es : B f ( T ) d-r = [ I - e A ( t-t ) o ] A -l B f ( t0 ) . ( IV . 5) 1 09 T h e frequ ency r e s po n s e can b e o b t a i n ed by s t a rt i ng w i t h E q u a t i o n ( I V . 2 ) a n d La p l a c e tran s fo rm i ng S x( S ) = (42) bot h s i d e s , t h u s A x(S) + B F(S) ( IV . 6 ) where s = L a pl a c e t ra n s forma t ion v ar i a b l e x(s ) = L a pl a c e tra n s form of x ( t ) F(S) = L a pl a c e tran s fo rm o f f ( t ) = co effi c i en t ma tr i c e s , a s s umed con s ta n t . A ,B Rearran g i ng E q u at i on ( I V . 5 ) a n d s o l v i ng fo r x ( S ) , we g e t x(S) = [SI - A f 1 B F( S ) . ( IV . 7) For a s i n gl e fo rc i n g e l ement f ( t ) i n t he fo rc i n g ve c tor f ( t ) , m E q u a t i o n ( I V . 7 ) can b e wr i tt e n a s x(S) where = = [SI - A] -l 5 r1 F m (S) ( IV . S) L a pl a c e tran sfo rm o f f ( t ) m b nm T h e frequen cy r e s po n s e vecto r of t he sys t em s t a t e var i a b l es wi th r e s pe c t to t h e fo rc i n g el ement f c a n be obta i n ed from E q u a t i o n ( I V . S ) by m r e p l ac i ng S by j w , t h u s 1 10 [jw r - Ar 1 5 ( IV . 9 ) m F rom E qu a t i o n s ( I V . 3 ) and ( I V . 9 ) , t h e cal c u l a t i o n procedure fo r o bt a i n i ng t h e dynam i c r e s po n s e when t h e mat h ema t i c a l mo del co n s i s t s o f a sys tem o f fi r s t order d i f fe r en t i a l equa t i o n s ( Model s A and B ) can b e s u mma r i zed a s fo l l o ws : l. Cal c u l a t e t h e g eomet r i cal pa rameters n eeded to est i mate t h e v o l u m e s of t he d i fferen t l umps i n t h e mod el u s i n g a va i l a b l e d e s i gn d a t a a n d / o r en g i n e e r i n g j u d g ement . 2. Ca l c u l a t e t h e t he rmal a n d hyd ra u l i c pa ramet e r s re q u i red for t he cal cul at i on of t h e co effi c i en t ma t r i c e s and fo rc i n g vecto r s . T h i s cal c ul a t i o n i n c l ud e s t h e ca l c u l a t i o n o f t h e h ea t tra n s fer coeffi c i en t s and steady s t a t e p a ramet e r s . 3. Fo r t i me r e s po n s e an a l ys i s , i n p u t the coeffi c i e n t ma t r i x a n d fo rc i n g func t i o n to t h e computer cod e r�ATEXP ( 39) t o g e t h e r w i t h t h e prog ram con t ro l card s d e s c r i b ed i n R efer en c e 3 9 . 4. For frequ e n cy r e s po n s e a na l ys i s , i n p u t t h e c o e ffi c i en t matr i x a n d t h e fo rc i n g funct i o n t o t h e computer code S FR -3 ( 4 0) together w i t h t h e program c o n t r o l c a r d s desc r i b ed i n Referen c e 4 0 . 111 C a l cu l a t i on P ro ced u r e fo r t he Mi xed D i ffere n t i a l a n d Al gebra i c IV . 3 F o nnul a t i on A s the dyn am i c model compl ex i ty i n crea s e s , t h e mathema t i ca l man i pu l a t i o n effo r t c a n b e con s i d era bl y red u c ed whe n t he a l ge bra i c e q uat i o n s r e l a t i ng sy stem i n termed i ate var i a bl e s to sys tem s ta t e v a r i a b l e s a r e l ef t i n t h e mo del . I n t h i s ca s e , t he ma t hema t i c a l model o f t h e sys tem con s i s t s o f a set of f i r s t o rd e r e q ua t i on s ha v i n g bot h d i ffer en t i a l a n d a l g ebra i c va r i a b l e s t h a t can be wr i tten i n t h e form: - g u(t) ( IV . l O) w h ere z - - g = vector o f sys tem va r i a b l e s ( d i fferen t i a l + a l gebrai c ) = v ector of con sta n t mul t i pl i e rs o f t he t i me vary i n g fo rc i n g fun c t i o n u(t) = a r b i t r a ry fun c t i o n o f t i me represen t i n q sy s t em i n p u t ( fo rc i n g fun c t i on ) A 1 and A 2 = coeff i c i en t ma tr i c e s . I f the syst em va r i a bl e s a re compo sed o f n d i ffe re n t i a l ( o r st a t e ) v a r i a bl e s a n d r a l g e b ra i c ( o r i n t ermed i a t e ) va r i a b l e s , then ma tr i x E q u at i on ( I V . l O ) ha s t h e order m wh i c h i s equal to ( n + r ) . · The met ho d o f o bta i n i n g t h e t i me r e s pon s e a n d t he frequ ency r e s po n s e when t h e sy s tem dynami c model can b e r e p r e s e n t e d by E quat i on ( I V . l O ) i s d e s c r i bed i n Referen c e 37 a n d i s s umma r i z e d b e l ow fo r co n ve n i en c e . 112 T i me R espon s e C a l cu l a t i on IV. 3 . 1 T h e s e t o f equ at i on s re presen ted by mat r i x E q ua t i on ( I V . l O ) i s f i r s t r eord ered i nt o m d i fferen t i a l equa t i on s fol l owed by r a l g ebra i c equa t i o n s a n d then reduced to a system o f n d i ffe re n t i a l ( e q u a t i on s u s i n g t he com p u t er code P U R E D I FF . J? ) s e t of p u r e d i fferen t i a l eq u a t i o n s i s s o l ved I�TE X P . ( J g ) T hen t he redu ced us i ng t he co�p uter code The method of remo v i n g the a l g eb ra i c var i a b l e s from the equat i on s i s d e s c r i b ed bel ow. After r eorder i n g E q ua t i o n ( I V . l O ) c a n be wr i tt e n i n the pa rt i t i o n e d ma t r i x fo rm ( IV. l l ) wh ere x- y d i fferen t i a l var i a b l e v ec t o r = a l g ebra i c va r i a b l e vecto r . Equa t i on ( I V . l l ) can b e ex pa n d ed to o b ta i n t h e fo l l ow i ng equat i o n s ( IV . l 2 ) d R 2 1 d tx + T 2 1 x- + T 22 y- = g2 u ( t ) ( IV. l 3) · T h e a l gebra i c va r i a b l e v e c t o r y i s el i mi n a t ed by pre-mul t i p l y i n g bot h s i d e s o f Equa t i o n ( I V . l 2 ) by t h e i n ve r s e o f T 1 2 and pre-mu l t i pl yi n g bot h s i de s o f E q u a t i on ( I V . l 3 ) b y t h e i n v e r s e of r 2 2 a n d s u bt r a c t i n g t h e r e s u l t i n g e q ua t i on s to g et 113 - 1 g- - - 1 g T T2 2 2 J u ( t ) [ 12 1 ( IV . 1 4) pre -mul t i pl y i n g E qu a t i o n ( I V . 1 4 ) by r 1 2 we get dx - 1 -1 -1 _, [ R l l = T l 2 T 22 R 2 1 J dt + c T l 1 - T l 2 T 22 T2 1 ] x = -1 -1 [ g l - T l 2 T 22 g 2 J u ( t ) . ( IV . 1 5 ) E qu at i on ( I V . 1 4 ) can b e wri t t en i n t h e con c i s e form B where �� + C x = 5 u(t) ( IV . l 6) -1 B = [R l l - T 1 2 T 22 R 2 1 J c = -1 [ T l l - T l 2 T 22 T2 1 J 6 = [g - T 2 T l z l 1 g2] rlu l t i 1J l yi n g bo t h s i d e s o f Equa t i on ( I V . l 6 ) by B - l g i ve s �� + B-1 C x = B-1 5 u ( t ) . ( IV . l 7) Equa t i on ( I V . 1 7 ) i s i n t h e 11 C 1 a s s i ca l " fo rm s u i ta b l e for u s i n g t he t i me r e s po n s e code MA T E X P . ( 3 9 ) An i mpor ta n t feat u re of t he a bo v e met hod i s t h a t i t i n vol v e s mat r i x i n ver s i o n wh i c h may pro d u c e error i n t he re s u l t s w h e n any of the ma tr i ce s i n vo l ved a re i l l - c o n d i t i o ned . ( 4 3 ) T h i s rro bl em �ay be avo i ded by c ha n g i n g t h e o rder i n g o f t he sys t em equ a t i o n s . 114 IV . 3 . 2 F r equ ency R espo n s e Ca l c u l a t i o n T he freq u e n cy r e s pon s e vec tor fo r t h e dynam i c sys t em re presented by E quat i on ( I V . l O ) can b e obta i n ed by repl a c i n g S by jw i n the tra n sf er f u n c t i on vecto r G ( S ) d e f i n ed a s G(S ) = �f�� . ( I V . l S) The tran s fer f u n c t i on vector can b e o bta i n ed by two met ho d s . 1. F o l l owi n g t he same proced u re a s i n t he t i me re s po n s e c a l c u l a t i o n , o n e ca n red u c e t h e sys t em o f comb i n ed d i ffe ren t i a l a n d al g ebra i c e q ua t i o n s to a set o f pure d i ffere n t i a l eq uat i o n s o f t h e form dx = A x + -g u ( t ) . dt ( IV . l 9) The computer cod e , S F R - 3 , (4 0 ) c a n t hen b e u s ed to obta i n t he freq u en cy respo n s e vector G ( j w ) u s i n g the fol l ow i n g rel a t i o n G ( j w ) = [j w I 2. Th e - A] -1 - g. ( I V . 20) sys tem equ a t i on s can b e k ept i n t he o r i g i na l m i x ed mo d e ( d i ffe ren t i a l + a l g eb ra i c ) fo rmu l a t i on a n d a mod i f i ed ver s i o n o f the S F R - 3 co de d evel o ped i n R eference 3 7 can b e u sed to obta i n the fre qu ency re s pon se vec tor G ( j w ) u s i n g t h e fo l l owi ng rel a t i on ( IV . 21 ) 115 From t h e a bo v e d i scu s s i on , i t can be seen t ha t t h e ca l c u l a t i on proced ure fo r obta i n i n g t h e dyn am i c r e s po n s e when t h e ma t hema t i ca l mo d el con s i s t s o f a m i xed s et o f d i fferen t i a l and a l geb ra i c e q u a t i on s ( Mo d e l s C a n d D ) can b e s umma ri z ed a s fo l l ows . 1. C a l cu l a t e t he g eomet r i c p a ramet ers n eeded to e s t i ma t e t h e vo l ume s o f t h e d i fferen t l umps i n t h e mo del u s i ng a va i l a b l e d e s i g n d a t a a n d/ o r en g i n e e r i n g j u dgemen t . 2. C a l c u l a t e t he t h e rma l a n d hyd ra u l i c para met e r s requ i red for t h e c a l c u l a t i on of t h e coeff i c i e n t ma tr i c e s a n d forc i n g vecto r s . T h i s c a l c u l at i o n i n c l u d e s t he c a l c u l a t i o n o f t h e h ea t t ran s fe r coeff i c i en t s a n d st eady sta t e pa rameter s . 3. For t h e t i me r e s po n s e a na l y s i s , i n pu t t h e c o e f f i c i e n t ma t r i c e s A1 and A 2 t o g et h e r wi t h t h e fo rc i n g fun c t i o n t o t he computer code P U RE D I FF fo rm . ( 3 ?) to r ed u c e t h e system to p u re d i fferen t i a l T h en u s e t h e compu t e r code 11ATE X P ( 3 g ) t o o b ta i n t h e t i me res po n s e . 4. For t h e freq u en cy r e s po n s e a n a l ys i s , e i t her u s e t h e mod i f i ed vers i o n o f t h e S FR - 3 code ( 3 7 ) o r u s e t h e reduced syst em mat r i x a n d fo rc i n g ve ctor obta i n ed from s t e p 3 a s i n pu t to t he com p u t e r code S F R - 3 . ( 4 0) V . 4 Geome t r i ca l C a l c u l a t i o n W he n the d e s i gn d eta i l s of t h e steam g en e rator a re k n own to the 1a l ys t , t he ta s k o f c a l c u l a t i n g the l en g t h s , a r e a s a n d vol umes ?ce s sa ry fo r the dyn a m i c re s pon s e ca l c u l a t i o n red u c e s to a s i mpl e t s k tha t ha s to be r e p ea t ed when t h e d i men s i o n s a n d / o r 'Omet r i cal con f i g u r a t i o n c han g e . Ho weve r , s i n c e t he d e s i gn de ta i l s 116 of nucl ear s team g en erato r s a re often con s i d ered a s pro p r i e ta ry i n fo rmat i o n , t he method o f ca l cu l a t i ng g eometri cal i n put data fo r dynami c r e s po n s e c a l c u l a t i on from t he d es i gn deta i l s i s rul ed o u t when thi s i n fo rma t i o n i s not a va i l a bl e . I n thi s study , the on l y i n fo rma t i o n a v a i l a bl e to t he a u t ho r i s th e s ee p i n g de s i gn data u s u a l l y l i s ted i n t he sa fety a n a l ys i s re po r t o f a n uc l ear power pl ant . (2) T he r e fo r e , en g i n e er i n g j ud gemen t and pro port i onal i ty p r i n c i pl e s a re u sed to o bta i n t he geomet r i ca l pa ramete r s u s ed a s i n pu t to t he dyn am i c res po n s e ca l c ul a t i on a l gor i thms . I n thi s sect i on , t he met hod o f ca l cul a t i n g t he geometr i ca l parameters i s d e sc r i bed a n d t he n a pp l i ed to t h e H . B. Rob i n son Un i t 2 steam g en erato r u s i ng t he steam g en erator des i gn data obta i n ed from Refe ren ce 2 and s hown i n Tabl e I V . l . P r i mary S i d e IV.4.1 On t he p r i mary s i de , i t i s requ i red to dete rm i n e the vol ume of the pr i ma ry water in t he i n l e t and o u t l et p l enums a n d fl ow a rea i n t he effec t i ve heat exc ha n ge reg i on ( U -tube reg i o n ) . T h e U-tu bes are r e p l a ced by two stra i g ht - tube bra n c hes and t he average l en g t h of ea c h bra n c h i s c a l cul a t ed as fo l l ows ( I V . 2l ) where S D 0 0 N L 2 = total heat t ra n s fer s u r fa c e , ft = U - t u be d i ameter , i n . = n umber o f U - tubes = l en g t h of s t ra i ght tube bran c h , ft . 117 TAB L E I V . l H . B . RO B I NSON STEAt1 GErl E RA T OR DES I GN DA T A* H umbe r o f S team Gen e ra t o rs 3 De s i gn P re s s u re , Reacto r Coo l ant/Steam , ps i g 2485 / 1 085 Des i gn Tempera t u re , Rea cto r Coo l a nt/Steam , ° F 650/ 5 5 6 Rea ct o r Coo l an t F l ow , l b/ h r 33 . 9 3 To t a l Heat T ran s fe r S u r fa c e Area , ft 2 X 10 x 10 6 44 , 4 3 0 Steam Co n d i t i o n s a t F u l l Load , O ut l et N oz z l e : S t e am F l ow , l b/ h r 3. 1 96 S t e am Tempe ra t u re , ° F 516 S t e am P re s s u re , p s i g 770 Fee dwate r Tempera t u re , ° F 4 35 O v e ra l l H e i ght , ft - i n . 63 - l . 6 S he l l O D , u pper/ l owe r , i n . 1 6 6/ 1 2 7 . 5 S he l l T h i c kn e s s , u ppe r/ l owe r , i n . 3 . 5/ 2 . 6 3 N umb e r o f U- t u be s 3260 U-tu be D i ame ter , i n . 0 . 8 75 Tube W a l l T h i c kn es s , ( a ve ra ge ) i n . 0 . 05 0 2 2 00 MWt Reac to r Coo l a n t Wa te r Vo l ume , ft 3 Seco n d a ry S i de Wate r Vo l ume , ft Secon d a ry S i d e S t e am Vo l ume , ft 3 3 *Ta b l e 4 . 1 -4 , Reference 2 . 6 Zero Powe r 928 928 1 5 36 3089 3203 1 64 0 118 The fl o w a r ea o f t h e pri mary wa ter i n t h e t u be re g i on i s de term i ned by t he fol l owi n g equat i on A = p D.2 1T �,-,1-.--- 4x1 44 N • ( IV . 23) w here A p D. 1 N pr i ma ry fl ow a rea , ft = U - t u be i n s i d e d i ameter , i n = number o f t u be s . i n s ide The tube 2 = d i amet er i s o bta i n ed f rom t he tube o ut s i d e d i ameter T h e i n l e t a n d o utl et pl enums are eac h and t he. tu b e wa l l t h i c ke n s . a s s umed to ha ve t he same vo l ume wh i c h i s g i ven by ( I V . 24 ) where V PL vp V IV . 4 . 2 t 3 = vo l ume of i n l et or o utl et pl enum , ft = steam g en erator p r i ma ry water vo l ume , ft = 3 vo l ume o f pr i mary water i n s i d e t he U-tubes , ft . 3 Tube Meta l The c r o s s sect i on area o f t h e tube metal ( A ) i s g i ven by m A m = 1T ( D 02 0�) 1 -.--.r....---'-- 4xl 44 • N. ( IV . 25 ) The surfac e area per un i t l en g t h i s u s ed i n the ca l cu l a t i on i n the hea t t ran s fe r a r ea and can b e d etermi n ed a s fol l ows p ri = D. -,i1T · N ( I V . 26 ) 119 n = D 0 12 N. ( IV. 27) . S ec o n d a r,t S i d e IV .4 . 3 The s econdary s i de i s d i v i d ed i n to t hree pa r t s . 1 . S econda ry fl u i d i n t h e effec t i ve heat exc han g e reg i o n . 2. S ec o n d a ry fl u i d i n t he down comer reg i on . 3. S e condary fl u i d i n t he d r um equ i va l en t r eg i on . For t h e effec t i v e h eat exc ha n g e reg i on and t h e down comer r e g i o n , i t i s po s s i bl e to d e term i ne t h e fl ow area a n d t h erefo re t h e vol ume o f a ny seco n d a ry fl u i d l um p i n t h e s e reg i on s from a k nowl ed g e o f t h e l en g t h o f t he l um p . However , fo r the d rum equ i va l ent reg i o n , i t i s on l y po s s i bl e to e s t i ma t e l um ped vol umes d u e to t he compl ex g eometr i ca l con f i gu ra t i o n i n t ha t reg i o n s i n c e i t i n c l u d e s t h e feed wat er r i n g a n d t h e s t eam separa t ors a n d d r i er s . T h e ca l c u l a t i on o f t h e g eome tr i ca l parameters i n t he a b o v e reg i o n s i s d e s c r i b ed be l ow . l. E ffec t i ve H ea t Exchan g e Reg i o n . T h e effec t i ve hea t e x c ha n g e reg i on i s bou n de d by t he t u b e -wrapper , t he t u b e p l a t e a n d a f i xed pl an e j u st a bo v e t he U - t u b e s . The s ec o n da ry fl u i d fl o w a rea i n t h i s reg i on can b e e s t i ma t ed from t h e a rea i n s i d e t h e tu b e wra p pe r a n d t h e a r e a occu p i ed by t he U -t u b e s , t hu s , A s = ( I V . 28 ) A - A w t where A s = s econdary f l u i d fl ow a r ea , ft 2 1 20 A A w t 2 = a r e a i n s i d e t h e tu be wra p per , ft = 2 a rea o cc u p i ed by t h e U - t u b e s , ft • T he a rea i n s i d e the t u b e wra pper c a n b e e s t i ma t ed from t h e t u bes a rra n gement , n umbe r a n d o u t s i de d i amete r . T h e l e n gt h o f t he e ffect i ve hea t exc han g e r eg i on i s a s sumed to b e t h e same a s t he stra i g ht t u be b ra n c h l en gt h cal c u l a t ed by E qu at i o n ( I V . 22 ) . 2. Oown comer Reg i o n . The down comer reg i o n i s de f i n ed by t he a n n u l ar s p a c e b etween t he s t eam gen erator l ower s h el l s ec t i on a n d t he tube wra p pe r . T h e down come r fl ow a rea i s d et erm i n ed by ( I V . 29 ) w here A A d LS A w = = = downcome r f l o w a rea , ft 2 i n s i d e a rea o f t h e l ower s he l l s e c t i on , ft a rea o f t h e t u b e wra pper , ft 2 2 T h e l en g t h o f t he down comer s ect i on i s a s s umed to b e e q u a l to t he same a s t he l en g t h o f t h e e ffect i ve h e a t e x c h a n g e r eg i o n . 3. Drum E q u i va l ent Reg i o n . A s d e s c r i bed i n C ha pter I I I , pa g e 56 , t h e d ru m e qu i va l ent reg i o n i s compo s ed of t h ree sec t i on s . a. R i s er/ s epa rator vol ume b. Drum wa t er vol u�e c. Drum s t eam vol ume . 1 21 T he d i men s i o n s fo r t h e s e sec t i o n s were e s t i ma ted u s i ng eng i ne er i ng j udgement and propo r t i onal i ty pr i n c i p l e s u s i n g t he s t eam gen era tor d i men s i o n s and t he s econdary s i d e wat e r and st eam vol ume s g i ven i n Ta b l e I V . l . IV . 4 . 4 R e s u l t s for H . B. Rob i n son S team Gen era to r T h e g eometr i ca l data cal cul ated fo r the H . g en erat o r can be s umma r i zed a s fo l l ows . A. Ro b i n son st eam P r i ma ry S i de 1 • Number o f tube s = 326 0 3. S tra i g h t tube branch l ength = 29 . 7 5 ft 2 P r i ma ry fl ow a rea = 1 0 . 68 ft 4. Pri ma ry i n l et p l enum vol ume = 1 46 . 2 7 ft 5. 3 P r i mary o u t l et p l enum vol ume = 1 46 . 2 7 ft . 2. B. B. T u be Meta l 2 1. T u b e metal c ro s s s ect i o n = 2 . 934 ft 2. P r i ma ry/meta l h eat tran s fer a rea p e r u n i t l en g t h = 661 . 436 ft 3. Meta l / s econdary h eat tran s fe r a rea per u n i t l ength = 746 . 783 ft . C. 3 S econdary S i de 1. Effec t i ve exc hange reg i on Fl ow a rea ( A ) = 5 2 . 9 3 ft s 2 To tal l ength ( L ) = 2 9 . 7 5 ft . t 1 22 2. Down comer r eg i o n F l ow a r ea ( A ) = 7 . 6 1 4 ft d 2 L e n g t h ( L ) = 29 . 7 5 d 3. Drum e q u i val en t reg i o n Drum wa ter vol ume ( V D r um wa ter a rea ( A dw dw Drum wa ter l en g t h ( L Drum s t eam vo l ume ( V ) dw ss ) = 9 7 3 . 88 ft = 1 0 1 . 1 3 ft = 2 ) = 9 . 6 3 ft 3 ) - 2966 . 38 ft - R i s er/ s e p a rato r vol ume ( V ) r R i s er / s e parator a rea 3 = 408 . 5 f t 42 . 4 2 ft 3 2 R i s er/ s e parator l en g t h = 9 . 6 3 ft . IV. 5 C a l c u l at i on o f Heat Tran s fer C o e ff i c i en t s I n t h e effec t i v e heat excha n ge r eg i o n , h ea t i s t ra n s fe r red from t he p r i mary s i d e to the s econdary s i d e thro u g h t he U - t u b e wa l l s . On t h e pr i ma ry s i d e , p re s s u r i z ed wa ter pa s s e s i n s i d e t h e U-t u be s and tra n s fe r s h e a t to t h e t u b e met a l . Ac ro s s t h e t u b e t h i c k n es s , heat i s t ra n s ferred by rad i a l conduct i on . O n t he secon da ry s i de , s l i g h t l y s u bcool ed wa t er , the n two p h a s e s t e am/ wa t er m i x t u re fl ows by n a t u ra l c i rc u l a t i o n o u t s i d e t h e U - t u bes . Me ta l -to - l i qu i d heat tran s fer o cc u r s i n t h e s u bcool ed s eco n d a ry reg i o n whi l e n u c l ea t e bo i l i n g i s t h e p r i ma ry hea t tran s fer mecha n i sm i n t he bo i l i n g s econda ry re g i o n . 1 23 I n t h i s s ec t i on , the me t ho d u s ed i n cal cul a t i n g t h e h ea t tran sfer coeffi c i en ts i s desc r i b ed and the resu l t s u s ed a s i n p u t for t h e d ynami c r e s pon s e cal c u l a t i o n s a r e reported . F i l m H ea t Tra n s fer Co eff i c i en t s IV. 5 . 1 Th e D i t tu s -B o e l ter Correl a t i on is t he mo st d e s i ra b l e corre 2? ) l at i on fo r c a l c u l at i n g f i l m h ea t tra n sfer coeffi c i en t s when ( con v ec t i on i s the pr i ma ry heat tran sfer mec han i sm . T h i s correl a t i on can b e wri tten i n t he form = where U FC K G 0 C � p 0 . 0 23 K (0) G D 0.8 (--�--) � C n ( �) = f i l m hea t tran sfer c o eff i c i en t , Btu/ hr ft = therma l conduct i v i ty , B t u/ hr f t o F = ma s s v el oc i ty , l bm/ h r ft = hyd ra u l i c d i ameter , ft = v i sco s i ty , l bm/ ft hr ( I V . 30 ) 2 °F 2 = s p ec i f i c heat at c on s ta n t pres s ure , B t u/ l bm ° F . T h e val u e o f t h e i nd ex n i s ta ken a s 0 . 3 for c a l c u l a t i n g t he hea t tran sfer coeffi c i ent b etween the pr i ma ry wa ter a n d t h e i nn e r s u r fa ce of the tubes and a s 0 . 4 fo r cal c u l a t i ng t h e h e a t tran sfer co effi c i en t between t he ou t s i d e s u rface of the t u be s a nd the s econd ary fl u i d i n the su bcool ed reg i on . I n the bo i l i ng reg ion of the s econdary fl u i d , the hea t tra n s fer i s en ha nced by t h e bo i l i n g mec ha n i sm . I n t h i s r eg i on , the fi l m heat t ra n s fer coeff i c i en t c a n b e cal c u l a t i ng u s i n g a correl a t i o n pro po s ed by C he n . ( 44 ) In 1 24 t h i s co r r e l a ti on , the hea t tran sfer co eff i c i en t i n the s a tu ra ted n u c l eate bo i l i ng reg i o n i s a s s umed to ha ve co n tr i bu t i o n from b o t h n u c l ea te bo i l i ng a n d con v ec t i on , thu s ( I V . 31 ) where U U TP NCB U C = heat tran s fer co effi c i en t i n the bo i l i ng reg i o n = co ntr i b u t i o n d u e t o n u c l eat e bo i l i ng = con t r i b u t i o n due to con v ect i o n . I t wa s a s su me d tha t t h e con vect i o n compon en t , U ' coul d be C represented by a mod i fi ed D i tt u s -Boel ter typ e equa t i o n U -x) 0.8 � C 0 . 4 K f ( -) F ] [.:._ K J__Q_ D f = 0 . 023 [ G ( l C �f ( IV . 32) where F i s a parameter d ef i n ed s u c h that ( I V . 33 ) F i s a f un c t i o n of the Mart i nel l i fa ctor X = 1 (2) where x X 0. 9 (vf ) Vg 0. 5 ( ,,.. f ) ;g tt 0.1 = ma s s qua 1 i ty v f = s pec i f i c vol ume o f satura ted l i q u i d vg = s pec i fi c vol ume o f saturated st eam � f = v i sea s i ty o f saturated l i qu i d � g = v i sco s i ty o f satura t ed steam . defi n ed a s ( I V . 34 ) 1 25 T h e n uc l eate bo i l i ng contr i bu t i o n h i s g i ven by N CB 0 . 79 0.45 0.49 K C pf pf f ., 4 J U N C B = 0 . 1 7 2 [-0. =---==--=5_� o .... . 2o:-r 0 .�--= 24 0 . 29 h fg � P o g f 5 • � T sat o . 24 ( 44 ) • t, P sat o 75 . ( I V . 35) T h e reader i s referred t o R eference 4 4 fo r t h e d eta i l s o f c a l cul a t i ng t h e hea i t r a n s fer co effi c i en t i n t h e bo i l i ng reg i o n u s i ng C hen ' s correl a t i o n . IV . 5 . 2 Tu be Metal Conductance S i nc e the t h i c kn e s s o f the t u be wal l i s very sma l l rel a t i v e to the tu be l eng t h , the tu be metal con d u c ta nc e can be e s t i ma ted u s i n g t he fol l ow i n g equ a t i o n ( 45) ( I V . 36 ) where � b w = t hermal cond u ct i v i ty of tube meta l = t h i c k n e s s o f tube wal l ( i n c h e s ) . Effec t i v e area for hea t conduc t i on t hrou g h t he tube wal l i s g i ven by A m I V . 5. 3 = A 0 - A1· A l n ( o) Ai • ( I V . 37 ) Overal l H eat Tra n s fer Coeff i c i en ts The o veral l hea t tran sfer r e s i sta n c e i s the sum o f the res i s tances o f t h e pr i mary s i d e fi l m , the t u be wa l l , fo u l i ng a n d the s econ dary s i d e fi l m. B a s ed on t h e secon dary s i de heat tra n s fer a rea we have A A 1 1 1 1 · o + f + o + = -U u U U . A 1. ;a:; 1 m o ( I V . 38 ) 1 26 w here U = o v e ra l l h ea t tra n sfer coeffi c i ent u. u 1 m uo = pr i ma ry s i d e f i l m heat tra n s fer coeffi c i ent = tu b e me tal condu c ta n c e = s econd a ry s i d e f i l m he at t ran s fer coeff i c i en t f = fo ul i ng fa c to r A . = i n s i d e t u b e area 1 A 0 = o u t s i d e t u be area . The secondary s i d e f i l m heat t ran s fer coeff i c i ent depends on whether the secondary fl u i d i s s u bcoo l ed o r bo i l i n g . Fou l i ng fac to r s may b e con s i d ered to repre sent sa fety fa c tors t ha t i ncrea se t h e d e s i gn area o f the s team gen era to r to compen sate for po s s i bl e s c a l e b u i l d up on t he tube meta l su rface s . S i nce the pr ima ry cool a n t i s ma i n taj n ed a t ext remel y h i g h pur i ty l evel , fou l i ng o n t he p r i ma ry s i d e i s o ften negl i g i bl e . Secondary s i d e sys tem pu r i ty i s l ower and some fo ul i ng a l l owa n c e mu s t b e con s i dered i n cal c u l at i ng t he overa l l heat t ra n s fer co effi c i en ts . sta t ed that an a l l owa n c e o f 0 . 0003 ( ° F ft 2 Fra a s e t a l . ( 4S ) ht/ B tu ) i s gen era l l y con s i d ered rea sona bl e . IV. 5.4 Comb i ned F i l m and Tube Meta l Cond u c tances When t h e mea n t emperature of t h e t u b e metal l um p i s co n s i dered a s a s tate var i a bl e i n the dynam i c mod e l , i t i s nece s s a ry to comb i n e the fi l m hea t tran s fer con du c tance ( coeffi c i en t ) wi th the tu be meta l conductance to o b ta i n an effec t i ve heat transfer coeff i c i ent between the bu l k mean t emperatures o f the p r i ma ry and s econdary fl u i d s and the tu be mean t empera ture . The cal cul a t i o n fo r thi s effe c t i v e heat 1 27 tra n sfer co e f f i c i en t can b e deri ved from t h e a n a l ogy b e tween t h e fl o w o f h ea t e n e r gy thro u g h t h ermal re s i s ta n c e t o t h e fl ow o f el e c t r i c ( 46 ) curren t i n a n e l ectr i ca l re s i s to r , thus H ea t T ra n s f er R a t e = Tempera t u r e . D i fferen c e T he rma l Re s 1 s ta n c e Refer r i ng to F i g u re I V . l w e h a v e Q pm T = P Tm - A 1 R . +R (�-) m A. 1 = U A . ( T -T ) pm 1 p m ( I V . 39 ) 1 and ( IV .40) From t h e s e equ a t i on s we h a v e A. + ( -,-) U A i ml 1 l - = - U pm a nd A (-0-) - - U where = A -A . m 1-'---;-A 1 n ( A� ) A -A o m A o l n(A ) m rn s • A A ( l) i A� 1 ------ = 1 n( 1 and A m2 = A A� . 1 • l Urn ( I V . 41 ) ( I V . 42 ) ( IV . 43) ) A A ( 1 - �) A o 0 -�-A o 1 n( ) A m ( I V . 44 ) 1 28 I �� t- �-' 1---� P m A R. 1 R m (�) A. . R 1 P r i ma ry S i de Di Om Do F i g u re I V . l ' ----- VV"- A (� m A0 ) T - _m � T5 R o Secon d a ry S i de Tube .t1e t a 1 -�-...----�! � � ms 1 " . - ---- - -- - -------� I Comb i n i n g F i l m a n d T u b e Met a l C o n d uc ta n c e s . 1 29 where = p r i ma ry s i d e f i l m con d uc ta n c e = tube meta l cond uctance = s econ dary s i de f i l m conductance A. = tube i n s i d e surface a r ea A = tube mean s u rfa c e area = tu be o u t s i d e s u rfac e a rea . u u i m u o 1 m A IV. 5. 5 o = 1 /R = 1/R . 1 m = 1 /R 0 Res u l t s fo r H . B . Rob i n s on Steam Gene rato r T h e fo l l ow i n g va l ues o f the heat t ran s fe r coe ff i c i e n t s a re u s e d a s i n pu t fo r t he refe rence c a se dyn am i c ca l cu l a t i o n . P r i ma ry fi l m hea t t ran s fe r coe ffi c i e n t Tube met a l conductance = = 2 4 500 B t u/ h r ft ° F 2 2 1 60 B t u / h r ft ° F Tube ou t s i de heat t ra n s fe r a rea = 44430 ft 2 Tube me ta l / s u bcoo l ed s e conda ry fi l m heat t ra n s fe r coeffi c i ent = 2 1 9 72 Btu/ h r ft ° F Tu be metal / bo i l i n g s e condary fi l m heat t ran s fe r 2 coe ffi c i e n t = 6000 Btu/ h r ft ° F IV.6 I V. 6 . 1 S teady State Cal cul a t i ons I n t roduct i on W hen t he mo v i n g boun d a ry a pp roach i s used i n t h e deve l o pme n t of dynami c mo de l s fo r a UTS G , t h e cond i t i o n s a t stea dy state a re pre requ i s i te s fo r t he dynam i c cal cul at i on a l gori t h m . I n th i s sect i on , i t i s a s s ume d t ha t t he rec i rc u l a t i o n rat i o o f the steam generato r i s known a n d t h e pu rpo s e o f the s teady s tate cal cul a t i o n i s t o dete rmi n e t h e tempe rat u re p ro f i l e s a l o n g t h e p r i ma ry a n d 1 30 s u bcoo l e d s econda ry fl ow pat h s a n d a l so t h e ma s s q u a l i ty profi l e a l o n g t h e bo i l i n g s e c o n d a ry fl ow pa t h a fte r f i n d i n g t h e l e ve l a t w h i ch the bo i l i n g proce s s i n t h e secondary fl u i d s t a rt s ( Ls 1 ) . F i g u re I V . 2 s hows a s c hemat i c d i a g ram o f t h e e ffe c t i ve heat e x c h a n g e re g i o n ( co re ) o f a UTS G . P r i ma ry water from t h e rea cto r h o t l e g e n t e r s t h e h ea t e x c h a n g e re g i o n f rom t h e steam ge n e ra t o r i n l e t p l e n um a t tempe ra t u re T Pi a n d a ft e r exc h a n g i n g hea t t o t h e s e c o n d a ry fl u i d pa s s i n g o ut s i de t h e U - t u b e s , i t l ea v e s t h e heat e xc h a n g e re g i on t o t h e s team g e n e ra t o r o ut l e t p l e n u m at t empe rat u re T Po " The s e c o n da ry fl u i d e n t e r s the h e a t exc hange r e g i o n f r o m t he downcomer s e c t i o n a t a tem pe r a t u r e T d wh i c h i s l ower t h a n t he s a t u ra t i o n tempe rat u re c o r re s pon d i n g to t h e s team gen erato r p re s s u re . As t he s e c o n da ry fl u i d fl ow s u pwards i n t h e core reg i on ( by n a t u r a l c i rc u l a t i on ) i t s tempe ra t u re i n c re a s e s u n t i l t h e s at u ra t i o n t em pe rat u re T s a t i s re a c h e d a t a l e ve l c o n s i d e re d a s t h e s ubcool ed/ bo i l i n g b o u n d a ry . L sl w h i c h i s T h e p r i ma ry t empe rat u re s a t t h e s ub c o o l ed/ bo i l i n g bo u n d a ry a re de n o t ed by T pa ra l l e l a n d co u n t e r fl ow bra n c h es re s pe c t i ve l y . Pl and T Above L P4 Sl i n the , t h e hea t added to t h e s e c o n da ry fl u i d i s u s ed i n i n c rea s i n g the ma s s q u a l i ty o f t h e steam/wa t er m i xt u re from xso a t t h e o n set o f b u l k n u c l e a t e bo i l i n g t o x = x e x c ha n g e re g i o n . e a t t h e end o f t h e bo i l i n g s ec t i o n o f t h e h ea t The p r i ma ry t em pe ra t u re s a t the e n d o f t h e b o i l i ng s e c t i o n a re denoted by T Z a n d T p i n t h e p a ra l l e l and c o unte rfl ow 3 P bra n c h e s re s pect i ve l y . S i n ce t he p r i ma ry tempe rat u re a t t h e e x i t o f t h e para l l e l fl ow b ra n c h must be e q u a l t o t h e i n l et tempe ra t u re t o t h e c o unte rfl ow b ra n c h, T Z a n d T p s ho u l d b e e q u a l . 3 P S i n ce t h e 1 31 ! I t:: i o' -1-' u <l.! (/') C'l t:: X. T .+ J +1 rc J 1 - - - - - - - · T . X. J ___ _ - - - _P-SJ - yj + l y. J t t T -f · . --- - -} sat yj + 1 yJ. _ _1_ . l� F i g u re I V . 2 t p , T pl . 0 a:: --� \4 P , T "0 <l.! r- 0 0 u ..0 ::l (/') t:: 0 .,.... -1-' u <l.! (/') _) _ po S c hema t i c o f t h e E ffe c t i ve H e a t E xcha n ge Reg i o n ( Co re ) . 1 32 s econda ry i n l e t tempe ra t u re T d i s dependent o n t h e ma s s q u a l i ty at the exi t of t he bo i l i ng sect i on , an i te ra t i o n tech n i q ue i s nece s sa ry to sat i s fy an o v e ra l l heat ba l an ce between the p r i ma ry a n d s e condary s i des. o f t h e s team gene rato r . IV.6.2 Sol ut i on U s i ng the F i n i te Ui ffe ren ce A p p roach I n t h i s met hod , t he pa t h a l o n g the heat exchange re g i o n i s d i v i ded i n to a n umbe r o f f i n i te s ect i o n s . T h e heat bal a nce equat i on s fo r e a c h s ec t i on a re s o l ved fo r t h e e x i t con d i t i on s us i n g t h e i nl e t con d i t i o n s a n d t he o t he r known sys tem pa rame te r s . T he s econdary t em pe ra t u re a t t he e x i t of the f i n i te sect i o n i s compa re d wi t h the s a t u ra t i on t em pe rat u r� There a re t h ree po s s i bl e con di ti on s : 1. The seconda ry tempe rat u re i s l es s than T 2. T h e s ec o n d a ry tempe ra t u re i s e q u a l to T sat · sat a bl e conve rgence a l l owance ) . 3. The seconda ry tempe ra t u re i s g reater than T ( w i th i n a rea s o n sa t • I n t h e f i rs t c a s e , t he he i ght a l o n g t h e h e a t e x c h a n g e p a t h i s i n c remen t ed and t he c a l cu l a t i o n s a re re peated fo r anothe r fi n i t e sect i on u s i n g t h e e x i t cond i t i o n s o f t h e p re v i o u s s ect i o n s a s the n ew i n l et cond i t i o n s . I n t he second case , the s ubcool ed/bo i l i n g boundary i s reached and new heat b a l a n ce equat i o n s a re s o l ved where t he ma s s q u a l i ty i s the unknown va r i a b l e fo r the s e con dary fl u i d . I n t he t h i rd case , t h e i n c remental h e i ght o f the f i n i te s ec t i o n i s dec rea sed and t h e ca l c ul a t i on s a re re peated un t i l the secondary t empera t u re a t the ex i t o f the ca l c u l a t i o n s ect i o n co n ve rge s to t h e s a t u rat i on tempe ra t u re wi t h i n a re a s o na b l e convergence a l l owance . 1 33 I n t h e b o i l i n g sec t i o n , the fi n i te e l eme n t c a l c u l a t i o n c o n t i n u e s u n t i l t h e t o t a l he i g h t o f t h e U - t u b e b ra n c h i s rea c h e d . At t h i s po i nt , t h e pri ma ry e x i t tempe ra t u re s , T p a n d T p a re te s te d fo r 2 3 e q u a l i ty i n c a s e t hey a re u n eq ua l , the p r i ma ry o u tl e t t empera t u r e i s a d j u s t ed a n d t h e c a l c u l a t i on l o o p i s r e p eated . T h i s a p pr o a c h ca u se s a s l i g h t a dj u s tmen t o f t he p r i ma ry a v erag e t empe ra t u r e i n o rder to a c h i ev e ba l a n c ed c on d i t i on s i n t he s t eam g en erato r . T h e hea t ba l an c e e q u a t i on s fo r a f i n i t e el emen t i n t h e s u bcoo l e d s ec t i on a r e g i ven b y ( s e e F i g u r e I V . 2 , pa g e 1 31 ) W C ( T . -T . ) P P 1 P PJ P PJ + 1 IJ W C p1 (T . -P . ) PCJ + 1 pc J = u 1 A . . ( T ppm . -T Sr.l . ) lJ J J ( IV. 45) u 1 A l. . ( T pcmj -T Sm . J) J ( I V . 46 ) )} W C { ( T . -T . 1 ) + ( T . 1 -T pc J p CJ + p pl PPJ p p J + . = w -2 c 2 ( T S . + 1 -T S J. ) x J e p ( I V. 47) w he r e , A. . lJ T T and p pmj . pC fTIJ T n 00 N ( yj +l -yj ) = T = T = 2 + T e cj TS . J Sfllj. + T p ej 2 + 2 T ( I V . 48 ) !2J2j + 1 ( I V . 49 ) J2C j + 1 ( I V . 50 ) S J. + l ( I V.51 ) T h e i n i t i a l cond i t i o n s fo r t h e s u bcool ed sec t i o n ca l c ul a t i on a re = = and = T . pl T po T . d 1 34 E q u a t i o n s ( I V . 4 5 ) t h ro u g h ( I V . 4 7 ) a re sol ved for t h e e x i t con d i t i on s ( at y j +l ) know i n g t h e i n l et con d i t i o n s ( a t y ) . j T h e h ea t ba l a n c e e q ua t i o n s fo r a f i n i te e l eme n t i n t he bo i l i n g s ec t i o n a re g i ven by ( s ee F i g u re I V . 2 ) w c p p1 n ) u 2 A 1. J. ( T p pmJ. - T sa t ) ( I V . 52 ) ) W C ( T . -T . ) = u A . . ( T 2 l J pcmJ. -T s a t p p l pc J + l PC J ( I V . 53) W C ( T . -T . p p l P PJ ppJ+ l = ) + ( T . -T .-T )} pC J + 1 p CJ PP J p pJ + 1 . . = w -.2 ( X . X e x.) J +1 - J ( I V . 54 ) w h e r e t h e def i n i t i o n s i n E q ua t i o n s ( I V . 4 5 ) t hro u g h ( I V . S l ) a pp l y wi t h t h e fo l l ow i n g i n i t i a l con d i t i o n s Tppl = Tpl T pel x l = T p4 = 0.0. E q u a t i o n s ( I V . 52 ) t h r o u g h ( I V . 54 ) a re s o l v ed fo r t h e ex i t c o n d i t i o n s (at y ) know i n g t h e i n l et c o n d i t i on s ( a t y ) u n t i l y i s equal i j +l j +l i s e q ua l to T wi t h i n a t o t h e t u b e b ra n c h l en g t h a n d T p3 p2 rea son a b l e con ve r g en c e to l eran c e . T h e a bo ve me t hod wa s prog rammed o n t h e I B t1/ 360 d i g i ta l computer o f T he Un i vers i ty o f T en n e s s e e and i s u s ed a s a s u br o u t i n e wh i c h pro v i d e s t h e s t ea dy s ta te bou n d a ry con d i t i on s n e ed ed for t h e dyn am i c c a l c u l a t i o n a l go r i t hm fo r Mode l s C a n d D . 1 35 IV. 6 . 3 S o l u t i o n U s i n g Loga r i t hm i c Mean Tempera t u re D i ffere n c e ( L rnD ) I n t h i s me t ho d , t he e ffec t i ve h ea t e x c ha n g e reg i o n i s d i v i d ed i n to two s e c t i o n s , a s u bcoo l ed s ec t i on a n d a bo i l i n g s ec t i on a s seen E a ch sect i o n h a s a para l l e l fl ow b r a n c h and a i n Fi gu re I V . 2 . c o u n t e r f l o w b ra n c h w i t h a commo n s e conda ry fl u i d pa s s i n g o u t s i de the t u bes . The heat ba l a n c e equat i o n s fo r the s u bcoo l e d s e ct i on a re g i ven by ( IV.55) • Q c s l = W pC p 1 ( T p4 -T po ) = u 1 A s 1 ( LMTD ) c s l • Q p s l + �4 c s l = w s (h f - h si ) ( I V . 56 ) ( IV.57) whe r e t h e l o ga r i t h m i c mean tempe ra t u re d i �feren c e i n t h e pa ral l el a n d cou n t er f l ow b ra n c he s o f t h e s ubco o l ed s ect i o n a r e g i v e n by ( LMT D ) = psl ( T i -T ) - ( T - T t ) d e �1 sa T . -T d ) 1 n ( e, T p 1 - Ts a t (4S) ( I V . 58 ) and ( L MTD ) cs1 = ( T�4 -T s a t ) - ( T�o -Td ) ( IV . 59) T -T e4 sat ) n ( 1 T -T po d I n t he bo i l i n g s e c t i o n , t he heat ba 1 a n c e equat i o n s a re g i ve n by Q ps 2 = w c ( r -T ) P P 1 P 1 pm = u 2A 5 2 ( L MT D ) ps Z ( I V. 60) 1 36 Q• cs2 = W C ( T -T ) p pl pm p4 = u 2A s 2 ( LMTD ) c s 2 ( IV.6l ) ( I V . 62 ) S i n c e t h e b u l k mean t empera t u re o f t h e secon d a ry fl u i d i n t he bo i l i n g s ec t i on i s equa l to T sa t ' t he l o ga r i t hm i c mea n t empera tu re d i ffer en c e i n t he paral l el and co u n t e rfl ow b ra n c h e s o f the bo i l i n g sec t i on a re g i ve n by ( L MTD ) ps2 ( uno ) cs2 whe re T pm = = = - T ) �m �l T -T �m at ) 1 n (T pm s a t (T (T / ( I V.63) ) �m - T �4 T -T at 12m ). 1n (T p4 s a t / ( I V . 64) . P3 T h e a bove eq ua t i o n s we re p ro g ra mmed o n t h e I B M/ 36 0 d i g i ta l T p2 = T com pute r o f T h e Un i ve r s i ty o f T e n n e s s ee . E i t h e r the f i n i te d i ffe r - e n c e o f t h e l o g me a n t empe ra t u re d i ffe r e n c e met h o d c a n b e u s e d t o ca l c u l a t e t h e tempe rat ure a n d ma s s q u a l i ty profi l e s i n a UTS G . Howeve r , s i n ce t h e f i n i te d i ffe rence met h o d c a n be e a s i l y i mp l emen ted i n t h e dyn am i c ca l c u l at i o n a l g o r i t h � , i t wa s dec i de d to u s e i t i n obta i n i n g t h e re s u l t s o f t h e dynami c res pon s e c a l c u l a t i on s re p o rted i n the fo l l owi n g s ec t i o n . A compa r i son betwee n t h e two met h o d s i s g i ven i n t h e n ext sect i o n wh e re t h e stea dy state re s u l t s fo r H . B . Ro b i n so n N u x l e a r Power P l a n t i s presen ted . 1 37 IV.? Re s u l t s fo r H . B . Rob i n son S t eam Ge n er a t o r T h e pr i ma ry a n d s u bcoo l e d seco n d a ry t empe r a t u re v a r i a t i o n a l ong t h e heat t ra n s fe r pa t h a s wel l a s t h e va r i a t i o n o f t h e ma s s q u a l i ty o f t he s ec onda ry fl u i d i n t h e bo i l i n g re g i o n were c al c u l a te d u s i n g t h e f i n i te e l emen t method a n d t h e re s u l t s a r e s hown i n F i gure I V . 3 . The c o n d i t i o n s d e s c r i b i n g t h e i n l e t a n d o ut l e t o f t h e s u bcoo l ed a n d bo i l i n g s ect i on s a re a s fol l ows . A. P r i rna ry S i d e Tp ; T T T T B. = 601 . 2 ° F 59 7 . 2 ° F Pl = 566 . 9 O F Pm P4 Po = 548 . 1 O F = 546 . 2 O F S ec o n d a ry S i de T T x L d = 500 . 6 o F = 51 7 °F sat e sl 0 . 1 99 3 = = ( 0 . 2 sta rt i n g v a l u e ) 3 . 9 6 6 ft . W hen the L MTD me t hod wa s u s ed to o b t a i n t h e s u bcoo l e d / bo i l i n g l um p s bou nda ry con d i t i on s , t h e fo l l ow i n g re s u l t s were o bta i n ed . A. P r i ma ry S i d e Tp ; T T T T Pl Pm P4 Po = 602 . 1 O F = 597 . 3 3 O F = 56 7 . 06 O F = 548 . 2 O F = 546 . 2 O F 1 38 - -r C o u n t e r fl 0 \1/ P a.r a l l e l fl ow ---r-·-- -- -- -- - - - - - - - --- - - _ _ - - L_ I I P r i ma ry fl u i d tempe ra t u re ( ° F ) I I �I T pm I r.1a s s • - ..r I I __. q u a l i ty I I i . . ·" - - -- -- -� - ---- --- - - �I - \_a_t__ -� -<- - ----- --- -----� I, i I S eco n da ry f l u i d I tempera t u re ( ° F ) I \ ' I I I I � ' ---------- - - --- - - --�----'----�---- L sl L 2L-L51 F i g u re I V . 3 T empe r at u res a n d t1a s s Q u a l i ty P r o f i l e s C a l c u l ated by t h e S t eady S t a t e P ro g ram . L Td B. 1 39 S ec o n d a ry S i de Td 500 . 6 ° F = 51 7 O F Tsat = x 0.2 = e L l s = 3 . 9 5 ft . From t h e a bove r e s u l t s , we c a n s e e t h a t the res u l t s o b t a i n e d from the fi n i te e l eme n t s method or the LMT D met h o d a re i n a g reeme n t to wi t h i n 0 . 2% i n t h e boundary tempe rat u re ca l c u l a t i o n a n d w i t h i n 0 . 5% i n e s t i ma t i n g t he s u bcoo l ed l en gt h . I t i s n o t i c e d t h a t t he u se o f t h e fi n i te e l emen t met hod re s u l t ed i n a s l i g h t mod i f i c a t i o n o f t h e p r i ma ry wat e r a ve ra g e t empe r a t u r e . IV.8 Gen e r a l Rema r k s o n Dyn a m i c Respo n s e C a l c u l a t i o n s T h e fo l l ow i n g rema r k s a re needed befo re pre s en t i n g t he re s u l t s o f t he dyn a m i c res po n s e ca l c u l a t i on s o b t a i n ed from t he U T S G ma t h e mat i ca l mod e l s d e ve l o pe d i n C ha pter I I I , pa g e 2 5 . l. W hen t h e c r i t i c a l f l ow a s s umpt i on wa s u s ed t o furn i s h t he s team fl ow ra t e l ea v i n g t he s team generato r , t h e t erm o W so wa s ex pre s s ed by t h e fo l l ow i n g e q ua t i on ( IV . 65 ) 2. T here a r e two ways to h a n d l e t h e feedwa t e r fl ow t e rm , o \4 Fi . a. U n co n t ro l l ed ca s e . I n t h i s c a s e o \·J Fi i s a fo rc i n g funct i o n ( i f th e pertu rba t i on o f i n t e re s t i s a fe e d i s z e ro ( n o c ha n g e wa t er fl ow p e r t u r b a t i o n ) , o r o W Fi i n feed wa t e r fl ow ) . 1 40 b. I n t h i s c a s e , t he feedwa t e r Perfe c t c o n t rol l er c a s e . fl ow ra te i s c o n t i n uo u s l y s et equa l to t h e s t ea8 fl ow rate ( oW . Fl = oW so ). For the c a s e of t he c r i t i c al fl ow a s s um p t i o n , oW F i = c W so = C L c P + P0 c C L . t h a t t erms i n vo l v i n g c P n ow a p pea r i n t h e T h i s mea n s A ma t r i x to repre s en t t hi s con trol a s s umpt i on b ec a u s e o f t h e C 3. L c P t erm. I n obta i n i n g t h e dynami c re s po n s e from Mod e l C , i t wa s fo u n d n e c es s a ry to remo v e t he a l gebra i c eq uat i o n e x p r e s s i n g c T s i n t erm s o f cT d and o P . Al so , t h e equat i o n s a re reo rdered i n order to a vo i d t h e i n v er s i on of i l l -con d i t i o n ed ma tr i c e s 3? w h i c h may re s u l t i n erro n eo u s r e s u l t s from P URE D I F F . ( ) 4. F rom t h e e x p e r i en c e ga i n ed from Mo d el C , i t wa s fou n d t h a t comb i n i n g t he d ru m wa t er v o l ume wi t h t he down c o mer l ump a n d comb i n i n g t h e eva po rator/ r i s e r vol ume w i th t he bo i l i n g s econdary fl u i d l um p i n Mod e l 0 red u c e s t h e o r d e r o f t he sys t em equat i on s from 2 0 to 1 8 a n d s o l v e s t h e probl em o f J? t he i n v er s i o n o f i l l - co n d i t i o n ed ma t r i ce s i n P URE D I FF . ( ) 5. A compl ete s umma ry o f the dyn ami c re s po n se re s u l t s a s o b ta i n e d ft·om t he mat hema t i ca l mo de l s i s g i ve n i n Appe n d i x F. I n t h e fo l l owi n g s e ct i o n , t h e s t e p re s po n s e re s u l t s o f t he fo u r mo de l s , to a +1 0% c h a n ge i n steam val ve coeffi c i ent , a re p re s e n t e d fo r t h e p u rpo s e o f c h e c k i n g t h e p hys i c a l p l a us i b i l i ty o f t he ma t he ma t i c a l de vel o pme n t a n d compa r i n g t h e mo de l ' s c a pa b i l i t i es . 141 IV.9 IV. 9. 1 Dyn am i c R e s po n s e Re s u l t s R e s po n s e o f Mod e l A Th e n o n z ero el emen t s o f t h e A ma t r i x a nd B ma t r i x fo r t1odel A ( u s i n g i n pu t d a t a fo r H . B . Ro b i n so n s t eam generator ) a re g i ven by : ) = - 0 . 9 7 83 A( l , 2 ) = 0 . 6486 A( 2 , 1 ) = 2 . 4 06 A(c , 2 ) = - 5 . 40 0 A( 2 , 3 ) = 0 . 4 342 /\ ( 3 , 2 ) = 1 . 65 1 A( 3 ,3 ) = - 0 . 2 864 B(l ,l ) = 0 . 3296 8(3,2) = 0 . 05 5 7 9 8(3,3) = A( l , l - 33 . 2 8 . The s t ep r e s po n s e o f Mo del A to a + 1 0% c ha n g e i n s t eam va l ve coeff i c i en t i s g i v en i n F i g u r e I V . 4 . I t s h ows a stabl e re s po n s e w i t h a t i me con s tant o f a pprox i ma t e l y 1 5 s eco n d s . I t can b e s ee n t h a t t h e s t eam p r e s s u r e s hows t h e ea rl i e s t res pon s e t o t h e p e r t u rba t i on . T h i s i s to b e ex pect ed s i n c e t h e s t eam va l ve pert u rba t i o n i s a s econ d a ry s i d e pertu r ba t i o n . T h e p r i ma ry o ut l et t empera t u r e res pon s e s hows a s l i g ht d e l ay o f a bo u t l . 2 5 s econ d s . Then i t s t a r t s t o fa l l down fo l l owi n g t h e d ecrea s e i n t h e seconda ry s i de tempera t u r e c a u s ed by the pres s u r e d ecay due to t h e st eam v a l ve per turba t i o n . 1 42 0 0 (Y"') � > (f) s team p re s s u re P 0 \.D 0 . s � -�-----.:;:::====::;::=::===;:::=:; D. = ' o . oo 30. oo T I ME 9 0 . oo 60 . oo - 1 20 . oo 38 . 4 1 8 (5ECJ 0 0 (\J 1 > (f) \.D 0 0 . t ube me t a l temner a t u re T . ------ � �------�--� ' o . oo 3 o . oo T I ME 6o . oo 9o . oo D. = - 4 . 3 8 4 1 2o . oo ( 5 E CJ p r i ma ry te�pe ra t ure T -.D o 0 m p � �------�====�==� �).= 1 0 . 00 30 . 00 T I ME Fi g ure I V . 4 60 . 00 90 . 00 1 20 00 -2 . 9 0 6 (5ECJ S t e p Re s po n s e o f �·1o del Va l ve Coe ffi c i e n t . A t o + 1 0% C h a n ge i n Steam 1 43 IV . 9 . 2 Re s po n s e o f Mo d el 8 The n o n z ero el emen t s o f t he coeff i c i en t ma t r i c e s A a n d B fo r Mod el B ( ca l cu l a t e d u s i n g t h e H . B . Ro b i n so n s team g e n e rato r data ) a r e g i ve n by : A( l , l ) = - 1 . 3 08 A( l ,3 ) = 0 . 6486 0 . 6593 A( 2 , l ) A(2 ,2 ) = - 1 . 30 8 A( 2 ,4 ) = 0 . 6486 A(3 , 1 ) = 2 . 406 A( 3 , 3 ) = - 5 . 400 A( 3 ,5 ) = 0 . 4342 A(4 , 2 ) = A ( 4 ,4 ) = A(4 , 5 ) = A ( 5 , 3) = 2 . 406 -5 . 400 0 . 4 342 0 . 8254 A( 5 ,4 ) .::: 0 . 3254 A(5,5) = - 0 . 2 364 B(l ,l ) = 0 . 6 59 3 B(5 ,2) = 0 . 0558 8(5,3) = - 3 3 . 28 The r e s po n s e o f Mo de l B to +1 0% s t e p c h a n g e i n s t eam val ve co effi c i e n t i s s hown i n F i g u re I V . 5 . The g en era l trend o f t h e r e s po n s e i s s i m i l a r t o Mod el A e x c e p t fo r t he mo r e d e l ayed pr i ma ry o ut l et temrera t u re ( a bo u t val u e s . 2 seco n d s ) a n d t h e s l i g h t c ha n g e i n t he n ew s t eady state T h i s c ha n g e i s the r e s u l t o f u s i n g two l um p s to r e presen t t he pr i ma ry water a n d t u be met a l i n s tead o f o n e l u mp a s u s ed i n Mo del A. 1 44 0 0 (Y1 0' > <.n t u be me t a l te�pe ra t u re T ...0 0 0 171 1 � �------�====�==� �= • a . oa 3 a . aa T I ME 6a . ao 9a . oa - 1 20 . oo 3 . 742 (SEC) 0 0 (\J a > (f) ...0 0 0 � • p r i �a ry te�pe ra t u re T p2 ------- �------�--� a . oa 3a. ao T I ME 6a . oa �= -3 . 056 1 2 0 . 00 90 . 00 fSECJ 0 0 > <.n p r i ma ry tempe ra ture T ...0 0 C) Pl ru t-----�====�==� �= • o . oo 3a . oa T I ME F i g u re I V . 5 6a . oo 9o . oo 1 20 . 00 fSECJ S t e p Re s po n s e o f Model B to +1 0% C h a n ge S t e a� Va l ve Coe f fi c i e n t . in - 1 . 855 1 45 0 0 lf) 0" > (J1 s t e am pre s s u re P 0 ..0 0 s ______ b = � �------�--r--.--� 1 20 . o o so. oo go . oo 30. oo 'o . o o 0 T I ME 36 . 256 (5ECJ 0 0 :::r 1 > (f) ..0 0 0 t u b e me tal tempe ra t u re T _____ m2 b= � �------,--.--�--� ' o . oo 30 . 00 60 . 00 90 . 00 1 20 . 0 0 T I ME F i g u re I V . 5 ( Co n t i n ue d ) . (SEC) -4 . 277 1 46 IV.9.3 Re s po n s e o f Mod el C S i n c e Mo del · c wa s deve l o pe d i n t h e m i x ed a l g e b ra i c pl u s d i fferen t i a l fo rmu l a t i on , t here a r e two co effi c i e n t ma t r i c e s , A 1 ( 37 ) a n d A , t o b e c a l c u l a t ed a s i n p u t t o P U RE D I FF . 2 el emen ts o f A 1 and A 2 a r e g i ven i n Ta b l e I V . 2 . T h e n o n z e ro Th e n o n z e ro e l emen t s o f t h e fo rc i n g v e c to r f o r t h e ca se o f +1 0% s t ep c ha n g e i n t h e v a l ve co effi c i e n t a n d a s s u m i n g that t h e feedwa ter fl ow a l ways ma tches t he s t eam fl ow a re g i ven bel ow f(6 ) = -89 . 06 f(8) = 89 . 06 f( 9) = 7 . 96 7 X l0 4 • No t e t h a t t h e o u t p u t from P URE D I F F i s a 9 x9 red uc ed ma t r i x a n d a 9xl fo rc i n g v e c to r t h a t i s u s ed by r�TE X P to c a l c u l a t e t h e t i me re s po n se . T h i s s t e p i s do n e w i t h i n t h e dyna m i c re s po n s e c a l c u l a - t i on a l gori thm w i t ho u t extern a l i n terferenc e . The resul t s o f the s t e p r e s po n s e cal c u l a t i o n s a re s hown i n F i g u r e I V . 6 . I t i s not i c ed t ha t t he re s po n s e o f t h e p r i ma ry a n d t u b e met a l l umps a r e a l mo s t t he s a m e a s i n Mo d el B . Th i s i s to b e e x p e c t ed s i nc e t h e d i ffe re n c e b etween Mod e l s B a n d C i s o n l y i n t he treatme n t o f t h e s ec o n d a ry s i d e . For t h e s ec o n d a ry s i de l umps , i t i s n o t i ced t h a t t h e d e v i a t i on of t h e s team p re s s ur e i n t h e n ew s t eady s ta t e i s a b o u t 4 . 5 p s i l e s s than fo r Mo del A a n d 2 . 4 p s i l e s s t h a n Model B . by t h e fact t ha t i n Mod e l s A a n d 8, T h i s can b e ex pl a i n ed t he s econda ry s i d e tem p era t u r e i s a s s umed t o b e the s a t u ra t i on t em p e ra t u re . Wh i l e i n Model C , i t i s t a k en a s a we i g hted a verage b etween the downcomer t empe ra t u re a n d the s a t u rat i on t empera t u r e . TABLE I V . 2 NONZE RO ELE!�EIHS O F THE MATR I CE S THE N O � Z E R n F L � M F NT S O F T H E 1 5 6 9 1 2 ] 4 5 6 1 8 9 11 12 5 1 1 0 01 2 - O . l 777F 03 0 . 4675f 05 7 10 0. 1 000r o . 2 3 7 7r o s 2 6 5 9 5 A 1 M l TR I X A RE : 3 3 - 5-- - - ·g o o oi= o i 9 9 6 5 C) 12 10 11 7 0 . 1 30 8 F 01 - oo o3 • • 3 - s· 11 . --- ---· . 0. 1 OOOE 0 1 . r· ·4 0 � l OO O E O f o ; 4 l 5 E -0 5_ _ _____ 6- -- �- 5---- -- - - 0 � 7 6 6 E 0 7 11 . - -- - . 9 0 . 48 5 4 E 0 4 -0. 6558E 05 6 - 0 . 6 5 93 E 1 2 - 0 . 6 4 9 0E 0 0 3 1 3 3 1 3 0 2 4 06 E 0 1 4--- --z ---�- o �-t4-0 6F-01- -4--4 --- 4 - ---3 5 1 0 . 9 5 0 . 2 6 4 l f 04 - 0 . 6 4 9 0F 0 0 - o � 1 9 9 6 F" 'l o - J . 1 9 96 r0 . 3 0 6 9 f7 0 7 6 0 . 1 132F 01 0 . 4 4 5 4 F 04 5 8 -o. 8007F 00 5 9 - - -- 9 ---- 1 2 o . 96 0 4 F - 0 1 0 o o r· 0 l 12 -0 832 F 02 10 12 - . 7 8 10 T H E N n � l I= R n f l F M F NT S 0 F T HE - A 2 '-1 Ar R IX 4. R E : 1 4 - ·- . A2 FOR r()OE l C ---- · ----· ----- ---- 0� 1 - �-0 � 64 5 6 E- - 0 8 0. 1 02 8E 0 5 0 . 1 7 5 8E 0 2 · Al AND · 2 2 5 3 4--5 00 01 . 0 . 5400E 0. 4 6 6 2 E o. �0 57E 7 5 11 07 01 O l 3 08 E 0 1 • 0. 4 0 5 3 E 0 0 5 3 E o o · -- -- --- - - . . - o:-4o o . s 75 3 E . o4· · ---· · -· · · s s · ·· ::o . 1 0 9 5 F o s· · · · s · · - o . 1 a CJ s E · os " · o . 1 2 70 E 04 . - 0 . 1 1 1 4 E 0 4 . . . 5 . i i --·-· _ 6 4 � 4 6 - --·-_- o 4 5 4F ··-·o 4--- -- -- '12 --- - - .;,;. o �- t993 E __o_cf .-� _ 7-- · s �--� O � ft 4 5 4 E ' o - 3 . 0 1 0 00 E 0 1 10 8 -O . l l 2E 0 1 0 . 445 4 E 04 6 8 0 . 4 4 54E 04 3 9 0 . 43 5 1 E 07 6 9 - O . l 5 2 9 E 04 � o . 1e-2 o r:�o 3 ___ 1 0 ----ro - - -..: o :-.l' o o c;t-o i-1 o-u o:r o o o E - o ! '- . 1 2 . . . . & - .. . : o . 2 6 8 9 r::· 0 4 . . 0 . 1 000F 0 1 . 1 2 5 . 0 . 72 3 9 E 00 . - . o-:-s 4-ot>F.-61 . . . . · · - . 0 • 1 0 00F . . 01 . . .. .. - - -- - - - - - .. ----- --- . . . - - . · . - - -- ··-- .p. ""--1 .. . . - . - ----'---''-- -- -- --- - -- - - 1 48 Q_ L t- 0 0 0 . t u be me t a l te�p e rature T \0 0 0 �l ------- .D. = . � 4-------�---,---r--� �� � n r. . u '""' 30 . 0 0 T I ME 60 . CC ( SEC) -3 . 244 8Q . OQ 0 0 u Q_ t- � r i �a ry temp e ra t u re T \.0 0 0 ------ L'J. = - 2 . � 4-------r---�--� 90 . oo 50 . oo 1 2 0 . oo 30 . oo 'a . o o T I ME CL CL t- PZ . 65 1 (SECl 0 0 0 . \0 0 0 p r i na ry te�pe rat u re T Pl �------ L':,. = N 4-------r---�--� . 10 . 0 0 Fi g u re I V . 6 30 . 0 0 T I ME 60 . 00 (SECJ 90 . 00 -1 1 20 . 00 Step Re s po n s e o f r1o de l C t o +1 0% C h a n ge i n Steam Va l ve Coe ffi c i en t . . 609 1 49 co o0 ' ..--4 ------- 6 = • 0 . 009 ( S FEH E L ) e x i t q u a l i ty LLJ O X � �------�--------�--------�------� 60 . 00 90 . 00 30 . 00 1 20 . 00 V) 9J . 0 0 T I ME fSECJ len (L 0 0 0 . a \,() 0 c . s tear1 p re s s u re P s _______ 6 = -3 1 . 526 �· +------,---r--r---� 'o . o o 30 . oo 60 . oo T I ME lJ 2: 1- go . oo 1 20 . o o fSECl 0 0 a . t u b e �e ta l terJpe rat u re 1.0 0 : �----��====�==� 6= ' o . oo 3o. oo 60 . oo T I ME F i g u re I V . 6 ( Co n t i n ue d ) . (SEC) so . oo T rJ2 1 2 0 . 00 -3 . 708 1 50 c. 0 0 t- downcome r te�p e r a t u re T ..0 0 0 d ------ � = � �------r---�---r--� ' o . oo 3o . oo 6 Q , n i) T I ME <3 0 . c '::: (5EC1 1 2 o , no -4 . 362 a 0 ::3: D t- d r u� wate r te�pe rat u re T 1.0 a 0 . dw ------ 6 = � 4-------�--�--� 'o . oo 3: D _j 1.0 a ::r . 0 3o . oo 6o . oo T I ME 9 o . oo ( SECl 1 2 0 . 00 ------ d r um wate r l ev e l L 0 0 dw · �--------r--------,---------r------� cu . 0 0 Fi g ure I V . 6 30 . 00 T I ME ( Co n t i n u e d ) . 60 . 00 (5EC1 6� 90 . 00 1 20 . 00 -4 . 363 0 . 352 1 51 Th e i n c rea s ed e x i t q u a l i ty a t t h e end o f t he effec t i ve h ea t exc ha n ge l um p can b e expl a i ned b y t h e re d u c t i o n t empera t u r e d u e t o t he p re s s u r e decrea s e . be a va i l a b l e fo r s team e va pora t i on . Thi s of the sa turat i on ca u s e s mo re h e a t to The i n c re a s e in t h e downc o me r l e vel and t h e de c re a s e i n dawn come r tempe ra t u re a re due t o t he i n c re a s e i n feedwa t e r fl ow i n to t h e s t e am g e n e r a t o r to ma t c h t h e i n c rea s e o f s t eam fl ow r a t e d u e t o t he s t e p c h a n g e in t h e val ve o pen i n g . The downcomer temperat u r e l a g s b e h i n d t h e d r u m w a t e r t empera t u re by a bo u t t hr e e seco n d s w h i c h i s t h e t ra n s po r t t i me i n t he downcome r 1 ump. IV . 9 . 4 R e spon se of Model 0 The n o n z ero el emen t s of t h e c o e ff i c i en t mat r i ce s , A 1 a n d A 2 , fo r Mod e l D a re g i v en i n Tabl e I V . 3 . Th e n o n z ero el emen t s of t h e fo rc i n g v ec t o r fo r a +1 0% s t e p chan g e i n t h e s team v a l v e coeffi c i en t a r e g i ven by f( l l ) = f( l 2 ) = f( 1 7 ) = 0 . 0667 59 . 6 7 -89 . 06 . The s t e p r e s pon s e i s s hown i n F i g ure I V u 7 . ha s a z e ro r e s po n s e be c a u s e it acts T h e p r i ma ry i n l e t pl en um o n l y as a mi x i n g l ump between t h e r ea ct o r hot l eg t empera t u re a n d the p r i ma ry i n l et t empera t u r e . The b e ha v i o r o f t h e pr i ma ry t empera t u r e i n t h e fi r s t pr i ma ry l ump T P l l oo k s d i fferen t t ha n t he o ther p r i ma ry l umps , T h i s i s 'd u e to t h e mo v i n g boun d a ry t h a t l en g t h o f t he l um p . d e t e rm i n e s t h e A l oo k a t t h e r e s po n s e o f t h e s u b coo l ed l en gt h l f\jj L t ___ _ _ -- -- - T HE N n rH E fl 0 _ lV.J _ HATRICES--Al AN D !\2 FO R�ll D E L D___ _ ___ fiON Z E R O - E L Et·1E NTS Or -THE f:\,._f: m: NT S _ O E JJAT � p: A R E : _T_ ti� _ A l _ 1. 4 _ _ __ _ _ _ - -- - _ __ __ _ __ __ . __ __ _ _ __ _ _ __ __ ___ _ _ __ __ ... .. _ ___ . _ _ __ _ ___ . .. . ...... . _ _ ____ . . . . ...... ... . ___ __ __ .. ---- - -- - .. - - TJ �F N f11,J_l_�P O _ IL F.: M F. N_T_5_D_F_ _! H� __ A 2 �((1'Jil.X. A_I�J_� :___ _ . _ 1 � 3 1 12 12 '! _ _ t ? -·· .•.. . . .. 1. . ___ _ . 9 . __ . -, . �---- - s _ __ . . . . .. . o ·- ·-···· .. . -_0 - . . _5 5 5 � C 00 OO __ _ . ___ . __ _ . 15 1 4 1 7 1 8 .. . _ ___ ____ _ _ _ 13 16 . . . _ 13 12 _ 3 4 5 .l _J ____ _ ____ _ _ ] f! 10 11 ____ 1 _3 _ . ... . . . . __ . _ __ __ __ __ . . . . .. . . . .. . �-- .. . 0. . 12 0. b 12 0. :- o . J2 ro o o E _oJ_�__ _lo 4 0 2 .4 E ... 0 2 . . . .. 13 . . 1 2. . .. 0 . 5 845 E 0 .4 .... ... .1 5 . . J 2 _ . Q. 1 6_1 3____ o . _8 4 2 ;JE_0 6 l _O O O E 0_ 1 _ __ __ :} 6 5 0 6 5 £: 0 0 8 · l OOO E 01 _ _ ___ _ _ _ _ __ . . . .. ... . . .. _ _ . .. .. .. . . . __ 76 8 7 f 01 1 0 00( 01 00 4 6 05 r 0 0 1 0 0 0 £- 0 1 7 0 1 or 0 3 2 4 0 1 r. 0 5 l l 7 4 F. 01 3 1 6 7 F. ·-······ a 76o 7 _ . ····•· •· --' 1 . ··- ··· . . ·· 2 2 0 . 559 E 01 __ _ _ . . . � 0 . 5 8 5.5 E - -�-0 • . 9 9 3 S E ___ _ _::_Q_._t1 _l _lt_E .0 3 __ _ - 0 . 1 32 0� . . O . l 409 E 01 05 O� . .. .. . . .. _ _ ___ _ . . __ 5 4 _ -0 . 64 8 6 [ .. . __ 16 9 . .. . . _ ..�0. 9 ___ .. . .. . . .. __ l3 . 16 . .. 14 . 1 2 . l ft l,]_ . . .. ___ OO . . . .. 4 4 _ _ _ ___ . __ - 00 ,3 2_5 f3E __ _ . .. .. _ 05 -0 . 1 3 2 0 E _ _ __ . __ . . . _ _ _ _ . -- 1 3 . . ...1.7. .. .1 4 . . 1 3 . l� _1 7 16 12 16 18 .. _ __ . .. . . ___ _ . . ____ 3 9 3 6 E:-:-: 0 3 . . . .:-:-: 0 . 193 0 E . 0 5 O . _l 1 3 3 E __0:4 __ . .. . . __ . ! . . 0 . 3 9 3 6E- 03 _ __ _ _ . .. . .. .. . . . . . ___ 07 __ .. __ __ .. . ___ _ _ _ . . . _ _ . . ... _ _ 0 . 8 93 4 E 03 0 . 1 O O O E __0 l _ 0 . 245St 05 16 17 - 0 . 1 1 3 3� 0 4 0 1 2 7 0 E 04 1 9 lj_ ____ 0 � 7 6 3 8 F: _ _ _ O 2 ___-: O_. ft 4 5 5 f Q4 1_1_ j_8 -- �-0 . _9 .}�_0 () __ _ l_O 1 B 0 _4 ...... . . . . . l 6 ... . .. :- O . l O O O E 0 1 :-_0 . 5 2 8 4 F O O . . lA.. .... . 1 4.. . .. . . O l 9 7_2 f, . 0 . 3 0 6 9E .. . _ __ (.11 N. o o---j - --3 ----o . i 4 o 39 E' _ o_ t'__ 32 --- -a- ----= o . 6 4 o M : - . .. _ ___ __ - oo - 0 . 6 4 06[ 00 5 _ ___ _5_ __ _ __ 0 . 5 93 E 0 1 _ �-_5 1_ Q_ __:-- 0 . ll it_8 6 E O Q 0 1 .4 3 l f; . . . O l. . . . ..... 7 .. . ... . .2 6 . . 9... � 0 . 1 4 3 1 E. O l -: 0 . 2 4 0 6 E 0 1 . =O -J 0 6 2 F, _ o o .. . . .1 � � - -- -- = o . _7 3 2 5 E ... o o . .. e . . . . . 3 .... . . _- 0 . 2 4 0 6 E 0 1 � o . 2 '•06 E O l �---- �-o · s 4 o o F. __o _ _ _ . . . - o _._'!:� � 2_f o o __2_ __ _4 13 - 0. 1 0 62 [ 0 0 - 0. 2 406E Q l 10 10 0 . 3 8 7 1 F. 0 1 10 11 16 0 . 7 4 B 7 E- 0 3 - O . B 4 7 2 F. - 0 3 11 14 0 .3335E 01 0 . 3 3 3 5 F. 0 1 1 _4__ __ o . 15 l2 p� �_::_Q �JJ_4_ 5E __ Oj___ l 2 _ __ 0 . 3652F 04 14 0 ._1 1 3 2 F 0 1 _ _1 7 _l 't - 0 . 5 5 3 .1 1:: 0 2 . . 1 � . . .. .1 3 ... . __ 1_6 8 . _ _ .. l4 16 16 __ .. - ____ . .. ... . 0. 7 6 0 7E 0 0 --- - -� p ._� 9 4 5 � _{) l - 13 . . ----· - __ __ -0 . 4 94 5 F 0 1 = � - r.- �-- ·- -------· 5 . _5 9 9 5 f��Q 3 _ __ _ J2 _ _J 3 . 0 . 7 1 9 0F 0 0 1 2 . . . ... L8 -0 . 9939F 03 14. . _ 1 0 _:- 0 . _ ? ____ 1 5 __ __-::_ 0 . _4 l 7 � C O_!t__ 18 - 0. 1 0 00F 01 _ 1 4 _ 6 ___ __ . ·-·--· -------·-··- ·· · 3--2 · . .. n . 2 5 0 4f . O l . . • · i _ 0 . 387lF ot o . s 4 0 Q f CLL - 0 . 4 34 2 f 0 0 - Q . 7 3 2 5 r: 0 0 . __ _ _ _ _ 10 15 1 1 _ __ _l _(l 1.6 . 12 l 4 . 7 . 13 ..... -0. 8928� . . .. .. .... ... . . 5 . . . ..1.. 2 . . _ _ _ _ _ __ _ _ O . l43 1E 0 1 2 -- �-- - o . i� o r.- -o - 1 .. ·-· . 2 _ - _ 0 . 1 0 0 0 f__Q !___ __ � 2 3 _ _______ 0 . ()�- � 0 0 0 �_() 1____ 3 O . l OOOF 0 1 5 5 5 . O . l O O O F. 0 1 -0. 12 1 7 0 . 1 000� 0 1 7 · 12 0 6 2 0 5 9E 0 1 8 8 O. _ __ __ _ . . q___ _ 9 o . 1 0 u o r: o 1___ __<)_·._ · 1_2_�:... :.:.�.9 �]_Qe �f,�o L � l o _ _ _ 1 o _o . 1 1 _ _ . . O. l O O OF O l _ l2 l L . . . _0 . 96_0ft E .. 0 3 .. .... 1 2 . .. . 1 5 .. ... . 0 . 1 1 J 4 __ 1 2 .. _ _ 0 . 2 8 5 4F. . . 0 7 _____ _ l 't l 3 __ __ . 0 . _ B lt 75E .... O 3 14 . ..1 5 . . 0 . L5 1_3_-=_o 1 _7 s s r=. Q ? t� t 't __:- o . l_t> _ l 2 o . �2 __!2_8f;__0 2 16 14 - 0 . 7 2 5 8� 0 0 17 0. 11 - 0 . 4 8 9 0� 0 2 17 13 1 '• __ _ _ - ___ . _ _ _ _ _ . _ .. . _ _ _ _ _ __ _ __ 1 53 cc Q_ 1- 0 0 C\J c:) \,() 0 � � r i ma ry te�pe ra t u re T p2 ------- N 4------ ---�----�r---�--� ' o . oo 3o . oo T I ME 6o . oo 9 o . oo �= - 1 . 8 4 8 1 20 . 0 0 (SEC) p r i ma ry te�pe ra t u re T Pl \0 -..-- --, -�-�-4-1-----.-,--=:- � . 00 3 0 . 00 T IME 60. 00 ---,--. 90 . 00 �= 0 0 7 5 • 1 20 . 00 CSECJ 0 0 i n l et p l en u� tempera t u re T � 0 Pi � +-------�------�------�----� � = 0 . 0 0 0 1 20 . 00 90 . 00 60 . 00 30 . 00 � - 00 T I ME F i g u re I V . ? (SECl S t e p Re s po n s e o f �1o de l 0 to +1 0% C h a n ge i n S t e am Va l ve Coe ffi c i en t . 1 54 a a o a· _J (L 1-- ..o a a o u t l e t p l e n u� te�pe rat u re T -3 . 03 3 . ��------�--� ' 1 2 o . oo 9 0 . oo 6 o . oo 3o . oo o. oo �----- 6 = T I t� E a: (L 1-- Po CSECJ a a � c;; ..o a a p r i ma ry tempe ra t u re T p 4 �----- 6 = . ��------�--� ' 1 20 . 00 9 0 . 00 60 . 00 30 . 00 o . oo T I ME ..o a a -3 . 033 (5ECJ pri �a ry tempe ra t u re T P3 ------ 6 = . � ;-------.--.---� ' 1 2o . oo 9o . oo 6o . oo 3o. oo o . oo T I ME Fi g u re I V . 7 ( Co n t i n ue d ) . (5ECl -3 . 075 I 1 55 0 0 t u b e met a l tempe ratu re T \.0 0 0 . m3 ------- � = � 1-------�.--r--�--� • o . oo 60 . 00 T I ME (SECJ 3 0 . 00 90 . 00 -4 . 286 1 20 . 00 0 0 \.0 0 0 t u b e me tal te�pe ra t u re T ? m._ �1-----�====�==� �= •o . oo 6o. oo T I ME CSECJ 3o. oo g o . oo 1 2o . o o -3 . 740 0 0 0 . t u b e me t a l te�pe rat u re T \.0 0 � ml �------ � = N 1-------��--�--� •a . o o 3o . oo T I ME F i g u re I V . 7 ( Co n t i n u e d ) . 60 . oo (SECl go . oo 1 20 . oo -1 . 813 1 56 0 (\J ------- A = - 0 . 266 s u bcoo l e d l e n g th L 5 1 . 0 �------r--.--, •o . o o 3 o . oo 6o . oo T I ME w _J 0 1 2o . o o ( S ECJ ------ 0 0 > ...: "" 9o . oo down co�e r l ev e l L 0 0 "4- �= 1 . 292 d --------�------�--------�------� CU . o o 3 0 . 00 60 . 00 T I ME CSECl . 9 0 . 00 1 20 . 00 0 0 � :L I- 0 t u be me tal te�pe ratu re T 4 m "" C) :• ot------�====�==� � = - 3 . 7 4 5 . oo 3 o . oo 6o . o o 9o . oo 1 2o . oo T F i g u re I V . ? I t·� E ( C o n t i n ue d ) . (SECJ 1 57 0 0 :::E: ..... w ' t o down come r te�pe ra t u re 1.0 0 � ------- 6 = � �------�--� 'o . o o ' o Do .... 3 0 . oo T I ME 9 0 . oo C S ECJ 1 20 . oo ------- � = ;c o ...... so . oo -4 . 570 0 . 004 . b o i l i n g s ec t i o n e x i t q ua l i ty X CO m wo e x c:i �-------,.--r--�--� ....a tU1 CL ' o . oo 30 . 00 T I ME 60 . 00 90. 00 1 20 . 00 (SECJ 0 D 0 . 0 ..o D s team p re s s u re P c:i s � �------��--�' o . oo 3 o . oo 6 o . oo so . oo 1 20 . 00 �= T I ME F i g u re I V . ? ( Co n t i n u e d ) . (SECJ -36 . 274 1 58 s hows a s ha r p dro p t hen a g ra d u a l i n c r e a s e un t i l i t settl es a t a l ower l ev e l a t t he n ew st eady s t a t e . T h e down comer l evel a n d t h e downc ome r t em p e ra tu r e b eha ve i n a s i mi l a r way a s i n Mo del C . IV.9.5 Compa r i s o n o f Mode l s Re s po n s e s S i n ce e a ch dyn am i c model h a s s ta te v a r i ab l e s t o re p re s e n t d i ffe r e n t sect i o n s o f t h e sy stem , a one- to-one co rre s po n de n ce fo r co�ra r i n g t h e re s ul t s o b t a i ned from t h e fo u r mo de l s i s n o t p os s i b l e . T h e o n l y two s ta t e v a r i a b l e s that a re common to a l l fo u r mo de l s a re the p r i �a ry o ut l et te�pe rat u re ( T p 0 ) a n d t h e s team p re s s ure ( P s ) . A com8a r i s o n o f the s e two s t a te va r i a b l e s t o a + 1 0% c h a n ge i n t h e s team val ve coeffi c i e n t i s s hown i n F i g u re I V . S . I n f1o d e l n, the p r i ma ry o u t l e t tempe ra t u re i s t a k e n a s the tempe ra t u re o f the l a st p r i ma ry l u� p ( P4 ) s i n ce t h e i n l e t a n d o u tl et p l e n um l umps we re n o t co n s i de re d i n t h e o t he r mode l s . Re fe r r i n g to F i g u re I V . 8 , i t c a n b e s e e n t h a t t h e re s po n s e o f t h e p r i ma ry o ut l e t tempe ra t u re a n d t h e s team p re s s u re i s c o n s i s te n t fo r a l l fo u r mo de l s . The ma x i mum de v i at i o n i n th e n e w s te a dy s tate fo r the p r i ma ry o ut l e t tempe rature i s l e s s t h a n 0 . 5 ° F a n d fo r t h e s tea� pre s s u re i s l e s s than 8 p s i . Th i s s hows the l umpe d n a t u re of t h e UTS G . Th e d i ffe re n ce i n re s po n s e b e twee n t1o de 1 s A a n d B i s d u e to the u s e o f the ba c kwa rd d i ffe re n c i n g w i th a s i n g l e p r i ma ry l ump fo r Mo del A a n d two p r i ma ry l um p s fo r Mo del B . C and T h e d i ffe re nce i n re s po n s e betwee n �1o de l s 0 i s due t o t h e a s s umpt i o n o f a fi xed bou nda ry betwe en t h e s u b c oo l e d a n d t h e b o i l i n g s e c t i o n s o f t h e e ffe c t i ve heat e xc h a n ge l ur1p i n �1ode l C w h i l e a mo v i n g b o u n da ry i s con s i dered fo r t1od e l D. 1 59 s t e a m pre s s u re ( P s ) 0 0 0 i1o d e 1 D . 0 .-- I �1o de 1 C . Mo de 1 B 0 Vl 0.. 0 N I �1ode 1 A Vl a... 0 . '0 0 M I - - - - -- - - - - - - - - -- - - - . 0 0 '<j" I ._.., - - - .. - - - - - - - - - - - - - - - 0.0 20 . 0 40 . 0 80 . 0 60 . 0 - - - - -- 1 20 . 0 1 00 . 0 T i me ( s ec ) . 0 p r i ma ry o ut l e t tempe ra t u re ( T 0 ) p 0 11ode l D . 0 r�o de 1 c r1o del B .-- I r1ode l A 0 0 • a... N I - - - - -- - - - - - -- - - - - - -� 0 . M I 0.0 20 . 0 40 . 0 60 . 0 80 . 0 1 00 . 0 1 20 . 0 T i me ( s e c ) F i g u re I V . 8 Compa r i s o n o f T p 0 a n d P s R e s po n se s i n t h e Fo u r Mode l s . CHA P TE R V C OM P A R I SON O F DETA I L E D MODEL P R E D I C T I ONS W I TH EX P E R I ME NTAL RESULTS V. I I n t ro d u ct i o n A ma t h ema t i c a l model o f a n e n g i n eer i n g syst em i s a s good a s i t s c a p a b i l i ty o f p r ed i c t i n g t h e dyn am i c r es po n s e o f t h e a c t u a l system . Therefo r e , t h e compa r i son betwee n t heoret i ca l mode l p r ed i c t i o n s a n d ex per i men ta l r e s u l t s i s t h e b e s t method fo r test i n g t h e a d e q u acy o f t h e dyn am i c s i mu l a t i o n mo de l s o f a n en g i n e er i n g system . I n C h a p t e r I V , pa ge 1 06 , t h e ma t h ema t i ca l mo de l s devel o ped i n C ha pt e r I I I , pa g e 2 5 , were a pp l i ed to s i mu l a te t h e s t e p r e s po n s e a n d f requ ency r e s po n s e o f a UT SG w i t h a perfe c t feedwa ter con trol l er . I n th i s c ha p te r , t h e end p ro d u c t UTSG mo del ( r1o d e l D ) i s c o u p l ed w i th a mode l f o r a p re s s u r i zed wa ter r eac to r , (3 4) a n d t h e frequen cy • r e s pon se o f t h e comb i ne d sys tem i s c ompa red wi t h t h e e x p e r i men tal r e s u l ts o bta i n e d f rom dyn am i c t e s ts p e r fo rmed o n t he H . B . Ro b i n s on n u c l ea r power p l a n t . ( 5) T h e o bj e c t i ve of t h e compa r i so n i s to c h eck the adequacy of t h e UTSG mo d e l . V. 2 Desc r i pt i on o f the Sys t em T h e Nuc l ea r S team S u p pl y Sys t em ( NS SS ) o f Nu c l ea r Power P l a n t (2) the H . B . Ro b i n son i s a t h re e- l oo p 2 20 0 t·�.� t ( 7 3 9 t1\·le ) We s t i n g ho u s e PW R sys tem own ed a n d o p e rated b y Ca ro l i na Power a n d L i g ht Compa n y . E a c h l oo p i n c l u d e s a v e rt i ca l UTS G . T he dyn am i c t e s t s were p e r fo rmed d u r i n g fu l l power o p e ra t i on u s i n g n o rma l pl a n t eq u i pmen t to mea s u re 1 60 1 61 sys t em res po n s e s a t s evera l l o ca t i o n s o f t h e l oop a s s hown i n F i g u re V. 1 . T h e dyn ami c t e s t s i n vol ve d t h e p e r t u rb a t i on o f reac t i v i ty a n d steam d ema n d u s i n g mu l t i fre quency b i n a ry s i g n a l s ( 4) a n d mon i to r i n g the sys tem o u t p u t s a t t h e j unc t i on box whe re the s i gn a l s e n t e r t h e pl a n t compu t e r . V.3 PWR Mod e l J ( ) The rea ctor power wa s mode l ed u s i n g t h e po i n t k i n e t i c s e q ua t i on s wi th s i x g ro u ps o f d el ayed n e u t ro n s a n d reac t i v i ty fee d b a c k s d u e to : ha n g e s i n fue l tempera t u r e , cool a n t/mode rato r tempe r a t u re and p r i ma ry :oo l a n t system pre s s u r e . Th e c o r e h eat t ran s fe r mod e l u s ed a noda l i pp ro x i ma t i on fo r fuel a nd coo l a n t tempera t u r e . E a c h a x i a l s ect i o n i n c l u d e d a fu el tempe ra t u re node a n d two coo l a n t t empe ra t u re n ode s . ih i s fo rmul a t i on wa s u se d to o bta i n a goo d a p prox i ma t i o n to t h e tverage coo l a n t tempe ra t u re . T h e r ea c t o r l ower a n d u pp e r p l en ums a n d : h e p i p i n g b e tween t h e reactor a n d s t eam generator were mo de l ed t o cc o u n t fo r t h e t ra n s po r t t i me d e l ays b e tween t h e re a c t o r c o re a n d team gen era to r . T h e reactor mo d e l u s ed fo r co u pl i n g w i t h the eta i l ed steam gen erator model ( Mod e l D ) co n s i s t s of fo u r t ee n f i r st rde r d i ffe r en t i a l equa t i on s tha t c a n b e ex pres sed i n the fo rm dx dt 1 ere = ( v. 1 ) Ax + f' ( t ) x a n d r ( t ) a re t h e s t a t e va r i a b l e s a n d fo rc i n g v e c to r s r e s p e c - i ve l y a n d A i s the coeff i c i en t ma t r i x . The def i n i t i o n s o f t he s t a t e i r i a b l e s u s ed i n t h e rea ctor mo d e l a re g i ven i n Tabl e V . l . Jn z e ro e l eme n t s o f t h e A mat r i x a n d t he forc i n g vec to r The r a s o b ta i n ed ·orn Re fe re n c e 3 a re g i v en i n Ta b l e s V . 2 and V . 3 , r e s p ec t i ve l y . F p I nput Si gnal C o n t r o l Rod T u rb i n e P res s u r i z e r S t e am G e n e rat o r T 0'> N Fe e dw a t e r H e a t e rs N t----1 F T l F i g u re V . l S c hemat i c o f t h e H . B . Ro b i n s o n P l a n t . � I n d i c a t e s Me a s u re me n t N T P F L = = = = = n e u t ro n dens i t e mp e ra t u re p re s s u r e fl ow l e ve l ty 1 63 TAB L E V . 1 DE F I N I T I ON O F TH E STATE VA R I ABL E S U S E D I N TH E REACTOR State V a r i a bl e N umb e r ---�S'->/.ycc.:m.:...:cb..::. occ.: .l �10 D E L . · t i on s i n..:__1:._ e..:__ f ..:...; �f)-=..:...:-=..:...:..::.. _______ ______ o P/ P 0 o P = d e v i a t i on i n r e a c to r pow er 2 oC , f P 0 P 0 = s t eady state reactor power 3 oC z i P 0 4 6 C / P0 o C . = d ev i a t i on i n p r ec u r s o r co n c e n 1 trat i o n of g ro u p i , i = l , 2 , ,6 5 o C 4/ P 0 6 7 o C5/ P 0 o C 6/ P0 3 o Tf 9 o TC l 10 11 12 13 14 6 TC 2 o TU P. 6 \p o THL * o T ** cL . • • 6 T f = d ev i a t i o� i n fu el t empera t u r e o TC l = d ev i a t i on i n r ea c to r coo l a n t temper a t u r e o f t h e f i r s t cool a n t 1 ump o TC 2 = d e v i a t i on i n r ea c to r coo l an t t em pera ture o f t h e second reactor c oo l a n t l um p o TU P = d e v i a t i on i n r ea c to r u p per pl e n um temperat u r e o Tf l l = d ev i a t i on i n reactor hot l eg tempera tu re oT CL oT LP = d e v i a t i on i n r ea c tor col d l eg t em p e ra t u r e = de v i a t i on i n re a c to r l owe r pl en um tempe rature * To be c o u p l e d w i t h steam g e n erator pr i ma ry i n l et pl en u m . **To b e co u pl ed w i t h st eam g en erator pri ma ry o u tl et pl e n u m . 1 64 TABLE V . 2 3 NONZERO ELEME NTS O F THE A MATR I X FOR TH E REACTO R f10 D E L ( ) Row Number C o l umn N umber 1 1 1 0 . 01 2 5 3 0 . 0 3 05 4 0.1 1 1 0 5 0 . 30 1 0 6 1 . 1 40 7 3 . 01 8 -0 . 80 9 5 9 -6 . 2 2 7 10 -6 . 2 2 7 1 3 . 1 25 2 3 3 - 0 . 01 2 5 87 . 50 3 - 0 . 0 305 7 8 . 1 30 4 4 -400 . 0 2 2 2 E l emen t Val ue 4 -0 . 1 1 1 0 1 58 . 1 0 5 5 5 - 0 . 301 6 1 46 . 2 5 6 6 -1 . 1 40 7 1 1 6 . 88 1 65 TAB L E V . 2 ( C ont i n u ed ) Row Number Co l umn Nulilbe r E l emen t Val ue 7 7 -1 . 01 8 1 66 . 30 8 8 - 0 . 1 64 7 8 9 0 . 1 64 7 9 8 0 . 05707 9 9 - 2 . 440 9 12 2 . 383 10 8 0 . 05707 10 9 2 . 3 26 10 10 -2 . 333 11 10 0 . 3365 11 11 -0 . 3 36 5 12 12 -0 . 51 6 12 14 0.516 13 11 2 . 5 00 13 13 - 2 . 50 0 14 14 - 1 . 48 1 66 TAB L E V . 3 NONZERO E L E ME NTS O F THE FORC I NG V E CTOR FOR TH E REAC TOR MODEL f( 1 ) = 4 00 . 0 1 67 V.4 Cou p l i n g o f Rea cto r and S t eam Ge n e ra tor Mo de l s Fi g u r e V . 2 s hows a sch ema t i c o f t he reacto r and s team g en er a t o r l um p s u s ed i n t h e dynami c mod el s . I t can b e seen t h a t t h e o u t p u t from the r e a ct o r hot l eg l ump feed s i nto t h e s t eam g en�rato r p r i ma ry i n l et pl en u m a n d t h e o u t pu t f rom t h e s t eam gen era to r p r i mary o u t l et pl enum feed s i n to the reacto r c o l d l eg l um p . T h i s con s t i t u t e s t h e cou pl i n g me c ha n i sm betw een t h e r ea c to r mo del a n d t h e s t ea m gen era to r mo d el . The st eam gen era t o r mo d e l u s ed fo r c o u pl i n g w i t h t h e r e a c t o r mod e l i s t he r ed u c ed v e r s i on o f Mode l D . I t was obta i n e d a s a n J? o u t pu t from t h e P U RE D I FF ( ) computer p rog ram w h en t h e m i xed d i fferen t i a l and a l gebra i c equat i o n s d e sc r i b ed i n S e c t i on I I I . ? , pa g e 74 , a re u s ed a s i n put . The mi x e d a l g ebra i c a n d d i ffer en t i a l fo rm o f t h e mo de l con s i s t s o f e i g hteen d i ffe ren t i a l and a l g e b ra i c e qua t i o n s i n v o l v i n g f i ftee n d i ffere n t i a l va r i a b l e s a n d three a l g e b ra i c v a r i a b l e s a s s hown i n Ta b l e V . 4 . Afte r e l i mi n a t i n g t h e a l gebra i c va r i a b l e s i n PURE D I F F , t h e mod e l i s reduced t o f i fteen f i r s t o rd e r d i ffe r en t i a l e q u a t i on s i n vo l v i n g t h e f i r s t f i fteen v a r i a b l e s i n Ta b l e V . 4 . The sta t e va r i a bl e s i n vo l ved i n t he c o u pl i n g w i t h t he r eac to r mo d e l a re marked wi t h t h e s u persc r i pt 11 C 1 1 • T h e comb i n ed rea c t o r - s t ea m gen erator mo del c a n b e expr e s s ed i n t h e fo rm g i ven i n E q uat i on ( V . l ) , pa g e 1 6 1 , when i n t h i s ca s e x i s a ( 2 9 x l ) s t a t e vari a b l e v ec to r w here t h e f i r s t 1 4 el ement s a re t h e reactor va r i a b l e s d e s c r i b ed i n Tabl e V . l a n d t he n ext 1 5 e l emen t s a re the s t eam generator d i ffere n t i a l va r i a b l e s g i ven i n Ta b l e V . 4 . Heater Hot LeCJ Re acto r Upper P l en um � Tf T S t e m Generatot ilL .- - � -- I ' T UP r- l Fue1 Reactor Powe r ' 1- - T - C2 3 T Lower P l en um - I I I I _J I I ' el I_ _± \p -- �· f I I I CL r--- S t ea m Outl et L ower Pl e n um P r i ma ry S i de L umps I Reacto r Coo l a n t T t U pper P l enum L - -j- - - Co l d L e g F i g u re V . 2 n pu t L umped S t r u ct u re for a PWR Sy s t em r�del . Tube t1eta 1 L umps -r - -� - - - -, S eco nda ry S i de L umps ' J I , - - -- - - - - - - - - -' j Feedwa t er I n 1 et m co 1 69 TABL E V . 4 S YS TE M VAR I A B L ES FOR TH E STEAM GEN E RATO R c MO DEL 1. T 2. T 3. T 4. T 5. T 6. T 7. T ml fi r s t t u b e meta l l ump t empera ture 8. T s ec o n d t u be met a l l ump t empera t u re 9. T 1 0. T 11. L 1 2. L 1 s n o n bo i l i n g ( s ubcool e d ) l en gt h 1 3. P s t eam pre s s u re Pi Pl P2 P3 P4 c PO m2 m3 m4 d s p r i ma ry wat e r i n l e t pl e n um tempe ra t u re f i r s t p r i ma ry wat e r l ump t empera t u r e s econ d p r i ma ry wa t e r l ump t empera tu re t h i rd p r i ma ry wa t e r l ump tempera t u re fo u r t h p r i ma ry wa ter i ump t empera t u re p r i ma ry wa t e r o ut l et pl enum tempera t u re t h i rd t u b e meta l l ump tempera t u re fo u rt h t u b e meta l l ump t empe ra t u re down come r 1 e ve 1 14. bo i l i n g s ec t i o n exi t q u a l i ty 1 5. down comer tempera t u re *1 6 . fl ow r a t e to t h e n o n b o i l i n g s ec t i o n *1 7. f l ow rate t o t h e b o i l i n g s ec t i o n *18. fl ow ra t e from t h e bo i l i n g s ect i on *A l g ebra i c v a r i a b l e s . 1 70 V. 5 Re s u l t s T h e f re q ue n cy re s po n s e of t h e comb i n e d rea cto r s team gen e ra t o r mod e l wa s c a l c u l a t e d fo r two pe rt u rbat i on s , a re a c t o r s i de re a c t i v i ty pe r t u rba t i o n a n d a s team gen e rato r s i de steam fl ow pe rt u rb a t i o n , u s i n g the S F R - 3 c o d e . ( 40 ) T h e forc i n g vector fo r t h e rea ct i v i ty pe rt u r ba t i o n ha s o n l y o ne n o n z e ro e l eme n t a s g i ve n i n T ab l e V . 3 . Fo r t h e steam fl ow pe rt u rba t i o n , t he fo rc i n g vector wa s o b ta i ne d fro� the t i me re s po n se a n a l ys i s o f t h e s team gene rato r mo del a n d t h e n o nz e ro e l eme n t s are g i ven i n Tab l e V . 5 . F i g u re s V . 3 a n d V . 4 s how t h e fre q u e n cy re s po n s e o f rea ctor powe r a n d steam ge n e ra to r pre s s u re fo r t h e reac t i v i ty pe rt u rb a t i o n a n d F i g u re s V . 5 t h ro ug h V . 7 s how t h e freq u e n cy re s po n s e o f rea ctor power , c o l d l e g tempe ra t ure a n d steam pre s s u r e fo r t h e steam va l ve pert u rbat i on . For t h e re a c t i v i ty pe rt u r ba t i on , i t wa s fo u n d t h a t t h e a greeme n t between t h e t h e o re t i ca l mo del p re d i ct i o n s a n d t h e e x pe r i me n t a l re s u l t s i n the l ower f re q ue n cy ra n ge depen d s o n t h e va l ue o f t h e mo de ra tor coeff i c i en t of react i v i ty ( a ) . c The t h eo re t i c a l r e s po n s e wa s cal c u l a t e d ( S) for two va l ue s o f a ' t h e re feren c e val u e ( a c r ) u s ed b y Ke rl i n e t a l . c and 6 0% of t h i s reference v a l ue . I t c a n b e s e e n fro m F i g u r e V . 3 t ha t t h e a g reeme n t b e twee n t he t h eo re t i c a l mo d e l r e s po n s e a n d t h e �xpe ri me n t a l re s u l t s i s b e t t e r f o r t h e s ma l l er a ' e s pe c i a l l y i n th e c ower fre q u e n cy ra n g e . C l e a r l y , o n e wo u l d n e e d a b ette r va l ue o f a c h a n wa s a va i l ab l e fo r t h i s work t o pe rm i t conc l u s i ve compa r i son s o f heory a n d e x pe r i ment a t l ow freq uen c i es . T h e fol l ow i n g commen t s o n h e compa r i s o n w i t h t e s t re s u l t s a r e i n o rde r . 1 71 TABL E V . 5 FOR C I NG FUN CTI O ri FOR STEM1 VAL V E P E RTURB AT I O N ( +1 0% Cha n ge i n S t e am F l ow Ra t e ) f( l 7) = 2 . 69 79 9 9 E - O l f( l 9) = f(21 ) = 4 . 732 00 0 E - O l f ( 22 ) = 7 . 2 79 998E-02 f(23) = - 1 . 6 2 8000 E - 02 f ( 24 ) = - 1 . 058000 E - O l f(25) = 1 . 68 1 000 E - O l f( 26) = -2 . 298000 E - O l f( 27) = - 6 . 072 000 E -O O f ( 28 ) = - 5 . 488999E - 0 3 f(29) = - 6 . 6 7 3998 E - 02 - 1 . 1 6 39 9 9 E - O l . f. 1 - . i l�.,-r.., � P a rt A . Ma gn i t u de Rat i o ,.,t-h• · , f'T'jirl ··1 + nn 'I t, , TiT � ! p -- I � · _L.. � o l- �'�'i" · . · l , � ...li - ' i'-=i""·smr -r:...:..� , I, .JI�;,f ffi;ttf r+ ' '· ·t' 'l ].t�' ··· "-' I , j,, , ... _:_ J i .....Lj-;-+� � �.r:;-� 1: , , �;·I j_� fi-jr +� l-1-t f� � Ll� : , , . . , 1p',;. · �-�-+--� L•, · · ' "' '' w - I .. - -. .� . II - H-- L , . -� li'17" ,. - - '-- - . , fP, ' r l ' ' r , ' ' ' l �! ' I ', i�, fff,�: ' �� F . · . . ,.. .- r" , 'FHf , ct "Th+i ,-r , ''h' "�' •,. -t; ' " ' ' " , r , , . · , , , . i , Hr·� r :i; "r ·:q., ·J..l n . f= �, .;-.. - I , -4ll -!-l.f�' 1lhl· 'l-'-tJ 1-l� , " ' , � � - --' �' �'-'- -2.!_ · - f-.-l.--rY :L ! ;' -' . .:.... -' f - + · · � : : : , , , l · l:�r:-":�"" : , : l : i ' i '· } ' I ' lli ' , :-: ,- , , ' · . ' : . 1 : 1 ' . 1 1 ' I I ! : i : 1 i ! i . P j l " 1 ! ·' , .,.: I , I · : : ; ' ' i , ' l ' l ; i , ,, .. ': l : · .- · 1 · , ! 1 1 . , . 1 · ' . , , .. '':! .,. _ , " · i 'f 'e T! T· n ,, . . . �· : -�l � . . , · , . , - .u�"+!- f--7: : . , , . . I l / 1 I : I I I ; \ I ' i i ' 1 : 1, : · ' : , I ' '!;r r': ' 1 i . : i ' I i ' � �� I t 1 1 : i I : 11 i : I \ I [ , : 1 • �:, ' : l: i . :, : i : ' .:i � r�: L i i I I ' i ! i i ; i ' iill , I I t�;; ITi!! ! IT'I � d � , 1 , · • ' · ' ' TT! ' ' • · I I 1 . ' '• ' I , , ,,, 1 · ·rr�h · r:+�r' 11j ,· 1 +tni L' ���j)jllj!: ,� . . , ' -;-1-U + r' '"�jl+ :tJ · 1 ." " !111, ,t l� ·,l��·.', '-., · -�r � ,, ! .... ·, ,. �: 7�·1-';; - ' , ,, , ,, ' , , � - ' ·· 1' , + -��JU , 1p! t:+r Hll t" H' �" ""' "lti11 t11l1fi·!.r1 1 ·l"fit,• :,,Mri-· , 1 , , . , . � � dl , , 1 1 !i , , 1 , 1 ' · . 1: 1 : c : l i ; : I i l l ! " , ' '1� I T ' i l , I, 4;1 · · · ' , . .' l : ' , ; 1 · , , ; · � � � · l l · 1f , j� ' ' ' l ' ' ' · · · , · ' I ' ! , u 1 : · · · · , '"!' . 1 1 I ' l l . . . ..._,. , 1 , .., , , .. r(' Jii" ' l . I i '1 �� ,, ...,. n� 11, -• .' -. , 1f' '' " "" ' . � ',,, , . -, I I . : 1.' ., , : : i i : 'c; , ! 1 1 .I , , , , . , : : 1 , 4-. 18 1 ..1 i, ,lt ·' -i -' �l"·' ;-. · ·, - 1 . I , , . ' ' ' i t. , ht!. ' I , I ' I ' i , ' ' , 'I o lf-'---I •f�L.!- ' � .__:. ' I ' I 1 �· �� � ._ . -- � ....l. ' : ·: - 1 � � .� I T; �.. · , ! , -;-, � � � I ! 1!: I t 1 • :1 · I ·! ;·:i :·· · · · , : ' 1 , , ; ,;:1 � ' , ' 'I ' ' I. I I j 1 ! I !id:l i ' l · l ' ' :!· .I , 1 ' I ' 1 -� , .,.. ,I;·� hi' ' " . .. J.lt .. , ., I . , ' 41' ,, , 1 11 : · , I I + 1 ·� I' :I lJ ,!h! !· i [ , I ,, ' , iJ: 1 ', ,I · I el l , · I • ·I• 'I, I '' � ' 'll I ll! l I I I· I I ' " I I I I• I I I ' I I ' I ' I ll :! II I I I ' I I I : ' 1 1 . i l l i i l , , , ,1:, I : i ! j li l ! , 1 , , I f i' i [ , I I i 1 i , ! ' ' l i l ll:r l : , , I ' ' ' I ' l l , , ' i l t .! , r,1 i ' : ' l i l ·:I!'· :"", 'I l· l I• I: ,1' 1 ,""1 '' ' , �4� l i r '. ·I il j l, li !: l! l1 1, ,, ·1 ,11, j1:;; , l ' ·· i l '·" '" t l ''': ·,! ' , ,", ; [ ! �:,· r : l l i l l : ; ' ' ' ,l l l , : 1 , ' , , · • : , ' ! ' · I l 1 , w ' 1 11' I g;.l.U.!�' � I I : � �:, � - � ' ' ..:...8) �f:::irrr ,ill :2Y k: �- n I itT: 1::4 . ;jjW:,' tiT ��� 'i ;14 WI - rr::lf'-::+-: � 1 0 e-;...',J :' , 1'1' [!.. 1!!"1 , -� : , - - 1�LJ_j_ , i.ql �t 1 -,· · ' - r:: : ; I • ' _ " _ r; 1 --' ·: � 1 �1 l! _1J i i · : , •fil1 _.: l --, . =, �· (P.h� .. .... � L', .., t' Il rr •1'....1'; JJ _lI _f , ,! ' ' -- � - � - , tt;:' T n � • TiT t ' 1 1 l 'r'i ' l "''!' · ,u_c h·-'+h,....L i' "'� , · : . . . . .. --f-c LL . . . '--"J-.:.1-'-H HI>,.� , '' !--' .. ..�. [-'-!-'. - , , . 1 i · J :::J ; . I : 1 1 1 1 1 : r � --: · --- ��-' ' u) � � � . � � 1 , 1 !"p , � .. 1 ' ' -,i�f+C:• -'" Cf � -· ' · ' I , ' ' "II .. . ; '�; ' ' 'I 'I' ,! ' <. ' ! ' . I ' I I -Oit· - "- ..' I . I 1 �!- :.:, , . . ----'r i-S. ; -r · r--<.. ' � U, I U6' ' "" ' · ' ,i'' . :: : ! '1 :1I' 1I ' I , 1 . I . , .: . ·' .' .l : ..: .��. -� I i ' i . .I.tI .· ' ' "- �-: II' ,: . : ' t ).> �-- · ...... , l ·..t.;, �r; · ·· .; ,h ·,- :.,,.. . : _r' . I ,· - �Il �-'j ,'� �!, ll 'r�; c:n . ) .. . . , . J. . , , ; I c i •, ' • · · ' :• I : I,:: , . ctr' ...... ! I ' I I I - --,- --�-- � - . .: :� · : · «• I · · -- · · , -j l i : ; � · . -,-: ' :l� j � ' i -� i I : , ' . II . 1\.� , l..h . I ' I I' ' ' ' ' l ... 1 1 � • � 1· �I ' ....,.. 1 • 1- - 1 1 - . . . j . 1 . · t ..:. ::.:. � 1--; r · : t " : · l.l. L.. I ' · · • · :· · -r l; :1 1· ' · · · · \ : ; ;:j' ., · �- 1 ---· · .1 " . .. - : : ., j ... . J-', ' I ' ' ' �:i I ' ' ' ' !i : ' I \ I I ; ' : : ' I j : i I I ' '' ,, ,, , , . . 1 . . I ' I I ' f I I' · . I I ' I ' I : I : l I � ' ; ' ' I : : I ! ' ' : ' I ' 1 1 1 1 11) ! ,) ! I< ' ' ' 1 I I ' ' '1 1 " · 1 , , • il I 'J . , J ' I . : 0 1 _J j l i l ] ' r , , , : ·1· ' 1 ·L · i ..."J ' I...' t' l.;· 1...�' " I .· 4· I I 'I ' I 10 0 • -r-T 1 TT' h-;-r• � !... • • L , -- , • -- .. t eo ·- . . • J I ®' 1 ' , , ' j ! ' . I ' I 0 I ! o • : .L..l : ' I I ! I r- +-> QJ "'0 :::S +> 1 ' ! I : t"r "ii el� I 1 • I ' I 1 I ' ' I . ' 1 ' 1 •• �l..;.-1·�� I I • • I I I . . ; _. , • . 1[,1 " . I , • . I • • I I ' ' ' i . ' o i l . • . • . . 1': I ' ' , 1 1 1 I' _--LJ. ____.t_:. ..L.J liL 0 . 00 1 F i g u re V . 3 . • .l '. i ' • . ' . ,, I I 1 ' I I ' I• l I ·- _ r r � '' , --'-E� l . ' ' r I' I , , . ' 1 1!1 r r I' . I • _ 1 • , �: I I I . • 1 • I , 1 ' ' I I I 1' ' I I jl 1 l i " I ll ' l IIl . I II • , . ' i �- 1 ' : I ' :1 [ ' ' ' 1•I I • ' ' l 0 . 01 • • '' , I , _. I . II I ' , ' I , . , '' ' I I • I, I I o' I . " I • :1 '� • I • • • -• I I 1 1 .1 1 '" "" t ' ' ' I I '� . " ' I 1 I� I - . , I . • ' �-- 1 I ·r I : I . I . ' ,. 1 , . I 'I 1 I I I ' I I [ , I• • I . j ! I 1 . 1 I I II • , L I o I I I I ' . I 1 ' • I 1 1 0.1 'I 1 • I 1 -- I I 11 ' 1 '' - I ' I I �. I , " 'b - ���� hp: I • 1 . � o 1 : ' 'I : - ' 1 : ;:; I ' ' . ,, I I ' . ". ' 1 " I ,I · I I , · ,n,• · .I I ' ' I I I 1 I i ' I I I I ' - ,, I ' I 1 . . . 1 � ' , , • Fre q u e n cy ( ra d / se c ) Rea cto r Powe r/ React i v i ty ( o P/ P /o p ) Frequency Re s po n s e . 0 1 .0 · · I I 1 . I I I - · . . •'' , I I 1 I ' I I ' "" ..J - I' I I , r1 . 1 " I ' --..a N II • I . --' I I II ' I .' ' 1 1 , ' " I . ' "' ' 'I I Jol• I ' lj I, . 'I I .. I I ' • !..� , I 1 c" , 1_• 1 ,, , I � - -- ' ' . I, ,, I I ' I 1 • 1 I• , , - I _.u I �I 1 · --'----'- ,j . " • !I I I I )II , I , , ,1 , ' 'I · -- I I L·. I . I, . ..1 � �� " , t:' . I I - . 1 , • , t 1 ,1 -' ,!,. • I ' ', I , . , . ' - I r �- ' I , .' I I - - _ I t d ' ' j , I • • -- � ' H-+4-4-l�f'i' I I II I '" � :1 1 l ffi�L��f+,WwL '�mt , J • • � ..,,-,.�..._ I'. , ! I ' _ __ � , , I I , .l,, �lj ;w,c . ...�·-:r I ' c' --- " , ,,., -'-'- �-- u r r r � t � j ry� __ ! ' � ,; . ' ' 'I' I I I ' I ' ' .I II ' . , ,,I 'I I J · . . _.__ l.J.... ' • , -+-'-'-L � --�-� i , r I ' 1 'II, , ,, . , 1 __ , , ' " · ' , , ,, ct + :!.. •• ---r- :.J._j _;___ 1 1 1 r , � 1 : 1 . ,1 1 : ! 11 1 ' ·' - �--- . ' oi ·-r-- --k '-4 ' -'- 'L . II • '' · I I ·. .�'!.....:. •,, I - .; .. , . . - . • -·-t 1 1 j, � , . �I1i�p1;!,., ' j II I I �"� 1 - ' r I I , il ' I I I II 1 , , . ' f�'l 'r ,· , l--r-l -;-rr -;-trr "'i' 'Jli cf;,r; , ' ,,Jt II 1 I I I j I j , I I I 1 I I m I . t!J ' ' :· ' • ' . I' ' , I . I! ' I l ; :� I lll•li!j I I I II t. �,,, ·- --; I 'I ' , - ·'-- 11 . , ; • � J. � - _ _ . • - . • 1 ,� , 'I ., r: : ' ' , , " .• 'I I I I•1 \: : � "' ..8.J, �- 1. • --+,., . -�l-:I . • . -l "- - ' ! I I ,II I I• ,1,., II ' I I I ! " II I• I . ro � rr 11TI :m : . I - , " '1 I . i ' . ,,, , I . . IJ I 1 j .0 5 0 ()._ ' I, ___ . ' ' 30 0 20 0 • 10 0 0 • - I1J til 0 0 "' ...c: 0.. • - - - 10 20 30 • n -· ' I I ' - ----rI -r� - 1 ' f I • I ' I I I I I , ' . ' ' . , ' ' ' ' I· · I .I I ' • • .-+ r I I . .. ·. 1 . ' . . 1 ' ' ' . , . ' I l r r! . f-.,· . '' " .� '' ' - -,-- - • .r I 'I . I 1' . I . .. • ' . I ' I · · :·: i I I I' ·. ; l · I ' ' ' • ' 1 • � ' ,1 ,, , · · • , , , , 1' " .• ! I I I• · '· · I I • :: -- ' I II I . I 1 / ' . .. ' I I ' ! ' ' j' J I ' I ' I' f I I I ' I I ' ' · ' ' , ' I' I 1 ,t .l . ' I' '1 : : I I ' ' ! , ' ' ' ,, . • l l ! l it•• I· ' , .,. , 1 • ·, ·· 1 1 ,_ . '-:-� �1 I ' I ' '� , ' ' ' . , t ---·- ' • . - r . r I • --I - o ·- I I �1' I • I o 1 ' 1 __ _ I 1 f • ' I . I ' I I t I v - -1 I1 ' ' ' ' 11r ' ' ' ! I I ' ',' , . .. r' I ·, '' ' 1 ' ' I I I 1 I . � ' I 'I ' I r . oo 1 Fi gure V. 3 ' I ...... ' ·- -.. __,___,.. - . I 1 . . . ' ' ""'- r· .. ' _ • ' • , r . . .. .. . . _ __ 11.� .. . I ' , ' L I ., . . . . r-f'l l rj i ' "'f�· fL/ ., . o l ' , . ' ' I I I I . • I I I ' I c - . · I 1 � I iJ ' I . I - -, I • r ' I ' I ' I I' I t · I I I -+ ' , I ' I • . , . - _ o.1 F re q uency ( ra d/ s ec ) 1 .0 1 •t • l I � ·j '1 . I • · ' 1"'' I . 1 •• �� ' , 1 · I ' · 1 , , 1 I ' I ' I I , • 1 � I ' · � I , 1 t I . · ' · ' • r ' , 0 ( Cont i n u ed ) . 1 •. 1 b . ol 'I t • ,. , . 1 . ' • ' I 1, ' ' I ., •• - . ' . I ' . . J . . ' ........ • I • ' '· · 1 I - ... ' t o , --- ' .. I · " • ' . , , . • I . �� ' I r -· l ' · · ' · "--�ov ·I "�1- I I ' ' ': ' · , ' _ ' 1 • • · . , , I . n ' ' r ' ' I ' I' •,,' ' ,, i · •. rr, rr I t ' 1 I • ' • " ' ' , 1 q , ,, 1 \ , ' - 1 - -r · ,· · r ' ' · � ,· ·.� . , . . , , . t · · r 1' 1 l l·;1' h--' "" 1 . ·: 1.. I : �v � - -�-'" · 1 � · 1 . 11 , ' I •• .·, . . . . 1 ', · · , , . ,. t • t t , , 1 ! · : : • . 1 �-"-' �; .... ""-' ' 1 1 ' ' 1 ' l .. r ' · "i1 -, I • v; ' " · ' 1111 ' ' · · ' ' ' ' 11 ' ',I' 1 I 1 I l ' ·' : 1 �lo · ' ,,' · • , �l i !"i t l.!.I · I .: ,' ' I ' , , I ' f ;;.,. i , : !j,l , : ' . 'I I . !, I ' ' I· J H , --1I r : f ,I , • . •, , fii.J_i �-- 1 11 ' · · : I I : , · l q ;: ,. ' � I ..:... I I ' I I Jttl l � -H l r l l ' :l ' ' ..w..l b..•r""'"'" . . I I r.· . . . ,., . . . . ,;�. . . . I ' I I -1 j.-; . · I · • I I ' I ' .' ' .I ' ". ' : r ' , , .i f-:• · \--1 11 ' ,, I j I ' I, ' , I ' ' 1" 1!• -1 II I, I .... ' r,; I . I · : ,-;; ' ' . 9 (X I ' ·. . ' . --f · f :· , : , , . , , · � I I ; i · l 1:,' •!il :i'· :. .. : j :� . :, 1\ t J!'ii v � ,' : r : I : , , · , ! l , rl I -jl f ' 1 ' j ' '•" ' "' · · ·· .. I • ' 'I' I • • · ' : · J , • t \' 1.\ , ' I 1: I I • ' · · � . ·• : , ,.• , , · · lff i I,_..� .I· r r · · : : l · ' � �.- · : � l f8 . ." : . ' r i , : ' r, r-.. . · , ..· · · · -, -1 1 - ,' ', :I , ' 1, !. ,. . . ! 1..,-:,r�I J' i ,. i .. 1. . 1 1. r · ·: .� · , � ·� ,� : � , � . . . � ' ., , _, _ L.,_ 1 ,, .. . • • • :."1 , ��-'-' , • . .· ; .· : � , "'T. T-.--.- � '"l fiT r- "Tj ""� ! •l f! l , lf, ,'l "' n �· - r ,· : Tj ' " fl"" � ' Dt' I T"'j j ' tl } � -�t:;-'1"., , ., lt ....... - . - 11 __, ., ,. .. i • l' '' � · • . ' . . · ' 1 ! 1 1 . . ,.1 . � C> · ' r • . . l·)i-, ., . . · o K . . . ., . • • • · · · . . · ·· · I I , ,.,_I , ' .. I '• ( ' ' I ' ' • ' • ' '·'! N ' I ', 1 1 '1 '1 ' ' I ·' ' ' ·' ' .f . · '' I I �,v ' I ' I ' 1' I t' ' '' I ,. I '' ' I ' ' ' '1 , 1 ,.... • y I I I I ,...,. ' . . � - r .. 1 I �._ ' I · -· . , ' . '" , I ' v , I , . I ' ol ,.. i ' : .J ' , ' I I I I I" ' I I· I ' 1 ' I I ., ' I' I I , ' ! I · I I I 'I 1 ' I I :_.. j • I , / ,I r I '• \i, I ,I 1 1 1 , I r· • 1 11 1 I : II 'I, 1 I -- , I I I I I"I 1' �, v· : I I ' I I ' I ' 1' �L.' '_, t' I ,, ' 1 I I ......,...- - --.,.,-�-,--rl� r -·I�.--' , r-- - > , r-' rc-Fccre �r-nl r'.,-; 1 : 1 1-'-L:. ' I I· l i 1'1 r:r' I, ' ' I I I I I I ·• ' I ' I ' I I ' I ' 1 ' ' ! ' ' I \ ' • ' ' 1-J I J ' 1'1 • ', I i l l j ' I"I '' I ' ' .!f t 1 i '"I I ' ' l l l.,.-r\ I ' • 1 \: ' ' : I I' . ' . ' ' I • ' 'I ' IIJ - 1 1- I ' I '' " ·: " .., ,. , . , ' · " ' • - r-I r r I :' ' ' ' l ' ' 1 ' ''1' ' I 1 ' / ' 1'': 1 � I. , , , , 1 I l � · .., "� 1 ·1 1 • 1 1 1 1 /1 1 1 , I ' I J' 11 ' I • ·I · . I I, .,' ' I I ' I 11 1 o! · q ' . . . . . .L . 1 , · I l ' ' D, 1 1 , 1 1 , , 1 , , . , . . , 1' ' . 1 · I ' 1 , 1 , ' l 1 11 f" 1 l i l 1 , ' • I , 1 ' 11· , f , 1 ' 1 •l' r ; 1 1 , . -- r • , , •, "I ' . ' ' t ' ' ,,, I · · . · r · , , , I , I ' "II I I I . r· - , I' . I : ' I r Il ·' I 'I I 1 ' I ,' ' -I ll -. ' , f+,l''' ·10I I ' I Ir I I ' -,-+ ,.- , .. ...• ,I.. ., .I , rr' ' ,,-· • " r-- 1 ,, , ' '' I •: I' ,' . , .'- 'I,_. ' w · C:. l . , '.,. C If 'C'fOI: l_l__l l i_c; ,_; -'- , ' I I 1 I I I ' I J I •·1�' 1- r-=" l I I - , 1 • ' ' j l 'i ' •' .Y·II ' ' ' , ( ' : 1' , ' q ' ' , 1 • , i ' ' I ' I , -, i o � 1 ; 1 1 1 •• , 1� · ·· 1 · ' ' I • ' •I • j ' • •' ' I ' I 1 : . . : • ' ' li , •, 1' r I, ; · ,, •' ' I ' ' , 1--t ... ' ' I 1 1 ' II ' I I I I • I 'I r l 'I ' I I I ''I" ' I ' I I ' I I I lj I I I • 'L l '' ' I ' · ' · I, ' · , · ' : · ' · 1· , · · 1 : i ' 1 1l r · 1 · 1 ' I · , I, ' Jl l 1 i 1 k , :, • . , 1 . , · · · ' 1 -, , . · ' I ' · 1 � . . '·' f-· I · 1 1 I ·· l ' '. .. ' ' ' ,1 '1 ' 1 , 1 ' 1 r 1• j-·1 •• I I '' I I ' ', ' ' . . . , ' · 'I , , 1· · .- -. -j 1 •' 1 1 1 .• .;.... ' � � · ....J. ' , -' � - -'--f-'-f-' . o l o i l ' 1l l , , 1 ', ; I; ' ' • t I ; ; • "T , I ! '; Io ' ' I • " :1 1 , 1 • 1 '1 1 1 , .I if ll d:lr. 1 '•' ' ' J . !! . t, · <J l l ,' 1 ;1 j· 1 ·1'' � .. , . , · ·'· , . I ' , ' I I ',I' : I I •'' I , . . ' ' I I'' , . r I I ' ' l j l r 1 ' ' , · · · I . . " " i I • ;"!' ,' II I I , l f , o ' • ' •I • • ' ' ; ' I I ' -� ' l ', '': 'I ' .·' 1I : ., ,I't ' I " . ' ' I '• '. , ' ' I I ' ' ' , , ' ' ' ' . '' ' I T I I' I ' I . I ' I I , . ' . ' J' - . I I I I ' Ii I I I I ' I I f I I ' ' I " I ' I Ii II I '' I 'i . I ' . II II I ' ' • 1 r I ' I ! ' J ' Jl I ' I I I ' ' ' I I I I I · I I . , . I I ,. I .. ., ' - :-r+ , , 1 1 : . 1 1 .1 ' . , 1 1 , / 1 ' 'I " . ·r · · " . : . ·. , ·" , ,Ill ' ' I ...I , , , r1 .-.. -' 1 '-t' • , ' • ••. - , r·· -, r. ...... . ' ' ... -r- ' I I I I l l I, �,_ ·I ' ..,.. � r-;· 1 .. r' ......, ·r· - I h .... - tf '"":"'T ..,... r ..... .,- 1'.., 1 +-!--t ;+;-· .,, . 71T , , 1.. r . : .I ! il 'r I. . :+- : �. . . , . , ·:,' ' : I I . . . � l ' ' ,. i'. , ' · . , I ' I I ' •' ' ' ' '1 I " . , ' 1 · I , • 1 · 1 , q , •· • , ' 1- ' , 1 1 +- • · I 1 1 I T f l • 1 1 11 1 d,, 1, 1 , , ,· � 1 I 1 .! 1 1 • : I , ·I r , � ' I illJl' • I ' I I j I I ' : ' I ' ' ' 1 1 t! J I ��� I f ' ' I I ' I ' ' I I ' I I , : ,. I; i : : I 1I : i . , . . I I1 · · · · I 1 , 1 ' I • . 1. , . . 1 . , 1 , 1 , , . 1 ··· : , . 1 . 1 l l l · l , . . · . · . I i i l il : '' · · '-'�.J. l ' L...!L.. . i .' • ' ·' · I' JliL.L ' , J. L' ' ' ' ' , 1 - · · -·I · l-f, � ·-· Pha se : II ' I , l j- ' l .l.. I j · : ..! , , , , OiL-;; , , , _ . I , , l� , . · · . r:' j11-:t 1 , , , 1 '! 1 I "� J I 1 .. 1 . .. .... . . 1 , , I " " , , ' WbH c..;lr '� l · ·i! : ! n j � hi j·ll1 i , rr, rl' � 1. 1 � ·• T r . I H. ���-i7�t;rrr , ����I.� t-�UW:I1 Lilii1 ���' 1' 11 �!1 11 r1 1 p l �l , 1 " t r !!t·: : :j l , r ,y r ! i l l i '' !/' ' ' 11 ·m i l I . , ut f . � " f J � Jn . . . . , 1 ' 1 ' I .. ' , 1 11 ,, I � '. ,I1-� � J l . ' , , '''. ; I �� �,-· ' ' J ' I -· · M ' ' 't ' l ' ' ' ��-t-� � � l • 1 1 1 ' 't ' "' '' l ' ,. [ 1 I l �l� :��u��. ,. ,i J.I �-�I � . , , , 1 1 . . ' 1 1 , : " ilffi H 1 rn �r j lrti'!'J;'f . ,...f �· l , . 1 . . .. . , , , . , . ' i JJ}I[{ _[rill!fl, j , ' ' rt · --r--r-, · � - ' , J-7' IT � � I I , � f,. , 1 ··I ' · r ·1 : ,; j , , ·1, ,· :;fJ: 1t ! -l r�. · -i·' J1 ' · · r : l 1 H-rffi I ,J __j_ll-J.,L ., n iJ:1· · ,I I · ., ., .. I� ', ' I , ' 1 . ,, l' li l �' /'l "' ' ! , \ ' ' l \ 1 ' , , 1 ,' H. '' 1 -' I !i :I I ; ' " , l1 ''jl 1 1 ' 1 i' ' l l ' l ' ' . . ' f-T!-tt 1 1 • 1 �'1 1 �1 ; r i r! : lr 'i\ :; ; ; , 1 : . _ J...t I-1 1-f�! tl[]lI l l · � · · l · .�:, : ,. f . J·I : l " , • h' - t ( ! � : . , , : : . 1 ' ' · ' :J l .1 111: I , I •I 1 I �� j IJIJ I::U , i . 1 . · _1 -1 + I ..1J- . " 1I ' ' ' ' I "' .' ' I ' · ' 1 1 ! •1 · : ! ' ,, -:-1 I ' ' -i1 r , ·' 4 0 . o �1_ ,.. - , I ,' .I , .". . , . . .;-j • B. P a rt 1 r - � . . 1 .o --' "'-..J w l . R- P a rt A . #t+ �� TTl; , . , 1 , ;_ , 111 1;-r ,. I ·' I �1a g n i t u de _ Ra t i o • .._ l lf! Uil :!� li ' ' [ -t#11f� - I +rrTT I �1��1 ;,. �,��� · r : ! i , J � � ,�- ��� t , 8 ffi � rmTI��" ·;t; njlfl:� m · � �� rttr 11·· ·;; �H 1� ,i'! ' ! l 'j������1f , : ' ,:, , H�\.I ffi 1ni [ , ,)'m,,:_, � '•II·· . , , . j ',, , . , ' , . " 1 11 ' 1. . ! I 1 ) 1 . l il,. . O. Ol--11 . � "' 0. 1 � :::1 +J � I I • • I 0 00l • Fi gu re V . 4 ·� • I ·, . I . I . 'I J 't . I 11 • I , L, I I ,.t, I I . � .. .. • 0 01 • . I ' I ' i ' I I � t� - I r �·- ' ,.. - - ,:_:_� ' , : . ' '"�· · � /t r, ., �, , I , , � 0 1 • J . I I . •. I . ,·1 q . ·· Frequency ( ra d/ sec ) S team Pre s s u re/React i v i ty ( o P5/op ) Freq uency Re s po n s e o �1 • ' _ · m · __ • . . ',"J' I I I 1 I • . 0 I • _ )TI11 t l!!!,i1: ! 1�:1� JJ1 .'�1 I - · ., �1 l $ J� J _ I I Lj :;�jjl :tH . I 1 ... • . • I:: • � I t I I q : : ,::r :"l ·:r' • : :'Lrx I • I 1 1 � t'·•t;K K'-' t m4 il:·,l,p -t� j!jr , rj· li� ! d!r �' rH1 . · - 1 I I .o 8' · -: r,ill � ·: _ 1 : . . . I , ·: .- -; • I , •• I ' L l .W . : 1 ' 1 ;,_:1 d ' ;lq l'! 1 : , 1 , ,. . , ,_, ;_J_ !-W �,Ali!:! t'''P: +- . . I +-r l - t· -dl: 1 . j _ . I I I ' I -CJ ' ·'+· ·,, - '1 .,. . ' ' IL, , . L 'ci-4� 'Til ' 1 . . I fl H� I· I ' I I I ' ' i ; J1 1 � '"J H �! ;ll,;:-�-;-;. ;�-h Jtii-'$"1: ;- ' I r-r-rn lTif�� . Lilill +uJli+rr -'--: --. . : 1 jbJ tB �f+ l:.lc � .!!.. :; , ,, --"-'-, ,:�J:[l , , l j J 1 I t:9 ·+tt. 1; .,[ l - -:;-;, ' '· ' � ' ' -1f..;.,.. . · , +1'7" I l : l. l l i! l ' l i !;- 1;.;.,_' ·-t • 1' ""'""' ' 1 1 e-'-1 "·.,., ., ·- · · - - -- .l � j. •• I 1 1 : 1 .' I , , I 1 ' 111 • , ! I · ! Ji l l ! ' :;r I I · . ml !• : it ! , I I' . · , , Jl , I I I ' '1'1:'� .� : I I ,· ,- • II' · . . I - : ·:.� I I I ! 1 ....' . 1 _.;_;.I .... I j � ., . : ... ·.L.,...:. [u..., ' . , , .I � +4-' . " ' "' . , "; .I : ' ! l . . , ,I l il1 ! . lS, I I ' I '• ·· :I '. J1 . 1 : · , j_l',,, - ,, ' ' ' I I "· , . ,. 1 :JI.f!SJJI ' , :"• : , : , , , . .· -I J , J i ' · r i : . · , : l i i l ' l j i l i q ; : :, ; '! :_ : . : :, , : , 1 ! . 1:1 :[1 · ; i l i ;!: . �,l j; " : ; ,f:P� J�·t ;� ����T� ::.� ..,.Il 1 · J.W �il. ,4! ����:TT:t JI; ; . ',. - t' l .jjl J!· !,:! ilrl rn : - 1i ; : . · - ·, �'illti :�l fir ;: I I , , j r; l l r l J , I '· l ' " l!lr i l d , , , fTIT r,, . ' '• ''I , ' "' •:L l., , · ;·:l li, j�· il.:i'J · ·" ' ·r:r: :: tit: ll' . ' ' '-' · l l i r t ' lr ·r • , ' I J l , , '. ;p-' r;f-:r ,. r . i . . i[l1 l:• 1 r !� � u.: .: ·7!-::j !11 i 'li · 1 , i" " " 'r 1 r •!!1 , . 1 : · . H w �-1 ! l ]li 'Trl .rj �� �wfiii �� :;�' D1111i� tHI tfti' -�· + 'n · 1 � 1-j I ' r Tl1' l i hlil nrt�'r trrr t�t m:�:, ;� �� . i II1 1 1 , �� �� ; 1t:1 I• . 1 , :,� ��� n 1 , ,, , , , , ,, ,. 7H 1 I I . ·� ,,:H ' l i l \ : , , . ' · � �� � ! l ! ' �"iT•I, I\i: .·, Dr "'.· , !J' ' i ' !"· !· ,· . ., , , ..' . ' · ''' I i' l' . : :. i. !. ff� � ·i� �� l�� i: · li:, ' 1· :, :, 1J : 1, . . :. , ' , , -'-; I " 1:" · : : ::.• ,, "1 I ' : ' I I 1' 1; ', !, !1 J·P::: ' I ' I ·• ' · ' I · � J i · l' 'd··' t ' '' · ' ·• . · : , ' ' I ! , t : l . , ,: ·,· . .,�. I J I II�I� ! '' " ' · I , t:v ·· :. ·, ,� �, �. -, � 1 : ). ' ' • ' . ·· I ; " _ ,,: ," , · H I •Gj.il · · I +-i • 1_j_ · f J ' t : i : ' i • l · i • r , f ' ' ' ' . . :, : :L : : : ,' · ,, l! I "1�H+-j\, ; �-��l i .it · , : . · . . . ' ' ' ' l ' ' , : • '""' r::t ·-· -· �· ' . Hj' 41! - � :l HT : Tm1 �n ,.,· l ., ,,, , l , ,ll'rrr. --, , . 1 I, ', 1 ,l i, 1 , ,j:. . 111..,f!:,' ' , ' · : ; , : . 1,G · · ' � � � � : : , ·: � ; t ' � � ' ! i I : I 'I l l l j' l !l li' ' 'f:' 'l ; l' ! l , ;,:; ;ii' 'l , , l 1 ! 1 i j ' ·i i l ; ll ! l il ';il l i l l ' ' , l j i lli! :l , r ! .t l r� i i l , ' · l ' · . , , , , � : i1 1 , : : ,: ' ·· , , 1 1 ' : I 1 1 : , 1 1 : ii; i:U; , , 1 : . 1 ·� l . i J T � - - t tHrf� t - � · , y �, Jg llj ,, i l i · , I J 1 ' , 1 :l:i! >�:: l , , l ,,ll · u ' i · J r , h-;; 'P' ; m:� �r' 'i ··' I m, itlfqt �-1 4T 1_ U !+-J !i-f �lllf:.! ll� 'H1 ;� -_,_ i �.L' 1 ! m' �: r: rrr: ..1 ;::1 1 j!!!J!l I� rli ;;t n' .: ,: � rl+ I Fl 1 1 t, ·' :--r r : ! 1 LW-�n�li t '� i'l - 1,f- ,: ..1 -� t-t ., , . I"' - · - , ' ,. ' i � 'T � ·ti �� � . , .' 1 I . . + - ,.,��: �� . ·t''J�;j:;ij , " ' ' 1 r' ll ll.I..L , , , . , L ' 1 I, I '!·' ,• 1ft::, L; , : :r1 , :; rJ 'T"' 1J. .. •] • I' ' ' ' "' ; �..:, 1 , •I .!, . ! , 1 , , . , . � Cl • · , :. , �'�I 1 ! 1 1 1 1 , . 1 r i ! 1 111, ' 1 1 1 . llj ' " �� ·if! . · ' ' _J. 1 , ; -rrr, , ,.u: . ,J:. .. , -H M, il·���-� "�!:-.' �� , � 1 'TI' __c_,1 1 l i l i , 1 : 1 "; · :� : !.!.: �� ' l·rt ;:::rr h-t f-ith-,�[71�' ·� � · ' � ' 1 h i:J. � :- 1! ; I · "' 1 1 . · ;, ::-r 1 ; · 1 1 •1'' 1 ' : l li l i ll 1 ' ! ii' 1 1 1'' Jj r . : , · · 1 ' ' :� 1TI 1 ,i 'n- ;:.- :- -· !! i ' i i ! i ! , ll ' i :i l 1: . : ' 1 , · 1: :;1"' 11� ': _ ! +! ! ! · . � ;�f � r ; 1 1 '�:�H� ,,; , _l� --!- f!i �+ff+t i :,. J:: . . �. � . t ·:;: : · · ' t ' ! · · ' i '. ' : [ : ' · : :i ! , J-. . � -; .• /,J! !, : .,... .j-, ;•' . . . . . ' · ·f 1')'1 ; ; r - , ; 1 · , , 1 •· · 1 • ; � ! ! l!l''i l • : ( i I' • \ ' , I. I,. •: . ., ! ', , '• 1 ] \. ' I ' l \1 ' '! i i !. : : 'I \ 1 I . . . . ' ' . ' ' ' I . ' I , I I I ' L::·\ . . I , , I ' . . " . / ' " . ' · . , I I ' il · ' I: · · ; • : i " : .. 1 . . ; : · . : : . ·, • . I I J' I I I : · J [' i;,' ' "' ( . : : ·:I , I : i'' l' ' ' .· I I , ..• I ; :;. I : , i � 1 , · . . . ,' . I\ . I i_J . . ! , : : . . . · : . . ;· ,, . ' i ' � . �:. , ....,. .:.. . . . : :- · I ·j · - �i . , L. ·1 !· 1�. : � .. , . :,: . _ ;-;-;-- · :'. I "7 ;:· · --- �: . , '7'1I ' - , :. : - �I � , . : · I ; f " , ' 1 , · :: 1 :/ ;-- · ; : ;--. ; ;-: ! I I ::1 , I . : : ,�t . : : I : : i : ' : 1 , ,. ; I : !: 1]: ': . ' ' I 0" 1 \ . '. .· f I. l . i . . !l:} I ! . ' , , . , , , .. . . . , , ,' 1 ' 1 . . . . . ' 1 ' :!I! :: 1 1 ! • . , . , , ' · , . , 1 1 , · ' · ' . .,, ,., " " j . . . . .. .. , . ' ' I " I i ' ' I i I ' . , ' I ' •i ' , • ' . . I I ' ' I • ' I . I ' • ' l jo > I I I I• I , I t·' ; , , l I ( I i II .. I . I I I I I � I I I jill I I IJ I 'I ' !lji l II I I I I I ' ' I I . .. . I · I , I 1 1 1j 1t ) . . ' , , 'I , , . II I I I I ! I: I ; I • ' . 1I ;' i' :j :t :I ' 1 I. :. ; I�· l ,I l i' I �i l I) I I I tI " . ' I ..j . ' '" " �\ . ' . I J . . . ' ·· . . J . ; . . . I " . • . .. " ; " :! 1 ! , : · I I, ' ! l . .' .". .. . .. . . . , ,, , , , "-, il l , : ' . _ , L � , , I _,_l ; :.uJ..[l; :.� - .! . . . . ' I I I • ' � .• I I I I � ·� L I 10 0 • ""-! -l=lo __, 1 75 Part B . Phase 20. 0 0 - 1 00 . 0 Cll � 0.. -1 20 . 0 Fi g u re V . 4 ( Cont i n u ed ) . 2 , Q__ Pa rt A . Magn i t ude Rat i o J --.L.___,,_,. ____ 1 . 0-� -- - 1 � j_ 0 -e .J.( 0 .,... +.> ro 0::: 0. 1 QJ :::l +.> -o -.....! (J) � s::: 01 ro :::c l . i" I o . or--r.- - - 0 . 001 F i gure V . 5 o1• 01 b. l Frequ e n cy ( ra d / s ec ) Re a c t o r Powe r/Steam Fl ow ( o P/ P / o W 0 so �0 r-· -·· l ) Fre q ue n cy Re s po n s e . I l 0.0 1 77 Frequency ( rad/ sec) Fi g u re V . 5 ( Con t i n u ed ) . 2o . o 1 : : : 1 · ": 1 · ·1 : 1 · · . : : 1,j : ·.:t. ��::; •. . . - � l : Ma g n i tude- Rati o A. Part . . -, JI�li; r; �. ·i. ·t ·=r---r-r ·: ·l , 1171;-r :-;I ;�I ���t"f'-:-' �illi' ' . . ' ' 1. : l · ,.:. I ' , ; /i:. !i�! : l:. l . _ - ; · · · : · 1 · : · ; :· ; ·i· , ;· , : ; 1 ] i:i ';� 1"11 itii ·T '"· i; l�' � i- i i i 'I 1 ' ; , 1 ; ' , , . !. I . I �I : . ' I I ' ' 1\ , ' I i ' l ' l l ' i l' , !l '' , , l :· ! 1 l i · ! , I.: , .; . i i !I I I , ' . I il : ,. : . , :r:t:·J.. I. .II I,i I l l Iiii I l tt!lI \ I ' .,1' \ I I 1 ' ! 1 o l.•... Ull I ' I ,, I' ', I t ' I II i tt ' I I I I I I ' I' "I I· 'I· '1I 1'' I · II i i I · . ' . : I l. I jI l. I fl'' ' t' : ' I . : I ' Iii:� . . O l . v yl�b Jittr:-� - -�� j�- � �� =;-� �; =:=_"i� h:� �� :: � -=�� -2 ��: , jj,.�cl�- -� ---! ' j' _ � t:S:: --�-- --1--_ ---rr -� .!.��-:- � -,- - c.!\...:: ..:: - - - : . . ' · • ��.:__ _:_-'--'--: l_:_._j� r-;Jc- 1--- · � - - ....j - : : : . lrl-f .,:· , \_,__:...:...:_ � '· _lt-+-c+'---:-f--,. 1. I ' r- ��-�-:--+�-J��� 1:< --+�--L-� -+�-L�� ' I , ' , l �r:h t-- - ·:---:-'·Lf- :·. : . -�t+; ;_:_� -· . H+_ .L'rl l lc - �-�J-_�:�-- -_+ :�_ �< �, �: :J . �!:_ : .. ��:_ :_L J .-� �:· ��17: J. � ���-- I_ ' h ' . : ' . [cJ- --'!-�'-"_:_ -�=t---1'>-I I . . -+-'Hr-:->J.� ....:. ! :'.. �,.l-:.�r-:� _ I "� ' ' )t... I ' I ' '. � .�. ' .. ' , - - �� · · . j . l ; t , • 1 ! ' ! 1 ' ' ' ' " ' · .•" 1 ' • ! _· · · t" i l l \ , I ! i l ,1.1 1 ! . . d-� I· . , . , - �: - . � Ul; •. , :· �t l� :• :� .: i, i: i;;: ·· :•!: ,.: , ·,: · :· ;":' i --:;':> � ; � · . :.� . �-� · iJ;·I g ' ::· :: · l · :;, , . , : : 1 : : :- ·•· :: . _ ; , , -;- :1 ',· • : ; , , �. :; : - �-'- : __· _ . ' _ . 1 · , � ' L' ]OT -.:.+-. · i ' : · ·��..;..... ·�-h. . '· 1 1 , : · . ., · :·1 , . , . . , 1:� ,: ; : , .• ,. , ··�-�� o , ,-• '1 '· . . �...., �.:__ L� .:._ · · · .:.-+ : -.,., � f-- : ·-·..c. ....L. · i+- �-�� - -�-.LL"o ' .:.,1,LJ...: :... J. _�--- .:.:__ :.. _ _ · ·t· i , ,' . . . . i' 'I �· _ : "' ; , ' : ! , . ' , f l , , ,'t· l _ . . . � ' o i / . . I · ' .' ': 1� '" -' ·_ c ' !'•·' �� ' . · I '. I ]r;· '-I ,�· . . ._ . . -:lI -I 1 ; - - - - ;.. . , . . , __ - -- !'< � I � �- · · - .- · -- ":l .:, . ... l · :· '� · t ' ; l l ! ; � . ! ; · · ·; ;: " . . + � · : . : : 1 . · ; : , : : , ·� ' r . . t \ : ' : 1 \ , , : : ; : l : ; i l "r-... i · ! \ ! ' : .;: \ ; · : , \ 'I ;.1 · · I · 1 1 ...... I ' · · . ' ' I \ ' ' ' . . · ,1' 1 ! 1 ' ' l l· [ ' · , . l l ' , • :: I . L� 11:: · l · l l·· - t- I l I . "' I h • -i l l I ' · I ' ' ' I " · · ·· 1 ' I · ,1. 1 : 1 . ; ; : ; !� + : i I I 1 1�::· ;': ::: L ' · , l : :t . :,: I ! ' l , , : 'I' i' � + 1'· . . j:i ,111; 1 i l! I : ::' ' � l . G -� - !-� ' · ' • -+ '--� -· -:-;-� ..,_ _ � -� � ,-p-... -; ·:-:-; . ' I : . >-;�}, •Yf---f;:- 1�"-;-� �-;-�_;_ ;--;-: �i---1-�� � . -r -r- - - · --r-;;-; 11':\� - ---- �1- ---L�.-- - · · · ·· 1 :-t-i tt --:- :-t--- - :-ff-'-;7:-: � � -r:"'hT : '-�--�;-;-f-·++-t' , , -: ' , ' , I : , ,; : ,' -�-+--r---+ - � ---: 1- --'�� < � � -'-; -4h j+:� ' · �� � . . · : : j � 1 ;T : : ?: � ,; ill '.; , "] 1 · i · ; i ����� �� -----�·r;t� :�. I _ .B . I iTT.::'.;_._ � �·l· � -;-:-17i_h�rz =+- _� [ 1 : , · 1 . r , . · � �· - � · . · : . · : � � : · � � � · · ,. · f-i-.:. . r. ' ' + ' -' ' ' . , , , , li!• . , ' . -'-;- - h- - i-- �� -4 I' \ '' f i' tt , ! I -· . �- 'I ' -;, ' ' r· ' 'I ' I J I .I I · I J · ( '- c:_;_l.--,c. - [ - r� ;--;- - - ·- · . --·;-� c---j --;-� : --__:. -� r;; : -· -, :1-. 1- �--- -- : � - "-�-- -c --- - - _ - �r ��� � . � ;. ' - - . I · ·' · -·- t· j.c . ' ' � ' :j I ' I , , . :. ' 1 · I · · " ' I ---:-:1-- - - - -��i�-r--- 'i , 1 ' ' ' : 1 1 j j "l ' I• , 'I I . , , \ I ' I' i ' I I I 11 I I I ' ' ' I l l I I l _ ,l , : · : : · : : l t i"t.\· .1' :, i: t. , l ··:. ·, . ' I; :. . \I1 . . . ;, ,, . I .. ;I : . ,· I ; : ,· . : I · ,' : :I . · . : 1 J! · 11 ·.· :' �,.' . 1 1�' � � · '- · · · . 1 · I . . ' I� . . \. !. 'I . I i I . !. ' . . t lj . •, I .L.....J , _;_ -"----' I I I' I I I I I � T 1 : ' f ...... 1-1 (/) n.. . ' • ' I 0 0:: ! I ' ' t tl' . ':': I . " " '' ' t•: I ' II . ' : ' I :, ' • ! .• I -'- • I I • 1 -t -� I t ' ' I ' . . ' · j i ! ' l l l'' ' . - - � ,· " ' ., ,. . • . . ' .. "· : ' ' · , ' � - . . " : I i , ; 1 I ' I O'l ro - 1 1 : ' ..._ f . ' I , " : " ' • I: I . o .-1-j i ' I : ,! . "' ' I 0 . 001 F i g u re v.6 . I . ' ' � q-1.:�: ::' � .1 �' �� . 1 1 - -�I I I ' : · , ' ' , 1 h : ' I t J -1-� , : ' . ' . •• I : " 0 " • 'I' _i_ I , · · : · . 1 , : ·: · - · ; l, . .l ' . 'l ': ; l : i ' II ' ! I : , ,:, �-��� � , j� . J .' c- ,-�- . • ' � - ' . - . - ' I . . 'I i ' I I . . 'I 1 ' lp , r .. 1 . I ' • ' -- ; ...... TI 1 � ( I ,t ' ' , , • I "' ' ' I , ' ' I ! 1 11 : ' t I ... . . . ' ! � � � � ' I - , ' I ( o P / aviSO) Freque ncy ' • • - . I ,I ' . . r::- �-�- ·- . ' II . . . ;: ' . , . _ � - 1' � ' i : . � l . : . . _ . . , ' ' .. : · • I 1 .0 Re s pon se . • , . i , - �:-- -;--· - -L � :- -- - - I I .. : ' ' ..L...-...:..L.: - ,___ . : J. . . . . .. :: : J I· ' . -+---'- '' . ' I \ . , - ';- I . I . , ' ' ;it' , -��-� �r;_;__��;--�JJ. . . tit �'il,,'1Mll j l ' =t·, . • . , _ l i - :1 -:'tl=. . . ·- · . -,, :--'--- �- . . :• :t 1 I · ' ' t= ·1::: � illrrt'. � =-��-t ' ' · ' lt ' I : [' ' 1 ' j ' . ' · -i Frequen cy ( ra d/ sec ) Steam P re s s u re/ Steam F1 OW ' ' ., - ,_ .; I ' � k • : _ · -� �-� •-�-'- ' 0. 1 0. 01 -,... , . ' ' I I I I ' � ---r- rl l ' ' � I - - I- . . • -- ' - ' : - 1 : . . ' . ..:.. _ LI . I I __ . . �: ,:�: :( '' : J : , .., -. I ' ' _ I I •' I ' I I �" - · . I . , . . ' � - . . r . ' I I --- ' . , d _c._ - : ,_ J : .:! -�' . . . 1 -����., ��� :0�3 . 1 I ; , , · ,,: · · · :_ �T�·:�t:�-� • !\�(1 1 +hr���·E rr. . ''1 ! : ' r ; J I!i!; j : ; : . l ;l. - .. �j!; ' 1 . . . . . . I ' r I , . . ; -·-- 1 - j : __ . - ' - I I 1 1 . I , • 1 I 10 .0 • "-J 00 ...... - 1 80 0 . - 1 go 0 • ! - 1 --r - 1 - - 2 00 0 • -2 1 0 0 o I L 1 _, :! ,+ I j_ • I I I I I · o ...... <lJ U1 <U -2 30 . 0 .� � -2 40 0 • -�� � � l 1 1 I -260 o • I ! . I I I ' ·� � .. I I L;.j I''! I I I I IJ I! ' I 1 . rt i i I , . I • ,, I t - -I _l .. tI . . - I : I r tI h 1 . l, I ',, ' I , I• , 'I I' ' ' . :1' - 1..' . .. : - : ' ' 1 . 1 -· . ,. 1 ' , I 1, 11 , ,. I .• I� J ' . '1: I I I : • , :-I I -, I - • ' : I .. ' " I •I , I . I 'I '•• ' -2 7 0 . 0 - ' - I - - I ' , 1 J ' I , 1 ,-r � , I Il . I I -I- ' ,. , · • I I ' . I I I • • · . ' 'I . t •. I � 1 i 1 •I .• 0 . 001 ' � ,_ I ' ' I I ] I • ' . . .. l ' . . � ' ' ilL,I�f-L ' - 1 1 ' I I . • ' 1Ir I �- I I L • I ' I . . I I ' I I .. � I ' , . ' " " ' ·'I t . I • I - ·- - - 1 - '' I I' • '.I I ' I ' .• ,j , ., Ii ':,: I I II ' I " . , I ! I . ' I I II I ' 1 II J. I I 1 1 ir , l P l � . , , . , �� · � � � � � r - ; �- ' ' . . I I ' ' , I ' 1 , , , 1 1, , , , ' ' j 'l·I I ' I o l i i ' I I I .1 I' tI , 'I ' I• i ll' .I' 'I I lI l I.. · ,, I ' I 1 · [ 1 r : I : : 'ii· · • , ,' ! ' • i u.. " "· _.. . l I ' I . '· · .: t I' l I • I! I J. l 'I I I I 't ' .I I I 1 1 1 1 ! 1 ' ' 1I " '. 1 I . .1• • I , 1 _ I, -+ • • ' • I. I I I. .' I •I II �-- _ .. . . I I I . l ' ' .. I • : • • . . ..I ' • I I ' - I I I ,, ' I' ' I .I • 1 ' - t I ' , : , II , • ;. ' : �I L:1· .- :u: ,1 . . h - • I · I, "' , l .11 , - ,, . I� " " ',' · ' - --- I I• ' I ., , . . 1 1 • Lr I, ,,, " t r 1.. . . t I• •• ,� • • I • ' ' - 1-r�l-"-I• I I ,, . ' I, " , '. •, ,·' '1 l' t · : . : �.· , ,, 'I 'I ! i' 1 . I j 11 . ·II I·'I I' , ,I , I I t' i·, , l .· , • • ]U · ,!:: \ ' ltl I 't . II I • - 'I I ' ! ! · I ti t"· ' I I , 1 , , f' t 1 < "1 I • !i : : :; l i : r: :!l l!l' , , t t , q l ,t,I , , .. "d 1', I j [ I ' , ,t . . r.< 1.L - ."- � , ... -r1 \ ' ' 'I i ' J ' t l !: · 1l,1 1,l I"I 1 , 1 1 ' - 2 50 0 • I . ! _220 0 � -llill � l l , q:1,1I .,.'"'l ' /I:," , ' ' ,� l�jl � I ! :' . �: : . : , �- --m-NI�*I 1 1 I ll�l111:fl'f(tlf:Ill/:/.'�!1I11 I·t: lr:.f', l!lllI ·' llI'll l l ( - 1 ( 1 1 1 ; ·1'1: [ii. il t:' J.1 ' II' i\' ,li.,,, :, ;,.:l:,.:' I -[;!IIIII!' �w I I �· I 1 �iI I'f � � · , --� '· r j I I �lt�: l' ' : 1: 1 ,,, · ' I• �1 - ....·!"-._ :1 1 . 1 1 t J' I t ' · , ' I ' '· 'I I ,· ' 1 \ I1 -11 li tillI I l' :.'!I l ·I' li' I " Il I l I ii( · I ' ' ' ' · [ ' " I -1 . �'1 ' 1 t I l ': l ' l i , · . . I ' J I , i l l l ' H -' lU , I. 1 I ' ' · -I I Lt+ mg I { l�l' l ' ' ' :, : , · .' .. _)l�-1l ' 1 ' I ' !t:II ' . ' ' I ' · ' !.jI il- 1 l !'I:Il I I � ·.,: :. · '. II I rt- +jll : J+l!i ' 1t . l 1-1�!-r�-l- - � ur. l · . · wr l .1 •�: I- - l r" · ' ' l I I I , I•, ', , � ' 1 ' 1 -1 � +H - l _J_ �HJ �J. jll . LtH{�J l I . I ; ' �'�� ' ,.1. , t1 I : ' II l l 1 l - 1 , J l i I \ ' ' I tit I 1 1 1 1 ll . ' ' _I j_ i r- ] ' l i\' :::� ' i_ l l l ·. ' 1 I ·· ' ' H· j , j-,· .t l · ,� ,,,, HI . , . , j. , : ' · -'-+ J l r.L 1 1q: �:: !1 ' . ! " ,: 1 i\ · � + l i ! ' 1 1tj-i l j i J : t : 1 ( J H ' {!-+ t l it , ' 1'\',1 1 · 1 ,, ' I " ' H � i . . . , . � I iI ' ' I . . - U - - :· ' · 1-,- 1 1 . I j ' :rrI + ;)Jl:.,.,". L fj·· -. -. .. , f-t-Y � ' � '· -[j..l _. .j � l � t ' ' l · i-1 i ' , II 1 ' l' . ' i"l ,' ' I ' , l , - 1--·1 1 1 - r i1 l ' 1 i , . ·. H��� :� t · i l l ' I ' ll'l ' . I f+ ' Ht '�';:..:.; , L I "-. �:-+, , · ', , , .1 J 1 � � , 1 _, 1 ,11 - � . � · ·· 1' , , , , , , 1 � , . , . ,, "' � [ ' Il 1 -� � ' I I , I , . l , H j:l i \ Lf I dP� � I· , , 1-' : , � : : [;:·. � � ��� �- �, , .LL'I I' I�� , , I ' � 1 1 ' . j Tl-1 I - rr-1I ' .'IILI I I· ' l-t - . r--i--:-1�- - I ·:;tr-·-1-" I' ' l I ' J l � ' . 'II I I ' 'I I ·-..�-.. I 1 , I .·. I I, , I I · I , W-L I t 8-B l ' ' f ' r -+- 1 1-+---ii - ' · 'I ' ' I -rr. I I ' _ II I I "I 1 ' ' Ji , , J,, . I ,_ J.L,. J 1 .· t l . · I t : I l llli I I . .• 1 I' • I I .I II. I · J_, 0. 01 I I ! 'I I •! :!:. ! I. I• I I I . . � � �� � I I , I I ' . . ' .1 I 'I · ,.. , , 1 . t! 'I I , I 11 I I _ . , ,, . ,_ , _ . _ : ,, , . _ •' .1 . I I I r t t "I ' ' '_ l r Jj I...w1. : · I I I! I' ! - I I I II I T- • I I , I. , , , 1 . , I t II ' I I I I I il l I I I I . I I V.6 ( Cont i n ued ) . I I . Ill. I . .I t ·' ' ��- I: I I I _ " .. I 1 ! .:- , 1 �: . IIi . I . ___ __ _ _ - _ I - I •I !, I lI I' l'. '' II . ' I - 1 1 I1 � + �-cI � � --->- , -'.:.�t '!J-] ll ' I I I :I I , lltl ' I - - ' I . ,j ' • I I I I . - J I I • I , -:;,.-[-.. .: • I I I I • ' ' . • I � ' . I i I ' d I II 1 ' •' I I I I ' I I II . , ' ' . I ' " ' ' I , I •. , - I - -· - -- I I I I ' ' • , t • ' I • . ' ' ' I I ' I j - - I I . . I I . I ' I I I . -·- • ' I . I • ' 1 • _ I . I I • ' r" __ I I -� I '' I 'I , I ' li . ' ' 'I' t . . . I I __ I I • • • I I I 1 I t >� • I _ _ I ' 'I . I I I I • ' I I J.. ·- --'--'-� . I , _, I I ·- , I • ' . . I 1 I ' _ _ -· �- - • I I · : • .. . I , -'- ' I '' . . , , 0.1 Freq uency ( rad / sec ) F i g u re t,, I - �·- . I II i t ' ' 'I . I \, l' J i • � � 1 1' , : 11: I . I .' • I I I I ,I ' I • ' I .I . . I '' ' ' I' I I I I . , 1 I•[ I t II I I ' "I l lo I I l , l, . ,I t . ·� .,.· j -1 ' 1 1 , , 1 1 1 i l• tl t j fl :< ' ' I t t l l ,• " • I , ;I - - i- - - ,_.,...c h- " --'--'. -;. .,. I l •j I l l I I I : . I I I - :-�r-I I • Ii • I I I I . ' I ' !' ' I • ' I : ' I ' '•1 , • :, , t I . : 1: : ' : 1 ,· :,1 : � 1 '1 i · 1 , '1 . ,. ,,, • 1 ' •II:· II I t :1. I, I I• r I ' ', I . I 'I , ., I ' II I ' I1 �" ' ' 1 1 ' ' I I , I , , I I ' ' , 1 ' I ' r ,� : • I 1 I ' ' 1 ' 1 1 ! : ,' ,I l l i' I "::·• ' I 1·; -" :: '•'· I , tl ::! '' . j l_i_ l ' ; II . , · 1 , ' • , · i.l • • tL.: .l -l , , , 1 . , il• 1 11 . . . ... � 1 l t i i '� . � · : , , � J : : :� , 1 1, : ! 1 ,· , , 1 t l ', , , ' I t 'I' 1 1 , , 1 ,· . � I r 1 , I r- ' JI . • I I �I • I , . I 'I I . I , � ,, ' I, ,I r l l • I ,I ,. ' . , . . tI • . I . I r It I ' I I ' I ' ' • d,I • .' ' '' ' I.' ': I . I. -• , . I I • I I J . ., • ' ' .1 ' I' I I 1 \1 I ' I .._ Ir I -• - .-•, I ' I I .., u_ - :- '-· _1 , .. - • '-' - ''T �i - ·.- --L · Ill ' . jlI : I I I '. I I j I I I ' I i I v I I I I I I :: I ! I II I I I I I \ J : ' I I I : ' I � ! ' . I ,' . I I . " . ,I .. I I I : I . • ' I ' I ' II l l I ' ' ' , ., I. ' N II .' t'-.. . I , · "I " ' I I I I I '' I I I 'I ' , ,, ' I I :-h-.:11 ' I I'II ' I ) � . 1 1 1 1 I 'I i• ' ' • l1 1l , ' l r�.1 , ,1 �, , � �� � . .. 1-, I I J , I t1 1, l I I I .U,...tf- - .-.1 - _;_ � , . 'il' ' ! t . .,. , ' , u :� : , 1 . ,, . , ., , t 1 , l 1, r-... ., 1 , , , , r, , , , 1 1 .0 ' 1 1 1 1 1 I I I I ' ' l t • i l l ' l 1 I I . I t ' ' I ' II 1' I , I i'' ' I N ,I ' I I I I j I 'I I II •' . , L ,I I ' :I - . - I I t I I • I I , l'ttN! ' I II' I· I I 1 I : ,,' J, , 1- ! 1 ; 1 1: ; 1 ' , ., , 1 1 : , � .. -+4 ,.....,.. ! -- 1 ' L 4-1 .J.; . - -· .- � ' - IL� . ' ' " r-r-' :I ..:.. I I ' I . . • 'I I " • "• ! I • • I I .i . • ' I I ..I • I . . ..... I •' : I ' ' "• I< t I I ' . . • • I I I I • ' I I I I I • I I I I, 1 I I I I " I , 1 . 1 "•I ' . ', 1 " ' ' ' : .. : ' I ·1• • · , · · . I -. ' · I I. I �-�-�---�-1----'-'-�--y f-. ,, -1-t-7-1 I I I I I I I 1--.. ' I I ' •I I I I _ I . I -- I I I . . • I I I I . . .. :- . _ ._ I' " . . I '' I• I '' I · • I ' I I I I I I . ' ' . ' ' ' .. I ' . I : . . I : � ' . ' .. . I J i ' I 1 1 .1·• ,. I : ' I I ' . : I . I . . • . . I I . I · I I . · I . . . I . . I I . , · 1 , " :, , ' '1 1 ' I ' �· _ .1., r-·f.-. .:- - �"T1 . ..L!'.. �� · : ,� :.J I . ,J il I. I I ' ' • I '! ! il I ' , , t •' · ' I 1j1 1 I I I, ' I ' 1,1 .. , . I'I I I jll; I . , , . " ..' : _' � t l ' i ' ' · I I ' • ' ' • I I I ' ' I . 1 .0 . 5.0 ...... IQ 1 'f: [ �_a���; :�-�� . , , , 214± :: �1h �or!ll� TirZ�,t�t�:j�: , ttilTJi nnj�r :�1� 1� �i, -: · -nl jllll ''lll''!1: rll:I 1·: 1 1 ! I �r;.= ��r:�([±J ��¥:t=1=���' = .:: =tr :��t:F �t-=i =��F+�iir_.::_·r�- �]·+?£-�;:�- � :::,�'-=�f.+W, , 2 . 0 -, -�• -·- -r · - - , ��' :I .. : . . . :' 1I .' ..!: _ 1 IC, 1 .0 ' '' . ' Ni� 0 ' · aJ '0 ::J � 0. 1 c:::: 0'1 � _, , 'l i:( 1 ' : ' ' " 1 ' ' 1 . : ' · ,': : ! :: : : I : . >t�. :h, +i:' J I . !; I 1 ' .1 , . I - �.- r . - I ' Pa t A 1 , • ' I � . ' r � : 1 ·. •.. "' ll' � ' 1 1 • I I 0 : IS; crhr,+ - - -;+: : < -���'�2 ,. I : T1l .I : ; lI •' ·I ' ' - I 'l " ' · ' , ,I I I I I ' .' I , , I IIi:: 0 . 001 . ;:i . :: 1 ' , : ' ' •I ,. f+;, . I' - --- -, . i , 1 , I . !C _:J : , : · ; 1 ·� \-- ' l !• � � ' '' I · \. . . I . . ,, ,.•• .• - :I i l Li 0 . 01 1 .. ·· - :. • I I . ' . . , ' ' ·• . I I 1 ' I � · . · '] ' . , : � :: · :c . . . : . r ' ' ! 1 . , . - . ; : : . 1!: ,. - t ' ., . . . , , ,. ' I \1 " �: : "' - ' ' . . : ,' '''· I �� ' ' ' I I ' ' . 1 · ' 1 ' 1' · � i l ' � · i'·�.:.;;� · :;· . · I I • :I: II t' • ! o l I . ! ·1 · ' I I -'7··�.· �·. · : ' ·: ' • : :' ;d . ' , ! . .,. ' ,�' ' ·\ I ' - : - :- - -� � -i : · ,7 ,, : · -:c : . ; ; · . . · : : : · •: ! 1 1 1 ' 1 ' " ' ' il.: ; I I l Il Mil-! I , ' � �� ' !' lll1 i; . , , . , 0.1 I H1 I Fre q u e n cy ( • I ' i I 1 ' 1 r a I -:--1 .. · . ' · ·. •·· . : . -;- 1 ' . I It 1· . • . I . • ' •:· d/ s e c ) :· . . . ' . 1 I.I I I ; . ' -- ' " ·' ' : .. , :I . ! 'J� :;�: , , :·,,-l l l jil - · - '-H , , � · , . , • , 11,, ' . f I•' �r- t I t' ' I , 1 .0 ( oT C L / oW ) Freq u e n cy Re s p o n s e . 50 F i g u re V . 7 Col d Leg Temp e ratu re / S t e a m Fl ow : _ I .; i• · . · .1 1 ; " · ·I : I I ; II I · . r, 11.1 : r . t l,ii : r1 _ __ _ - . ', ' , :u:j-T- j,, :J : '· : ; ;; ':1 ;... , l !l ! lj l : l 1 JI 1 11 �1:· .� , . • · , ! I •-'-·-�- --'-;- r -fT ;·r �� �,-;- -� . - , �-,_ iT . f---:1 �·, ·;;- -:-_ 1 - � . . .,...,_ · � · :·:·· . , :: , ;"' .:.. 7 ,.,. ..-: : • ! - ' ' : , ' ""'" . . ' , · , . '· • .... / . i l ': � A : ,:.c.:.'� _' . "-.+: · 'IIH·J_ i1 '1 li, 1!1!'�!il.: �wI I ::: :·: [�11! 1:tt!l! I ' - l j , J i I· ! :• lill, :l ':.l. I I i\ · ,· 1\ , . · ;I I , I , ' o '-' ---j- "• , . ., : ; '/ ' l : I ' , '. ,, , ! , I1 , . . . !_i' 1-1i 1i : ·i - · --!-- . • : ,_ · · ! : i ,, • .. 'l . ., • . ,· • . I , . I l;i, ' ' . ::: :;1, . I I • : ..!.... r -... • ' :: 1 1 1 : 1 ! 1 1 . ";'I\ , . t I ""; ,j I +I· ' I , . . , I, t I ' 1:• �:] : . � - - : .J 'l'.!· ;' .,. ' · r · • · - - · "1 ,·....,: - : 1 1Tl ..- 1 TO �- • • ..O-ro · r ' • '' r, " ; : , ·, · ;· ' tl' . · i l ' : . ·� · l , I ··: : ' j I , , , . ." ,, I ' . . i ' I '' " " . . ,, i 'I I I I . 1:-T ' If ' ,· ' · I I '·I , 1 , ....j.. � +: T I I • _:_ .,_l___ l'r ". ' ' · , . j I "r...- -� ' · o1 · 1-'' � �r,:.- · ,h"N:. " ' , "·' I .. -' " ·' ,, : :· � ; '' I · ! t o. : � � � j ' l , " 1 I I • ! · [ 1 , 1 I ' tI I . . I ' : .,--� - ·.-,� ; iT: ' 1 ' • 1 l l . , j : : 1 :. • !' ' " -, - -, � - �- 1� j: _:1 fl1 • � - f-:- -· : ' -t I I iii ,: ,::�: �:: :!: . . ' I . . . . I. : I. • I I I , ' I, ' r • ' 1. .. I . · _ r. · , . J ..... t • � -r-' ' - - i • ' : . t- • : - '· . ' • I ' I .. ' ,, . . ·· ....... 'I , · -:-1' ·,: • , !--'- - -"-- . ' t: , ' iT -, • , I I : ; ,I ··l h� - ,, : ,; , ,.j.. ,' , 111 • 1 :: .I I ! ' " ! _l. f--- -1� I N( ', : . 1 I ·' ' r'c- · - · � ' I I � - ! I l l ' "I I , . ,' I ' -tI I• �. I '' " I"I ' .. • I �-i. ' -T" . jl ·I , ' , ; , 1 . , . , j · . 1 , II ' I t I " .. . - - · . • · . lD ' : l l_ t > t- ", ·1 1 · ,' • I i . o .�a t_i · t , ., : ' • 1 ;, •, •, •, , ;, ,1 :. · . l�' �� J� ht :TmiT ' I : : L' t' 1, 1 1' ri!:�-� , . . . . [ ' \ ' j ' ' "' ' t lffi' Ti-1TI; To iT' r1 1 1 . ;;; I - T'l '�·;I ·. I I' - · . : ; � � � : ;· J l;, :;--;1 j ·h" cio. :;' . ; · ; : : · �T , 1 : l i il 'l !· l 1l :· 'i ··I 1 1--�� ,.. 0 . 01 I ' l i ' , � --·- - ·- ' - H :i!: , : , , II:! c::: ...., ,. ·- -- - ,-- -· I !- 1- ' ' . I -0 ' - - .. .,_ -- . --- . -,-.-- :--r: .- -r - . M-t . · ' � 1-:-:--1---i- 1 - - f---� -- -:- - � b>.. I -� ' I ' I [I � ' 'I I I · I. I_i · ! ' . I , I I _ l l } ' I ' ' .... !I , , "·rt� I . '! 1 ' 11 • •I �� • � 'I ' -!I ' .. " r . ' ' - - i" .. . - --ti ' l -r' _ [_ ' T • ·' I I ' ,... ..._, ' r T • ' --· H -'-"-· � t ! _i --t-- -� � �. _ 1 · ll • · ' . · ·. - . j l ' ·· 1� 1 '--;_ . . · · I : , 1 ! ,• ;; . · 1 ' .� . . e�; '. . U'l.::n . ;:. :' :I I � ": <j : · '· ' : , • . I . . : . I I 1. "i:' �lni-+ · · _ · · : : � : : � ·' �•r, :.r-;- .� .. . , _ : ., . . ' ; . • : •' ' . . ' ' ' : 1 I ' . : : '' •. ' . . ' ' .I ' ; I I . . ' , . 1 ,. · -t · · 't •1. ' hII · � l. .,.I I· ··•·. .. .. - · . .. . I : · . . · . . ' ' I I I . I ' . ' ' . I : ! . ' ,. I : . I I I • ;' 1I I : . , 1 ; . , ; 1 ' ' ' ' ' ' : ' : . ! · ; ,' , ' _ , : . , i ' , 1 1 · i . 11 · : : ! : I . , , , . . 1 . 1 - r ,, :· : : : . · · · . · .' · , • ; . I. · ' · : . · · · , --� ' _+-::_ __ _ ---· · . . L '-1� ·-- - - --,..- � �" T -- , ..· -,-: . , --- r-: - r � r -e o; - " _ ,� · · I _ , , · . ,;..;.- h-e ..:. · -· T. · . , . : :c-r-" :"1 . , , . . .. · , ! I , . , , , : ' ' ·:· , , . .-,,-rc� C rl ' : . :. I I ; . tc --: I ; f. ' : : • : · . " ! .. , 1 " . " I :• I I. . ,. • • : ' - 1'-:- d-: . . , · �:• •� • • � . , : ( ! ) •. . , · r1 II . T, I! ; : I ' " . . . . , . I ' ' · I' ' I. I f l · ' • . "i,'· ' , ' - i.J ' 1 · -- - . 1 - , - - - - .. . , · - _ - - , " JJ . ' l 0. 0 CJ 0 --' 1 81 Part B . Fi g u re V . ? Phase ( Con t i n ue d ) . 1 82 l. A compl ete s t at i s t i ca l a na l ys i s o f t h e e x pe r i men t a l data (J f rom the H . B . Rob i n son dynami c t e s t s ) h a s not been ma de . Howe ve r , t h e standa rd d e v i a t i o n wa s c a l c u l ate d fo r some o f t h e d a t a a n d t h e s e l ec ted res u l t s a r e s h own i n F i g u re s V . 3 t h ro ug h V . 7 . 2. T h e compa r i s o n wi t h te s t re s u l t s pre s en t e d i n t h i s c ha pt e r c a n o n l y s e r ve t h e p u r po s e o f c h e c k i n g fo r g ro s s i n a de q uac i e s i n t h e steam gene rato r mod e l b ec a u s e o f t h e fo l l ow i n 9 fa c to r s . a. L i mi t e d a c c u ra cy o f t h e t e s t res u l t s d u e to e x p e r i men tal n o i se i n some s i g n a l s . b. The e ffec t s o f t h e control systems were not i n c l uded i n t h e t h eo ret i ca l mod e l re s u l t s , a n d cont rol system i n pu t s h a ve a s i gn i f i ca n t e ffect o n steam generator re s po n se . c. Mo d e l s fo r ot h er compo n e n t s o f t h e system s uc h a s the p re s s u r i z e r , rea c t o r cool a n t s , pumps a n d t u rb i n e g e n e ra t o r were not i n c l uded i n t h e t he o re t i ca l mo de l re s u l t s . I t can b e con c l u d e d that n o g ro s s d i ffe re n c e s i n q ua l i ta t i ve beha v i o r we re o b s e r ve d t h a t wou l d i nd i ca t e maj o r i na d e q u a c i e s i n t h e d e ve l o pmen t o f t h e deta i l ed s team genera t o r mo del . CHAPTER V I COMPA R I SO N O F DETA I LE D MOD ELS W I TH OTH E R UTS G MODE LS VI.l I n t ro du c t i o n I n C ha pter V , p a g e 1 6 0 , t h e frequen cy r e s po n s e o f t h e UTSG d eta i l e d mo d e l ( Mo d e l D ) , c o u p l ed wi t h a PWR mo del wa s compa r ed w i t h t h e experi men ta l r e s u l t s o b ta i n ed from dyn am i c t e s t s pe r fo rmed on t h e H . B . Ro b i n so n N u c l ea r Power P l a n t . ( 5 ) I n th i s c ha p t e r , a n o t h er a pp roa c h fo r c he c k i n g t h e mat h ema t i ca l d e v e l o pmen t o f t h e UTS G d eta i l ed mo d e l i s con s i d e red . Th e st ep re s po n s e o f Mod el D i s compa r ed wi t h t he s t e p r e s pon s e o b ta i n ed w i t h two o t her mod el s . 1. A on e d i men s i o n a l fi n i t e d i fference mo d e l o f a We s t i n g hou s e d e s i gn UTS G d ev e l o ped i nd ependen t l y by C h r i s te n s en . 2. ( JZ ) A s t a t e var i a b l e l umped parameter mo d e l o f a n ew Comb u s t i on E n g i n e er i n g ( C E ) i n t egral econom i z e r U - t u b e st eam gen era to r ( I EUTS G ) d evel o ped a t T h e Un i ver s i ty o f Tenn e s see by Arwood . ( 6 ) T he compa r i son wi t h t h e fi r s t mod e l i s to c h eck t h e l umped pa r amet er , homo g e n eo u s fl ow , sta t e va r i a b l e a pproac h a g a i n s t a f i n i te d i fferen c e , s l i p fl ow a p proac h . T h e compa r i so n w i t h t h e s econd mod el i s d o n e fo r t he pu rpo s e o f compa r i n g t h e b e ha v i o r o f t h e convent i o n a l type ( UTS G ) wi t h t ha t o f t h e n ew d e s i gn ( I E U TS G ) . I n each ca s e , a b r i e f d e s c r i p t i o n o f t h e sy s t em a n d t he mat h emat i ca l mod e l i s i n t ro d u c e d fo l l owed by t he compa r i son o f t he s t e p r e s pon s e of sel ect ed s t a t e va r i a b l e s . 1 83 1 84 VI.2 Compa r i son w i t h C hri sten s en ' s UTSG Model System Oeser i pt i on VI.2.1 T h e UTSG system con s i d ered by C hr i sten s en d ev el o pmen t i s a West i n g ho u s e UTSG i n Se c t i o n 1 . 2 , pag e 3 . A (l ) ( 32 ) i n hi s mode l s i m i l ar t o t ha t d e sc r i b ed s i mpl i fi ed d i a g ram o f t he p hy s i c al sys tem i s g i ven i n Reference 3 2 and i s re produced as F i g u re V I . l . Mod el Desc r i pt i on VI.2.2 ( 32) T h e s t eam gen era tor i s d i v i d ed i n to e i ght sect i on s a s shown i n F i g u re V I . l . T h e central " co re a n d the down comer s ect i o n s a re de s c r i bed by pa rt i a l d i fferent i a l e quat i on s , w h i l e the other sect i on s a re de scr i bed by ordi nary d i fferen t i a l eq uat i on s . The part i a l d i fferen t i a l equa t i on s a re sol ved by sampl i n g i n t i me and d i v i s i on i n to s u b s ect i o n s ( f i n i te d i ffe ren c i ng ) i n s pac e , t h u s t ra n s fo rm i n g t h e d i fferen t i a l e quat i o n s i nto a l ge bra i c equat i o n s . T h e ma i n a p p ro x i ma t i o n s u s ed fo r t h e fo rmul a t i o n o f t h e equat i on s are : 1. Un i fo rm water and st eam ve l oc i ty i n t h e pr i ma ry and t he s econda ry s i d e and con s tant s t eam to water vel oc i ty ra ti o ( s l i p fa c to r ) are u s ed . 2. No su bcoo l ed bo i l i n g i s i n cl uded . The wa ter i s hea te d to satura t i o n and a ft erwa rd s a l l t he en ergy i s u s ed for s t eam product i on . 3. Therma l equ i l i br i um a t t he s a t u ra t i on po i n t i s a s s umed i n the bo i l i n g part o f t h e " co re , " the r i s e r , the s team vo l ume , and t he u p p er pa rt of the feedwa ter c hamber . 1 85 j Steam outl et I _./ - - -- - - .. ·- S t ea m v o l ume Ri ser -ta te r i n 1 et - ..-.. . r - - - - - -. . . __ __ F e e dwa t e r c ha m b e r --� - - -t: -- S e c o n d a ry s i d e of " core" _ _ i I ..t.. · I -·ri i · - · Oown c o m e r U - tube ---- P r i ma ry s i d e o f " co r e " I j "+' P r i ma ry i n 1 e t chamber ·- P r i ma ry i g u re V I . l � P r i ma ry o u t l e t c hamber P r i mu ry o u t l e t S i m p l i f i e d D i a g ra m o f t h e P h y s i c a l Sy s t e � . ( J2 ) 1 86 4. Ho heat con ducti on a l ong t he t u be s ta k e s pl a c e . T he tubes a re d i v i ded i n two s h el l s , eac h wi t h h a l f of t he heat ca pac i ty and a l l o f t he h ea t re s i sta nce a s s i g n ed to t h e co u pl i ng between t h e s hel l s . 5. No bo i l i n g i s a l l owed i n t he down comer and no h ea t tra n sm i s s i on from t h e 11 core 11 to t h e down comer takes pl a c e . T h i s a s s umpt i on l i mi t s t he wo r k i n g ran ge of the pre s su r e d e r i vat i ve to val u e s l es s t ha n 1 -2 bar/ s . 6. Al l hea t exc ha n g e w i t h t he wal l and t h e st eel con struc t ion s in t h e steam vol ume i s n e g l ected . The ba s i c equa t i o n s a re der i v ed by a ppl y i n g the ma s s , en ergy a nd/or momen t um con s erva t i on pri n c i pl e s to t h e e i g ht s ec t i o n s of t h e s t eamI g e n erator . T h e equat i o n s fo r the 11 core 11 and downcomer s ec t i o n s a r e pa rt i al d i fferen t i a l equa t i on s whi l e t ho s e fo r t h e o t h er sect i o n s a r e ord i na ry d i ffe ren t i al equat i on s . The d e ta i l s o f t h e model equat i on s a re g i v en in Refe ren ce 3 2 . Compa r i son of Model Formul a t i on VI.2.3 The ma i n d i fferen ces between Ch r i s t e n s en ' s mod e l and Mo del D can be summa r i zed a s fo l l ows . 1. Mode l D u s e s a homo g enou s fl ow model where a ve rage d en s i ty a n d a vera ge en t ha l py i n t he bo i l i n g reg i on a r e expres sed i n t erms o f ma s s qual i ty ( x ) and t he s atura t i o n propert i es wh i l e C h r i sten sen ' s mod e l ut i l i z e s a s l i p fl ow mod e l w i t h con stant s l i p fa ctor ( S ) . I n C h r i sten s en ' s wor k , t h e av erage d en s i ty a n d a v e r a g e en tha l py i n t h e bo i l i n g reg ion 1 87 a re e x p r e s s e d i n t e r111 s o f t h e vo i d ra t i o (n) . Th e re l at i o n between x , a , a n d S can be d e r i ved from the b a s i c d e f i n i t i o n s of t h e s e q u a n t i t i e s and i s g i ven by ( 1-a ) a 2. I n Mo d e l 0, (VI . l ) the h e a t t r an s fe r c o e ffi c i en t s a re a s s umed co n s t a n t d u r i n g t he t ra n s i en t . I n C h r i s t en s en ' s mo del , t h ey a re ca l c u l a t ed a t e a c h t i me s t e p u s i n g i n s t a n t a n eo u s v a l u e s o f t empera t u re a n d pre s s u r e . 3. T he rec i rc u l a t i o n fl ow i n Model D i s c a l c u l a t e d from a q ua s i - s ta t i c moment um b a l a n c e a s s um i n g t ha t t h e d i ffe r en t i a l g ra v i t y h ea d e q ua l s t he dyn a m i c p re s s u re d r o p s i n t h e rec i rc u l a t i o n l oo p . I n C h r i s t en s en ' s mo del , t h e dyna m i c pre s s u re d ro ps a re t r ea t ed e x pl i c i t l y w i t h t he fl ow v e l oc i ty a s a va r i a b l e wh i c h s h o u l d e q u a l t he to ta l ma s s f l ow d i v i d ed by t h e fl ow a re a a n d d e n s i ty . 4. T h e me t hod o f so l u t i o n fo r Mode l D i s de sc r i b ed i n S e ct i o n IV.3, page 1 1 1 . C hr i s ten s e n ' s mod e l may b e s o l ved e i t h e r by a d i g i ta l pro gram o r b y hyb r i d s i m u l a t i o n . Pa rt i a l d i ffe ren t i a l equat i o n s a re s o l ved by d i v i s i o n o f s pa c e i nt o s u b s ect i on s , 2 0 " co re " a n d downc omer s ect i on s , a n d sampl i n g i n the t i me doma i n w i t h a sampl i n g ra t e o f 1 0- 2 0 p e r s econd . T h e t i me de r i va t i ves a re repl a c ed b y f i r s t o r d e r d i ffe re n c e s i n b o t h c a s es , wh i l e t h e s pa c e d e r i vat i ve s a re han dl ed i n d i ffe re n t ways . Deta i l s o f both d i g i ta l a n d hyb r i d sol ut i o n proc e d u r e s a re g i ven i n Re fere n c e 32 . 1 88 VI . 2 .4 Compa r i son o f Dynami c Re spon ses In Refe renc e 3 2 , Chri sten s en pre s en ted t he s t e p re s po n s e of a UTSG mo d e l to c ha n g e s i n t he pr i ma ry i n l et tem pe ra t u re a n d th e steam val ve co effi c i en t . The steam va l ve pe rtu rba t i o n re s u l ts a re u s ed fo r t h e compa r i son o f t h e dynami c mod e l a s pred i cted by Model D and C h r i ste n s en ' s mod e l . I t i s not i c ed that t h e r e s u l t s gi ven i n Re feren c e 32 a re ba s ed on s t eam generator de s i gn data that i s some what d i ffe rent from the H . B. Ro b i n s o n data ( C h r i s te n s en ' s system i s l a rger and o perates a t h i gher pre s s ure ) . c a n b e compa red o n l y on a qual i ta t i ve ba s i s . There fore , t he r e s pon s e s T h e sys t em var i ab l es u s ed fo r t h e compa r i son a re pri ma ry o ut l e t temper a t u r e ( T p ) and 0 s t eam pre s s ure ( P ) . s T he res u l t s o f t h e compa r i son a re g i ven i n F i g u re V I . 2 . It c a n b e s een that t he resul t s obta i n ed from t h e deta i l ed l umped paramet er model ( Model D) a gree fa i rl y wel l w i t h t he resul t s re po rted by C h ri sten s en u s i n g t h e fi n i t e di fferenc e fo rmul a t i o n . VI . 3 Compa r i son w i t h Arwood ' s I EUTS G Mod e l ( fi ) Arwood d e ve l o pe d a ma t hema t i ca l model fo r an I n tegral Econom i z er U-Tu b e S t ea m Gen erator ( I E UTS G ) u s i n g the state va r i a bl e 1 urnped pa ramet er a pproac h . Arwood u s ed Mo del D o f t h i s s t udy a s a s t a rt i n g po i n t a n d made t h e n eces s a ry c ha n g es to t h e l um p s t r ucture to i n c l ude the i n tegra l econom i z er s ect i o n and to s i mu l a t e the new steam gen erato r d e s i gn feature s . I n th i s sect i o n , t he s t e p res pon s e o f Mo d e l D w i l l b e compa red w i th t he re s u l t s re po rted b y Arwood fo r the I EUTS G . The ma i n o bj ec t i ve o f th i s compa r i son i s to h i ghl i g ht t h e s i mi l a r i t i e s and d i fferences b etween t h e two UTS G d e s i gn s . 1 89 0 . .. � ' \ .... -1 0 • �-2 0 \. . ' .. ' .. .. .. ·, V1 ... ... ·,. � - 30 ... .. • ... ... �- � . ...... . ,..----- t1o d e 1 - --- . - · �- � - - � - ---- - - - - -- - - - - ..c:::. __ v · - · - · - -1 .. ...... ,�, I -2 � 0 0 0.. I<0 , .... .. . , .... . . ,' ... ���':' 10 -_ - · ..... .... :: · -� � · -- · L -" ........: VI . 2 - · - · 50 - ....._ 20 - - - - -- - · - · - · - 60 · - · - 70 .... - · . ·- · · � · - · - · · - · · - · - - -- ..... .... _ � ·· / · 30 0 · ---- C h r i s t e n s e n • s Mo d e l �- - 40 T i me F i g u re -· -· ( s ec ) -4 0 - · - · - · ----� t1o de 1 ' ., ' -3 - · 40 T i me 0 · 30 20 0 D ..,./� - - - - ... -4 0 1 C h r i s t e n s e n • s t1o d e 1 _ __ __ _ 50 - - - - - - ... - - - - - - 60 ( sec ) C o m pa r i s o n S e tw e e n t1o de 1 0 a n d C h r i s t e n s c n • s t1o d e l . 70 1 90 V I . 3. 1 De s c r i pt i o n o f t h e I EUT S G Sys t en T h e i n tegral eco n om i z er s t eam gen era t o r i s a n a d v a n c e d UTS G de s i gn t ha t w i l l b e i n sta l l ed i n fu t u re PWR sys tems . ( i l l u s t ra t e d i n F i g ure V I . 3 . 4?) T h e I E UTSG i s A s te a m gen e ra t o r w i t h a n i n t e g r a l economi z e r i s s i mi l a r i n mo st r e s pe c t s to t h e sta n d a rd U - t u b e re c i rc u l a t i n g steam gen erator ( UTSG ) . T h e ba s i c d i f ference i s t h a t i n s t e a d o f i nt r o d uc i n g feedwat e r o n l y t h ro u g h a s pa rger r i n g to m i x w i t h t h e rec i rc u l a t i n g wa t e r fl ow i n t he downcomer c h a n n el , fee dwate r i s a l so i n t ro d uc ed i n to a s eparate , b u t i n t eg r a l s ec t i o n o f t h e s te a m g e n e ra to r . A s emi - cyl i n d r i c a l s ect i on o f t h e t u be bun d l e a t t he e x i t e n d o f t h e U - t u b e s i s s e pa rated from t he rema i n der o f t h e t u b e b u n d l e by ve rt i c a l d i v i de r pl a t es a n d h o r i z o n t a l ba ffl e p l a t e s . Feedwat e r i s i n t ro d u c e d d i rect l y i n to t h i s s e c t i o n a n d pre h ea t ed b efo re d i s c h a r g e i n to t he e va po ra t o r sec t i o n . T h e economi z er s e c t i o n i s d i v i de d i n to two hal ve s , i n t h e u p pe r o r co u n t erfl ow s ec t i o n fee dwa ter f l ow s i n t h re e pa t h s a c r o s s t h e t u b e s a n d g e n e ra l l y c o u n t e r c u r re n t to t h e d i rec t i o n o f p r i ma ry fl ow i n s i de t h e t u b e s . In the l ower o r pa ra l l e l fl ow s ec t i on , fe edwater a l so f l ow s i n t h ree pa t h s ac ro s s t h e t u b e s a n d g en eral l y p a r a l l e l t o t he pr i ma ry fl ow i n s i de the tubes . T h i s s p l i t feed a r ra n g ement p re v en t s i n troduc t i o n o f c o l d fe edwa ter o n t he t u b e s h ee t w i t h t h e a s s oci a t ed t h e rma l s t r e s s pro b l ems a n d a t t h e s ame t i me reta i n s pa rt i a l l y t h e a d van t a g e o f h i g he r l o g mea n tempera t u re d i f fe re n c e a s soc i ated w i t h t h e c o u n te rfl ow a rra n gemen t . The rema i n der of t h e s t eam gen era t o r i s l i t t l e d i ffe ren t f rom t h e U TS G type exc ept t h a t t h e l ower po r t i o n o f t h e 1 91 Down comer Feedwat e r U p pe r E c o n omi z e r Fe e dw a t e r L owe r E c o n om i z e r Feedwa t e r P r i r.1a ry I n l e t P r i ma ry E x i t F i g u re V I . 3 Sc h ema t i c D i a g ra m o f a n I E UTSG . ( 4l ) 1 92 eva po ra to r s ec t i on a n d the down come r c ha n n e l oc c u p i e s on l y o n e h a l f o f t he s t ea m g e n erator c ro s s s e ct i o n . Compa r i s o n of Dyn ami c Re s po n s e s VI . 3 . 2 F i g ur e V I . 4 s how t he compa ri son b etween t h e I E UTSG a n d UT S G mod e l s s t e p r e s po n se t o +l 0 ° F c h a n ge i n p r i mary i n l et t em pera t u re . A pr i ma ry s i de p ert u rb a t i o n wa s c ho s en so t h a t b o t h steam g enerator mode l s c a n be compa red o n s i m i l a r ba s i s . T h e s t a t e v a r i a b l e s c ho s en fo r compa r i s o n p u r po s e s a re : 1. P r i ma ry o u t l e t t empe ra t u r e 2. S team gen erator p re s s u re 3. Down comer l evel 4. Down comer t empe ra t u re ( L D) . ( TPO ) . ( PS ) . ( TO ) . I t c a n be seen t h a t t h e re s po n se o f t h e pr i ma ry TPO a n d PS a re s i m i l a r i n bo t h s team gen erator mod e l s . T h i s i s to b e expe c t ed s i n ce t h e o n l y d i f fe re n c e b etween t h e I E UTSG a n d t h e UTS G i s i n t he fee dwa t er pre h ea t i n g mec ha n i sm . T h e d i ffere n ce i n t h e f i n a l s t eady s t a t e val u e s i s d u e t o t h e d i ffere n c e i n t h e d e s i gn i n pu t parame t er s u s ed fo r the dyn am i c re s po n s e c a l c u l a t i on . T h e b a s i c de s i g n di ffere n c e b etween t he UTSG a n d t h e I E UTSG can be s een from t h e re s po n s e o f the downcomer l e ve l a n d down comer temperat ure as seen i n F i g u re V I . 4 . S i n c e o n l y a s ma l l fra c t i o n o f t h e fee dwat e r i s i n t ro d uced i n to t h e dow n come r s e c t i o n i n the I E UTS G , i t s hows a l a rg e r c h ange i n t h e downcome r l e ve l d u e t o t he decrea s e o f t he rec i rc u l ated wat e r due t o t he i n c re a s e i n eva po ra t i on ra te bec a u s e o f t he i n c re a s e i n h ea t i n p u t rate . The down comer tempe ra t u re 1 93 I E UTSG ��--��--�� 6 = 0 0 0 ::r _ _ _ _ ll_T_S_G _ _ __ _ _ _ __ _ _ _ _ _ _ - - - - l\ 4 . 3777 = 3 . 408 - -- I- Oowncomer tempe r a t u r e 50 . 00 25 . 00 T I ME 0 0 - . 0 _j " , . ' ...... UTS G _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1:1 = 0 0 I0 1 00 . CC 75 . 00 (SECJ - 0 . 51 27 Down come r l ev e l 1 00 . 00 :::!' �----.---.--� '. 25 . 00 00 50 . 00 T I ME (SECJ --+_...__ --Jf-- - 0 0 I E ur s G -+---4- ___,f--+---+ UT S G - (f) Q_ 75 . 00 - - - - - - - - - - - - - - - - - - - - - - D. = 1'1 - - - 3 7 . 87 , , I 0 0 , Steam pre s s u re • • 0 0 CL t- • - 0-�------�--.--.r--. 2 5 00 50 0 0 75 0c 0 00 1 00 (.0 = 5 E1 5 2 6 5 ro T I ME - ..__ - - - - - - - F i g u re V I . 4 CSECJ - +---+ -:- - 0 (_) �). o u • • I E UT 5 G f---+__--!- - -+- • ' D. :::: +----T - - - - - - - - - - - - - - - - - - - - - - - - - - 1'1 UTS G 00 = 7 • S . 355 3 3 0 :2 P r i ma ry o u t l e t t c1npe ra t u re so . on T I ME (SL C) 25. 00 75 . 00 1 00 . 0 0 Compa r i son B e twe en UTSG a n d I E U T S G r1o de l s Us i n g the Same Mo de l i n g App roa ch . 1 94 i n t h e I E U TS G i s l a r gel y determi ned by t h e s a t u ra t i on tempera t u re a n d t herefore i t s hows a l a rg e r i n c r ea s e t h a n i n t h e ca s e o f t h e UTS G . T h e a bo ve compa r i son pro v i de d a second c h e c k o n t h e mo d e l i n g a p p ro a c h u s ed fo r t h e deta i l ed mod e l ( t�o d e l D ) deve l o pmen t . CHAP TE R V I I REt1ARKS A N D C mlCL US I O N S E v a l ua t i o n o f t he De ve l o pment Procedure VII .l I n the p r ev i o u s c ha pte r s , a n a pproa c h wa s de s c r i b ed that i n vo l ved s t e pw i s e d e v e l o pment of i n c r ea s i n g l y deta i l ed mo d e l s fo r a UTS G . T h i s a pproac h s t a r t s w i t h i d ent i fyi n g t h e p hys i c a l pro c e s s ta k i n g p l a c e w i t h i n t he sys t em d u r i n g a n t i c i p ated trans i e n t . " T he a p proac h proc eed s by d i v i d i n g t h e system i n to t h e mi n i mum n umber of l u m p s that c a n d e s c r i be the re s po n s e to a n t i c i pa t e d i n p ut s . Aft er a n a l yz i n g t he r e s pon s e o f t he sys t em a s o b t a i n ed from t h i s fi r s t s t e p ( s i mp l E' s t ) mo del , fu rther s u b d i v i s i o n i n to mo re l u mps c a n pro c e ed i n o r d e r to st u dy s pa t i a l e ffe c t s a n d / o r add n ew sys tem va ri a bl e s tha t a re n e eded fo r d e s i g n p u r po s e s . T h e a bo ve a pproa c h ha s t he fo l l ow i n g a d va n ta g e s . l. An i d ea o f t h e re s po n se c ha ra c t er i s t i c s can b e o b ta i n ed from a s i m p l e mod e l . The s i mp l i c i ty ma k e s i t po s s i b l e to c he c k t h e fo rmu l a t i o n i n deta i l to i n s u re t h at th ere a r e no bl u n d e r s i n t he fo rm u l a t i o n or t h e a l gebra i c man i pu l a t i on o f t he equa t i on s . A s pro gre s s i ve l y mo re deta i l e d mo de l s a re d e ve l o ped , t h ei r pe rfo rma n c e c a n be compa red w i t h res u l t s from e a r i l er , s i m p l er mo d e l s . Maj o r d i ffe re n c e s i n c o m pa ra b l e o utpu t s wo u l d i nd i c a t e pro ba b l e errors i n t h e fo rmul a t i o n o f t he more de ta i l e d IIIO d e l . 1 95 1 96 2. T h i s pro gre s s i ve a pp ro a c h a l l ows a n a s s e s smen t o f mod e l c o m p l ex i ty v s . f i d e l i ty . Th i s i n fo rma t i o n c a n a s s i s t i n s el e c t i n g t he mode l wi t h t h e a ppro p r i a t e deta i l a n d co st fo r a pa rt i c u l a r a pp l i c a t i on . VI I . 2 Po s s i b l e U s e s o f t h e C u r re n t Work Po s s i bl e u se s o f the ma t h ema t i ca l mode l s d e ve l o ped i n t h i s d i s se rta t i o n depend o n t he p urpo s e o f p e r fo rm i n g t h e dyn a m i c a n a l ys i s . Mod e l s A a n d B a re t h e s i m pl e s t UTSG model s . T h ey c a n b e u s e d fo r see p i n g a n a l ys i s a n d when a s i mpl i fi ed mo d e l fo r t h e s t ea m g e n erato r i s n eeded t o s i mul a t e a n o ve ra l l PWR sys tem . T h e mod e l s do n o t i nc l u d e t h e s t ea m gen erator l evel a s a s t a t e va r i a b l e , t h e refo re , t hey ca n no t be u s ed fo r a n a l ys i s i n vo l v i n g t h e dyna m i c r e s po n s e o f t h i s q u an t i ty . Mode l C comb i ne s t h e s i mpl i c i ty o f u s i n g t h e pr i ma ry a n d t u b e me ta l s t r uc t u re o f r�ode l B w i t h t h e t reat men t o f wa t e r l ev e l s i n e e t he s eco n da ry f l u i d l um p i s b ro k e n i n to t hree l um p s . a. E ffec t i ve h ea t exc h a n g e l um p . b. D rum eq u i va l en t l um p . c. Dow ncomer l um p . T h e �od e l i s r ep r e se n t ed by 9 d i fferent i a l e q ua t i on s compared t o fo r t1ode l D . 15 Therefo re , i t c a n b e u s ed fo r pa ramet r i c s team g en e ra tor co n t ro l l er wo r k w i t ho u t i n t rod u c i n g t h e compl exi t i e s of t h e s u bcool ed/ bo i l i n g mo v i n g b o u n d a ry c on s i d e r ed i n Mo d e l D . Mod e l D c a n b e con s i dered a s t h e en d p ro d u c t o f t h e wo r k reported i n t h i s d i s s e rta t i o n . I t i s n ow p ro g rammed s uc h t ha t i t 1 97 re cei ve s s t eam gen era to r de s i gn d a t a a n d produc e s t h e steady state t em pera t u r e and ma s s q u a l i ty pro f i l e a l o n g t he h ea t exc ha n g e pa t h , t he n u s e s t h e s t eady state o u t p u t f o r t h e t ra n s i en t re s po n s e ca l c u l a t i o n s . T h e mo del re pres e n t s a fa i rl y deta i l ed l umped pa ra�e t e r a pproa c h t h at can b e u s ed fo r the dynam i c a n a l ys i s o f UTS G a s so c i a t e d w i t h PWR n uc l ear powe r p l a n t s . VI I . 3 R e c ommen da t i o n s fo r F u t u r e Work T he wo r k reported in t h i s d i s s er ta t i o n c a n b e e x panded i n s everal d i r e c t i on s . 1. Po s s i bl e f u t u r e w o r k may i nc l ude t h e fol l owi n g : T h e s t ea dy s t a t e pro f i l e c a l c u l a t i on s c a n b e mod i f i ed to i nc l u d e the momentum e q ua t i o n and ca n be u s ed to e st i ma t e t h e rec i rc u l a t i on rat i o a t d i ffe rent l o a d c o n d i t i o n s . 2. The s t ea� f l ow rate c a n b e re l at e d to t he t u rb i n e e l ec t ri c a l l oad by mea n s o f a t u rb i n e mode l a n d t h u s th e s t eam g e n e ra t o r no d e l ca n b e c o u pl ed t o t h e r ea c t o r o n t he p r i ma ry s i de a n d t o t he t u r b i n e o n t h e s eco n da ry s i d e t o s i mu l a t e l oa d fo l l ow i n g c a p a b i l i t i e s o f PWR syst em . 3. A fee dwa t e r co n t ro l l er can b e co u pl ed t o t h e s t ea m g en erato r mod el a n d t h e c l o s ed l oo p re s po n s e c a n b e u s ed to d et ermi n e a n d o pt i m i z e t h e c on t ro l l e r para�e t e r s . 4. The n on l i ne a r terms t h a t were e l i m i n a ted i n t h i s work c a n b e i de n t i fi e d a n d re - i n t ro d u c e d i n to t h e mod e l . 5. T h e e ffec t o f s u bcoo l e d bo i l i n g a n d t h e e ffect s h r i n k a n d swe l l c a n b e added t o t h e mo d e l by i nt rod uc i n g t h e vo i d f ra ct i on ( a ) i n stead o f t h e ma s s qua l i ty ( x ) a s a state va r i a b l e i n the bo i l i n g secondary fl u i d l ump s . 1 98 VI I .4 Conc l u si o n s A s e t o f l i n ea r , l umpe d parameter , s t a t e v a r i a b l e mo del s o f va ry i n g compl ex i ty wa s devel o ped fo r s i mu l a t i o n o f U - t u b e steam generato r s . T h e mod e l s a ppear c a pa b l e o f p red i ct i n g t h e re s po n se o f t h i s type o f sys t em . T h e s u i ta b i l i ty o f t h e s e model s wa s exami n e d by : - a s se s s i n g t h e p hys i c a l p l a u s i b i l i ty o f t he t ra n s i en t resul ts - c o mpa r i s o n w i t h i nd e pen den t l y- devel o ped , mo r e d eta i l ed mod e l r e s u l t s - compa r i s o n wi t h a va i l a b l e t es t d a t a . T h e mod e l s a re c a s t i n t h e s t a t e va r i a b l e fo rm , ma k i n g i t c o n ve n i e n t t o c o u pl e t he m w i t h o t h er s u b sy s t em mo de l s fo r u se i n s t u dy i n g o ve ra l l pl a n t performa n c e . L I ST O F R E FERENCES RE FERENCES 1. RESAR , Refe re n ce S a fe ty An a l ys i s Re po rt , Vo l . 1 , W e s t i n g h o u s e Nuc l ea r E n ergy Sys t ems , P i t t s b u r g h , Pen n syl va n i a ( 1 9 70 ) . 2. Fi n a l Fac i l i ty De s c r i pt i o n a n d S a fe ty An a l ys i s Repo rt , V o l . l , H . B . Ro b i n so n Un i t N o . 2 , C a ro l i na Power a n d L i g h t Compa ny. 3. Tha k ka r , J . G . , .. C o r re l a t i on o f T h e o ry a n d E x pe r i me n t fo r the Dyn am i c s of a P re s s u r i z ed Water Rea cto r , M. S . T h e s i s , N u cl e a r E n g i n ee r i n g De pa rtme n t , T he Un i v e rs i ty o f Ten n e s s ee ( Ma rch 1 975 ) . 4. Kat z , E . M a rc i a , 1 1 P l an n i n g , P e r fo rm i n g a n d I n te r p re t i n g Dynam i c Mea s u remen t s i n P re s s u r i zed Water Reactors , 11 P h . D . D i s s ertat i o n , N uc l e a r E n g i ne e r i n g Departmen t , T h e U n i ve rs i ty o f Ten n e s s ee ( J un e 1 9 76 ) . 5. Ke r l i n , T . W . , E . M . Katz , J . G . Tha kka r , 11 Dynami c T e s t i n g o f N u c l e a r P ow e r P l a n t , .. P ro c ee d i n g s o f t h e 1 9 74 J o i n t Automat i c Con t ro l Co n fe re n c e , A us t i n , Te xa s , J un e 1 8- 2 8 , 1 9 7 4 . 6. Arwood , Don C . , 11 A Mat hema t i ca l Mod e l fo r a n I n t e g r a l Economi z e r S team Gene ra to r , 11 M . S . T h e s i s , N uc l e a r E n g i n ee r i n g Depa rtme n t , T h e Un i vers i ty o f Tenn e s s e e , K n o x v i l l e , Ten n e s s ee U1a r c h 1 9 7 5 ) . 7. C l a r k , J . A . , V . S . Arpa c i a n d K . M . T rea dwa l l , 11 Dyn am i c Re s po n se o f H e a t E x c h a n g ers H a v i n g I n t e r n a1 H e at S o u rc e , .. P a rt I , Tra n s . AS ME , Vo l . 80 , p p . 6 1 2 -6 24 ( 1 9 58 ) , P a rt I I , T ra n s . ASME , Vol . 80 , p p . 6 2 5 -634 ( 1 958) , P a rt I I I , Tran s . ASME , S e r i e s C . Vo l . 9 1 , p p . 2 5 3-266 ( 1 9 5 9 ) , Part I V , J o u rn a l o f H ea t Tran s fe r T ra n s . ASME , S e r i e s C . Vol . 8 3 , pp . 321 -336 ( 1 9 6 1 ) . 8. C h i en , K . L . , E . I . E rg i n , C . L i n g , a n d A . L ee , 11 Dyn a m i c Anal ys i s o f a B o i l e r , 11 Tran s . ASME , V o l . 80 , p p . 1 809-1 81 9 ( 1 9 5 8 ) . 9. Tha l - La r so n , H . , 11 Dyn a m i c s o f H e a t E x c h a n g e r s a n d t h e i r Mo del s , 11 J o u r n a l o f B a s i c E ng i n ee r i n g , Tran s . ASME , S e r i e s D , Vol . 82 , p p . 489-504 ( 1 960) . 1 0. Ma s u buc h i , M . , 11 Dynami c Re s po n s e a n d C o n t ro l o f M u l t i pa s s Hea t Exc h a n ge r s , 11 J o u r n a l o f 13a s i c E n g i n ee r i n g T ra n s . , ASME , S e r i e s D . , Vo l . 82 , p p . 5 1 - 6 5 ( 1 9 6 0 ) . 11 . E n n s , Ma rk , 11 Compa r i s o n o f Dyn ami c Mo de l s o f a S u pe r h ea te r , " J o u rn a l o f H e a t Tran s fe r , T ra n s . ASME , Se r i e s C . , Vol . 84 , p p . 3 7 3 - 385 . 200 201 12. Du s i n be rre , G . M . , " Ca l c u l a t i on s o f Tran s i e n t Tempe ra t u re s i n P i p e s a n d H e a t Exc h a n g e r s by Nume r i c a l Me tho d s , " T ra n s . ASr1E , V o l . 76 , p p . 4 2 1 -426 ( 1 9 54 ) 1 3. A s t ro m , K . J . a n d K . E k l un d , " A S i mpl i f i e d No n l i n e a r Model o f a D r u m Bo i l e r - T u rb i n e U n i t , " I n t . J . Co n t ro l 1 9 72 , V o l . 1 6 , No . ( pp . 1 4 5 - 1 6 9 ) . 14. B er kow i tz , Da v i d A . , ( Ed i to r ) " P ro c ee d i n g s o f the S em i n a r o n B o i l e r Mod e l i n g , " T h e M I T RE Co rporat i on , No vember 6 - 7 , 1 9 74 . 15. T h i e , J . A . , " Dynam i c B e ha v i o r o f B o i l i n g Rea cto r s , " A E C Re s ea rch a n d Devel o pment Re po rt ANL - 584 9 , May 1 9 5 9 . 16. A kc a s u , A . Z i ya , " Theo ret i ca l Fee d ba c k Ana l ys i s i n B o i l i n g Wa ter Rea ctors , " A E C Re s ea rc h and De ve l o pmen t Re po rt A N L - 6 2 2 1 , October 1 960 . 1 7. F l ec k , J . A . , J r . , " Th e Dyn am i c B e ha v i o r o f Bo i l i n g Wa t e r Rea cto r s , 11 J . N uc l . E n e rgy , P a rt A . : Rea ctor S c i enc e s , 1 9 60 , Vo l . 1 1 , p p . 1 1 4- 1 30 . 18. Mus c ettol a , M . , 11 Dyn ami c Mo d e l fo r a Bo i l i n g Wate r Reac to r , " Un i ted K i n gdom Ato m i c E n e rgy A u t h o r i ty Rea c t o r G ro u p , A E E W - R28 5 , 1 96 3 . 19. J un i c h i , M i da a n d No b u h i de S u da , 11 Dyn ami c A n a l y s i s o f N a t u r a l C i rc u l a t i on Bo i l i n g Wa te r Rea cto r , 11 J a pan A to m i c E n e rgy Re s ea rc h I n s t i t u t e ( JAE R I ) 1 06 1 , D ecember 1 96 3 . 20. A n d e r so n , R . P . , L . T . B rya n t , J . C . C a rter , a n d J . F . Ma rc ha l tere , "An Ana l o g S i mu l a t i on o f t h e T ra n s i e n t Beh a v i o r o f Two - P h a s e N a t u ra l C i rc ul a t i o n Systems , 11 C h emi c a l En g i n e e r i n g P rogre s s Sympo s i um Se r i e s No . 4 1 , Vol . 59 , p p . 96 - 1 0 3 , 1 96 3 . 21 . N a h a v a n d i , A . N . a n d R . F . von H o l l en , " A S pa c e - Depe n d e n t Dyn am i c Ana l ys i s o f Bo i l i n g W a t e r Reactor Sys t ems , '' N u c l ear Sc i e n c e a n d E n gi n e e r i n g , 2 0 , p p . 392-41 3 ( 1 964 ) . 22 . Neal , L . G . a n d S . M . Zi v i , " Hydrodyn ami c S t a b i l i ty o f Nat ural C i rc ul a t i o n Bo i l i n g Sys t ems , " V o l . 1 , A Compa ra t i ve S t u dy of Ana l yt i c a l Mode l s a n d E x pe r i me n t a l Da ta , STL - 3 1 2 - 1 4 ( 1 ) , J u ne 1 96 5 . 23. S pi g t , C . L . , " O n t h e Hyd ra u l i c C h a ra c te r i s t i c s o f a B o i l i n g Wa t e r C ha n n e l w i t h Nat u ra l C i rc ul a t i o n , " E URAE C Report E U R 2 842 . e ( 1 966 ) . 202 24 . Vays s i e r , G . , "A No n l i nea r Ana l o g Model fo r B o i l i n g Loo p Dynam i c s a n d I t s A p p l i c a t i on i n Reactor Sta b i l i ty , " P a pe r s u bm i t t ed to t h e Sympo s i u m on Two - P ha s e Fl ow Dynami c s a t Te chno l o g i ca l U n i ve rs i ty o f E i n d haven , Se ptembe r 1 96 7 . 25. W e s t mo re l a n d , J . C . , " Na t ura l C i rc u l a t i o n Steam Ge n e ra to r s fo r N u c l ea r Power P l a n t s , " N u c l ea r S c i ence a n d E n g i n ee r i ng , Vo l . 2 , p p . 5 3 3- 546 ( 1 95 7 } . 26 . McGw a n , E . J . a n d J . R . Bodo i a , " An I n ve s t i gat i o n o f S t a b i l i ty i n a G l a s s Mo d e l S team Gen erato r , " B e t t i s T e c h n i ca l Re v i ew , WAPD-BT - 2 7 , p p . l - 1 9 , De cemb e r 1 96 2 . 27. C l a r ke , W . G . , 1 1 T ra n s i e n t An a l ys i s o f Steam Gen e ra t o r s i n N u c l ea r Power P l a n t s U s i n g D i g i t a l Compu t e r Techn i q ue s , " WAPD-T - 1 648 ( 1 965 ) . 28. Na ha va n d i , Am i r N . a n d A b ram B a t e n b u r g , " S team Gen e ra to r W a t e r L e v e l Con t ro l , " J o u r n a l o f B a s i c E n g i n ee r i n g , J un e 1 966 ( p p . 34 3- 354 ) . 29. H a r g ro ve , H . G . , " MARVE L : A D i g i ta l Compute r C o de fo r Tran s i en t An a l ys i s o f a M u l t i l oo p PWR Syst em , " WCA P - 79 0 9 , October 1 9 72 . 30 . Ten Wol de , D . G . , 1 1 T ra n s i en t B e ha v i o r o f N u c l e a r S t e am Genera to r Dyn ami c s , " WTH D- 36 , P h . D . T h e s i s , D e l ft Un i ve r s i ty o f T e c h n o l o gy , Depa rtme n t o f Mec han i c a l E n g i n ee r i n g , Ap r i l 1 9 72 . 31 . B a u e r , M . M . , La rmi n a u x , Lemo i n e e t S u rea u , " S i mu l a t i o n Nume r i q u e Des Ge n e ra t e u r s de V a pe u r N u c l e a i re s , " S o c i e t e Hyd rotec h n i q u e d e Franc e X I I me s Jo u r n e e s d e L ' Hydra u l i que ( Pa r i s 1 9 72 ) . 32 . C h r i s te n sen , P . La Co u r , " De s cr i pt i o n o f a Mo d e l o f a U -T u b e Steam Gene rato r , .. Report N o . R I S O - M- 1 564 , L i b ra ry o f t h e Da n i s h Atom i c E n e rgy Commi s s i on , R i so , R i s k i l de , De nma r k , 1 9 73 . 33. Del en e , J . G . , 11A D i g i ta l Com p u te r Co de fo r S i mu l a t i n g t h e Dyn a m i c s o f Demo n s t ra t i o n S i z e Due l - P ur po s e Desal t i n g P l a n t s U s i n g a P re s s u r i zed Water Rea c t o r a s a H e a t So urce , .. O RN L- TM- 41 04 , S e pt emb er 1 9 7 3 . 34 . Murrel l , M . D . , " Bo i l e r S i mul a t i o n , PWR S ta t i o n Dynam i c s , " P a per No . 4 , Bo i l i n g Dynam i c s a n d Control i n N u c l ea r Power S ta t i o n s , P roceed i n g s of I n t e rn a t i o n a l Co n fe rence orga n i z e d b y the B r i t i s h N u c l ea r E n e rgy S o c i ety , Ma rc h 2 2- 2 3 , L o n don , 1 9 7 3 . 203 35. F r e i , G . , J . Weber and F . H i rme r , " Dynami c B e ha v i o r o f a 660 t1W N u c l e a r Power S ta t i o n , " Pa per rlo . 5 , B o i l i ng Dyna m i c s a n d C o n t r o l i n N u c l e a r Power S t a t i o n s , P roc eed i n g s o f I n t erna t i o n a l C o n f e r en c e o rga n i zed by t h e B r i t i s h N uc l ear E n ergy S o c i ety , Ma r c h 2 2 -2 3 , 1 9 7 3 , Lon don . 36 . Ma ta u s e k , M . R . , " S I NO D-A No n l i n ea r L umped Pa rame ter Mo d e l for A na l y s i s of Two - P h a s e Fl o w i n N a t u ra l C i rcu l a t i on B o i l i n g Wa t e r L oo p , " N u c l ea r S c i e n c e a n d E n g i n ee r i ng : 53 , 1 9 74 , p p . 440-4 5 7 . 37 . Ha rri n gt o n , R . t� . • "An a l ys i s o f t h e Fo rt St . V ra i n n u c l e a r P l a n t i n S u p po r t o f a Dynami c Te s t i n g P r o g ra m , " t1 . S . T h es i s , t l uc l ea r E n g i n ee r i n g De partmen t , Th e Un i v e r s i ty o f Tenn e s s ee , Kn o x v i l l e , Ten n e s s e e ( A u g u st 1 9 74 ) . 38. Kreys z i g , E . , Adva n c ed E n i n ee r i n Ma t h ema t i c s , J o h n W i l ey a n d S on s , I n c . , New Y o r k , S e c o n d E d i t i o n , 1 9 6 7 . 39 . Ha l l , S . J . a n d R . K . Adams , " MATE X P : A Gen eral P u r po s e Di g i t a l Comp u t er P ro gram fo r S o l v i n g O rd i n a ry Di fferen t i a l E q u a t i o n s by t he Ma t r i x E x po n en t i a l Me t ho d , 11 ORNL - TM - 1 9 3 3 , Oak R i dg e Nat i o n a l Laboratory ( Au g u s t 1 96 7 ) . 40 . Ker l i n , T . W . a n d J . L . L uc i u s , T h e S FR - 3 Code -A Fortran P rogram fo r Ca l c u l a t i ng t he Frequ en cy Re spo n s e o f a M u l t i va r i a b l e Sy s t em a n d i t s Sen s i t i v i t i e s to P a rame t er C hanges , USA E C R e p o r t O RNL -TM- 1 5 7 5 ( 1 966 ) . 41 . Wea ve r , L . E . , Reactor Dyn am i c s a n d C o n t ro l , Ame r i can E l s e v i e r P u b l i s h i n g Compa ny , I n c . , New Y o r k ( 1 9 68 ) . 42 . t�e l sa , J . L . a n d D . G . S h u l t z , L i n ea r Control Sys t ems , McGraw H i l l Boo k Compa ny , I n c . , N ew Y o r k ( 1 96 9 ) . 43. Ra l s t o n , A . a n d H . S . i·J i l f , ed . , Ma t hema t i c a l t�e t ho d s fo r C ompu t er s , V o l . 2 , J o h n Wi l ey a n d S o n s , I n c . , N ew Y o r k 44 . C o l l i e r , J o h n G . , C o n n ec t i v e B o i l i n g a n d Conde n sa t i o n , McGraw H i l l Book Compa n y ( U K ) L i mi ted , L o n d o n ( 1 9 72 ) . 45. Fraa s , A � P . a n d M . N eca t i o z i s i k , H e a t E xc h a n ger De s i gn , J o hn W i l ey a n d S o n s , I n c . , New Y o r k , 1 96 5 . 46 . Arpac i , Vedat S . , Co n du c t i on H e a t Tran s fer , Add i s o n -We s l ey P u bl i s h i n g Compa n y , Rea d i n g , Ma s s ac h u s etts ( 1 9 6 6 ) . 204 47 . " CE S SAR C E S ta n da rd S a fe ty Ana l y s i s Re port fo r System 80 NSSS , C E Power Systems , W i n d s o r , Co n n e c t i c ut , 1 9 74 . 48 . E l -Wa k i l , M . M . , N uc l e a r H e a t T ra n s po rt , I n te rn a t i o n a l Textbo o k C om pa ny , S c r a n to n , Pen n syl va n i a , 1 9 7 1 . 49 . Kays , W . M . , C o n ve ct i ve H ea t a n d Ma s s T ra n s fe r , McGraw-H i l l B o o k Compa ny , New Y o r k ( 1 9 6 6 ) . A P P E N D I XE S APPEND I X A NARROW RAtJGE L I N EAR APPROX I MAT I O N OF S.IJ.T U RAT I O f'4 WAT E R AND STEAM PRO P E RTI ES One o f t he p re re q u i s i te s for t h e sol ut i o n o f t h e dynam i c a n a l y s i s mode l s fo r UTSG sys tems i s the e xpres s i on s fo r t h e e q ua t i o n o f s t a te fo r sa t u ra t ed wa ter a n d s t eam . The mo s t d i rect and a c c u rate me thod for s a t i s fyi n g t h e a bo ve r e q u i reme n t i s to i n put t h e t h e rmodyn am i c pro pe r t i e s o f s a t u ra t e d water a n d s t eam i n t a b u l a r form i n to t h e d i g i ta l compu t er a n d u s e s ta n d a rd ta bl e l oo k u p a l go ri t h ms t o obta i n t h e v a l u e o f a c e r ta i n p ro perty a t a g i ve n t h ermo dynami c s t a te . Th i s method i s s u i ta b l e fo r n umeri c a l s o l u t i on o f dyn ami c a n a l ys i s mo de l s . Ano t he r met hod t o o b ta i n t h e t h e rmodynami c p ro pert i e s i s to u s e po l ynomi a l fi tt i n g o f t h e steam t a b l e s data . Ob v i o u s l y , t h e h i g h e r t h e o rde r o f the f i t t i n g po l ynomi a l , t h e mo re acc u r a te t h e sol u t i o n ( a t t h e e x pe n se o f comp u t a t i o n t i me ) . I n t h i s s t u dy , i n t u i t i o n a n d en g i n e er i n g j ud geme n t w e r e u s ed to a r r i ve a t t h e l ea s t e x pen s i ve met ho d for o bta i n i n g t h e s a tu ra t i o n pro pe rt i e s o f wate r a nd s team i n t h e ra n g e o f i n t e re s t ( 600- 1 000 p s i a ) . The method wa s a r r i ve d a t by fi r s t s t u dyi n g t h e b eh a v i o r o f t he sa t u ra t i o n the rmodynami c pro p e rt i e s a s a fun c t i o n o f p re s s u re over a w i d e r ran ge t h a n t h e ran g e o f i n t e r e s t fo r a pa rt i c ul a r a pp l i c a t i on . Aft e r t h a t t h e w i de ran g e wa s d i v i d e d i n to a n umbe r o f n a rrow ra n g e s a n d t h e beha v i o r o f t h e s a t u ra t i o n pro pe rt i e s wa s re exami n ed o v e r t h e s e 206 207 n a r row ra n g e s t o d e t e rmi n e t h e l ea st o rder pol yn om i a l t h a t can a d e q ua t e l y re p r e s e n t t h e rel a t i o n b etween t h e s a t u ra t i on pro pe r t i e s a n d the sys tem p re s s u re . The a bo v e met hod was a p pl i e d t o o b t a i n a n a pprox i ma t i o n fo r t h e eq uat i o n s o f s t a t e fo r s a t u rated wa t e r a n d s team o v e r t h e pre s s u re ra n g e 600 - 1 000 p s i . Thi s ran g e i s s u i ta b l e fo r norma l o pe ra t i on t ran s i e n t s o f s te a m g en e ra t o r sy s t ems w h e r e t h e st eady s t a te p re s s u re i s about 8 0 0 p s i . T h e fo l l ow i n g s a t u ra t i o n pro pert i e s were p l o tt ed a s a fu n c t i o n o f pre s s u r e u s i n g t he ASME 1 96 7 s t e a m t a b l e s . = s a t u ra t i o n tempe ra t u re ( 0 F ) l. T 2. vf = 3 s pe c i f i c vol ume o f sa t urated wa te r ( ft / l brn) 3. vg = 3 s pe c i f i c vol ume o f sa t u ra t ed steam ( ft / l b m ) 4. v fg 5. h 6. h 7. h fg sat f g = vg - vf = e n t h a l py o f s a t u ra t e d wa t er ( B tu/ l bm) = e n t h a l py o f s a t u ra t ed s t eam ( B tu/ l bm) = h h . g - f T h e res u l t s a r e s hown i n Fi g u r e s A . l t h ro u g h A . ? . From t h e s e re s ul t s , i t c a n b e s ee n t h a t t h e c ha n g e o f t h e a b o v e pro per t i e s , o v e r t h e ra n g e o f i n t e re s t i s fa i r l y l i n ea r . T h e fo l l owi n g va l u es a r e re p re s en ta t i ve o f t h e ra te o f c ha n g e o f t h e a b o ve s a t u ra t i o n p ro pe r t i e s w i t h re s pect to pre s s u re fo r t h e H . B . Ro b i n so n steam g e n e ra to r . l. 2. a T�a t aP a vf aP - = 0 . 1 45 3 . 6x l 0 - ° F/ p s i a 6 3 ft I 1 bm/ p s i a *A l t h o u g h T s a t a n d o t h e r s a t u ra t i o n p ro pe rt i es a re co n s i d e red a s fun c t i o n s o f one va r i a b l e ( P ) , t h e pa rt i a l d e r i va t i ve symbo1 ( a / a P ) i s u s ed fo r c l a r i ty o f eq ua t i on s . 208 0 0 0 ' 0 0 0'\ \ 0 0 OJ 0 0 r-.. \ 0 0 1.0 \ \ \\ Vl 0.. 0 ...... 0 L!) CJ s... ::::l Vl Vl CJ s... 0 0.. 0 0 0 M \ \ " .J a r. 0 1.0 0 t1j . ,.... 0 0 N 0 0 r- � -- "=' 0 N n 0 0 0 CJ s... ::::l (/') (/') CJ s... 0.. ..s:::: � ....... 209 0 0 0 l 0 0 m 0 0 aJ 0 0 1..0 ro . ,... V1 0.. 0 0 LD 0 0 <:::t QJ s... :::::l V1 V1 QJ s... a.. . QJ s... :::::l V1 V1 QJ s... a.. ..c .jJ 3: 0 0 M \ 4> 40 c 0 0 0 N +-' ro s... ro > N 0 0 \ I I I N 0 0 1\ 1 0 <:::( QJ s... :::::l 01 LL I I l r- 0 0 I I I I 0 0 0 21 0 0 0 0 0 0 01 0 0 00 0 0 r--. J 0 0 \.0 lj ro 0 0 �...., v 0 0 <:j" I - --f.--""' -- QJ � ::I Vl Vl QJ � 0... QJ � ::I Vl Vl QJ � 0... s:: +-' 3 •r- 0) > 0 0 ('I') I / � Vl 0. 40 c 0 +-' ro 0 0 N / � ro > . c::( (V') 0 0 QJ � ::I O'l •r- LL.. . 0 0 0 0 0 0 \.0 Ln ('I') N 0 0 21 1 0 0 0 0 0 0"\ 0 c 00 0 c r--. 0 0 <.0 ) I ro 0 0 Ln v 0 0 <::t L -� � - '- -· 0 1..0 0 � (./l c... Q) s... ::::l (./l (./l Q) s... 0... Q) s... ::::l (./l (./l Q) s... 0... .,.... ..c: � 3: 0 0 (V) v / � .,.... 01 4> 40 c 0 � ro 0 0 N / s... ro > <::t c::r:: 0 0 Q) s... ::::l 01 LL 0 0 ('Y') N 0 0 I 60 I ,- 50 40 I . I f I I t 1 ..)�1 j I 0 - I I 1 00 I 2 00 II I J 400 300 50 0 P res sure ( ps i a ) Fi g u re A . 5 V a r i a t i on o f h --' N I I I N 200 1 00 , -· I ---- ----- �� I 1/ 30 I I I f w i th P re s s u r e . I I 6 00 j 700 I 800 I _j 900 1 000 21 3 0 0 0 0 0 0"1 0 0 co 0 0 r-.. 0 0 \..:> � Vl a.. 0 c 1.!) 0 0 oq- <IJ s... :::::5 Vl Vl <IJ s... CL <IJ s... :::::5 Vl Vl <IJ s... CL ..s:: -1--' . ,.... 3: Ol ..s:: 0 0 M 0 0 N 40 c 0 . ,.... -1--' "' . ,.... s... � > <..0 < 0 0 <IJ s... :::::5 Ol 1..1.. 0 0 N \ 0 0 0 0 0 co 0 0 1..0 0 0 oq- 0 0 N 0 - ---� 1 200 1 200 1 000 800 I I 1 00 0 . "'---r------ ---- 800 600 6 00 4 00 400 200 200 0 0 1 00 2 00 0 3 00 4 00 500 P re s s u re ( p s i a ) F i g u re A . 7 Var i a t ion o f h fg w i t h Pres s u re . 600 7 00 800 900 1 000 --' N � 21 5 av 3. _g_ 4. f _2_9. 5. 6. 7. aP - 7 . 65x1 0 = av aP ah f = _ 0. 1 75 = - 2 . 7xl 0 ----aP - at -7 . 7x1 0 ah ah f 7 = - 0 . 203 -4 3 f t / 1 bm/ p s i a -4 3 f t / 1 bm/ p s i a B t u / 1 bm/ ps i a _2 B t u/ 1 bm/ p s i a B t u / 1 bm/ ps i a . APPE @ I X B THE C R I T I CAL FLOW ASSUMPT I O n I n t h e a b s e n c e o f a t u rb i n e mo del t ha t c a n b e u s ed to r e l a t e t h e steam f l ow ra t e f rom t h e s t eam g en erato r t o t h e t u rb i n e l o ad , some a s s um pt i o n s ha ve to be ma d e t o rel a t e t h e s t eam fl ow ra t e to o t h e r s y s t em va r i a b l e s and/ o r fo rc i n g f u nc t i o n s . The s i mpl e s t met ho d to a c h i eve t h i s rel a t i o n i s to l ea v e t h e st eam f l o w r a t e i n t h e equat i o n s a s a fo rc i n g funct i o n . T h i s method i s s u i ta b l e wh en u s i n g t h e s t eam g en erator mo del fo r f eedwa t e r c o n t ro l l er d e s i gn a n d o pt i m i za t i on . A n o t h e r method i s t o rel a t e t h e s t eam fl ow ra t e t o t he s t eam generato r pre s s ure a n d t h e tu rb i n e f i r s t s t a g e pre s s u r e u s i n g t h e o r i f i c e fl ow eq ua t i o n (B.l ) where w so P p s t = steam fl ow r a t e = steam gen era tor pre s s u r e = t u r b i n e f i r s t sta g e p re s s u r e . When E q u a t i o n ( B . l ) i s l i n ea r i z ed , we g e t (B.2) wh er e C fl a n d c f 2 a re con sta n t c o e ff i c i e n t s t h at ca n b e cal c u l a t ed from s t eady s t a t e con d i t i on s . From E q ua t i o n ( 8 . 2 ) , i t can b e s een that the steam f l ow rate term i n t h e go vern i n q equat i on s fo r t h e steam gen era tor mod el i s repl a c ed b y two term s . 21 6 T h e fi r s t i n cl u d e s 21 7 t he st eam gen erato r p r e s s u re w h i c h i s on e o f t h e s t a t e va r i a b l e s and p r e s s u r e w h i c h now the o t h e r i n c l u d e s the tur b i n e fi r st stage serve s a s a fo r c i n g f u n c t i on . T h e met hod u s ed i n t h e mat hema t i ca l d e v e l o pmen t s i n C ha pt er I I I , pag e 25, i s to a s s ume t h a t t he s t eam fl ow rate i s d e t e rm i n ed o n l y by t he u p s t r eam ( s team g en era to r ) pr e s s u r e a n d a ny d ro p i n t he down stream ( tu rb i n e ) pr e s s u re n o l o n g er r e s u l t s i n an i n c rea s e i n t h e s t eam fl ow rat e from t he s team g en erato r . fl ow" a s s umpt i o n . T h i s i s u s u a l l y known a s t h e " c r i t i ca l T h i s con d i t i on i s r eac hed when t h e rat i o b etwee n t h e tu r b i n e p re s su r e t o t h e s t eam gen era t o r pre s s u re re a c h e s a c r i t i ca l ( 4S ) val ue. For s a t u r a t ed s t eam , t h i s c r i t i ca l p re s s u re rat i o i s a bo u t 0 . 54 5 . ( 43 ) W h en t h e c en t ral f l ow a s s umpt i o n i s u s ed , t he s t eam f l ow ra t ed i s con s i dered to be a fun c t i o n of the u p s tream ( s team g e n e ra t o r ) pre s s ur e o n l y , t h u s (8.3) E q u a t i o n ( B . 3 ) w hen l i n ea r i z ed yi e l d s t h e fo l l owi n g e q ua t i o n . oW so = C L oP s + P s oC L (B .4) T hu s , t h e steam fl ow term i s re p l a c e d by a t e rm i n c l u d i n g t h e s t eam p r e s s u r e P co effi c i ent C L s a n d another t erm i n v o l v i n g t h e fl ow ( o r v a l v e ) w h i c h i s now t a k e n a s t h e forc i n g f u n c t i o n . A P P E ND I X C BAS I C C O N S E RVAT I ON E QUAT I O N S FO R TWO PHASE FLOW S Y S T EMS T h e ba s i c con s erva t i on e q u a t i o n s are the b u i l d i n g b l o c k s i n t he d e vel o pmen t o f dyn ami c mod e l s for t he rma l hyd ra u l i c sys tems . T hey expre s s t he s t o r a g e a n d t ra n s po r t o f ma s s , e n e rgy , a nd momen tum w h i c h a r e t he maj o r fa c t o r s govern i n g t h e dyn a m i c b e ha v i or o f t h e sy s t em . I n t h i s a ppend i x , t h e general sta temen t o f t he ba s i c co n s e rva t i on e q ua t i on s i s g i ven a n d a p pl i ed to d er i v e t h e ma t h ema t i c a l expre s s i on s fo r t h e con s er va t i o n equa t i o n s i n a o n e d i men s i o n a l two p ha s e fl ow sys t em . C.l P r i n c i pl e o f C o n s erva t i o n o f Ma s s ( Con t i n u i ty Equa t i o n ) The p r i nc i pl e o f c o n s erva t i on o f ma s s e qu a t i on c a n b e s t a t ed a s fol l ows ( Ra te o f i nc r e a s e o f ma s s s t o ra g e ) = ( fl ow i n ) - ( fl ow o u t ) . ( C . l ) Con s i d er t h e c o n tro l vo l u me bou nd ed by t h e ho r i z o n t a l l ev e l s ( z ) a n d ( z+ L ) i n t he v e r t i c a l f l ow sy stem s hown i n F i g u re C . l , a pp l i ca t i o n o f E q ua t i on ( C . l ) t o t h i s c o n t ro l vo l ume y i e l d s t h e fo l l ow i n g equat i o n d dt e-P AL ] = where p = a vera g e d en s i ty o f t h� fl u i d i n t h e co n t ro l vol ume A = cro s s s ec t i o n a rea 21 8 219 [W ] z +L z +L o AL -+-------,�--� z [W ] z Fi gure C . l C o n tro l V o l u me fo r t h e A p p l i c a t i o n o f t h e C o n t i n u i ty Equa t i o n . 220 = l en g t h of t he control vo l ume = fl ow i n = fl ow o u t . L W z W + z L Fo r con s tan t c ro s s sect i on a rea , we can d i v i d e b o t h s i d e s o f Equa t i on ( C . 2 ) b y A t o get (c. 3) where G G 2 z +L = i n l et ma s s vel oc i ty = o u t l et ma s s vel oc i ty . Fo r a homo g e n eo u s fl ow mod e l , we have p = 1 --- v +x v fg f (C.4) (C.S) (C.6) where v v = s pec i f i c vol ume o f s a t u ra ted wa t e r = s pec i f i c vol ume of s a t u rated s team = X ( v9 - vf) = a ve ra g e ma s s qual i ty u = fl ow ve l oc i ty = 1 oca 1 ma s s q u a l i ty. f g v fg - X 221 Fo r a sl i p fl ow mod el , we ha ve (c. 7) G G z = z+L = where p a pf pg uf u C.2 g [ p f u f ( 1 -a ) + p g u g a ] z (C.8) [ p f u f ( l - a ) + P g u g a ] z+L (C.9) = a vera g e d en s i ty = a v erag e vo i d f r i c t i on = d en s i ty o f satu rated wa ter = d en s i ty o f saturated s team = vel o c i ty o f wa ter pha s e = v el oc i ty o f s team pha se . Pr i n c i pl e o f Con s erva t i on o f E n ergy ( En e rgy Equa t i o n ) T he pr i nc i pl e o f conservat i o n o f en ergy can be stated a s fol l ows Ra te o f Crea t i on o f E n ergy = 0 ( C . 1 0) g where the term crea t i on i s de f i n ed a s ( 4 ) C re a t i on ( o u t f l ow ) - ( i n f l ow) + ( i n crea se o f s torage ) . ( C . l l ) = Th e appl i ca ti on o f E q u at i on ( C . l O ) to the con tro l vol ume s hown i n F i gure C . 2 , y i el d s the fol l owi ng equ a t i on �t [ p AL • e] = [W • (e + p �) ] 2 - [W • (e + p � ) ] z+L + Q (C.l 2) 222 -+-----+---J- z + L z [W · h ] z F i gure C . 2 C o n trol Vol ume for th e A p p l i ca t i o n o f t he E n ergy E q u a t i o n . 223 where - e a ve ra g e i n te rn a l t h e rma l en ergy = e = l o c a l i n t ern a l therma l ene rgy Q = hea t i n pu t ra t e = fl ow wor k ( i n t herma l e n ergy u n i t s ) . EJ EJ i s T h e c omb i n a t i on e + k nown a s t h e en t h a l py a n d i s d e not ed by h , t h u s , E qu a t i o n ( C l 2 ) can be wri tten i n t h e fo rm . d df [ p- AL • e] = [W h] • 2 - [14 • h] z+L + "ll · (C.l 3) T h e fl ow wor k t e rm c a n b e s hown to b e n e g l i g i b l e compa red to t h e en t h a l py t e rm i n typ i ca l U TSG o perat i o n . Therefo re , t h e e n t ha l py h c a n b e u s ed i n bo t h s i d es o f E q u a t i o n ( C . l 3 ) , t h u s d dt [p AL • h] = [W h] • z - [W • h] z+ L + Q • (C.l4) T h e r e l a t i ve i mpo r ta n c e o f t he fl ow wo r k t e rm fo r a ppl i c a t i on s i n vo l v i n g l ow ma s s q u a l i ty two p h a s e m i xt u res c a n b e ex ami n ed from the fo l l ow i n g exampl e . Fo r P h h v v t he n 800 p s i a , we ha v e , = pv f 509 . 7 B t u/ l bm g = 1 1 99 . 3 B t u/ l bm f = 3 0 . 02087 ft / l bm = 3 0 . 5691 ft / l bm g f --- J = = 800 X 1 44 X 0 . 0 2 08 7 778. 1 6 = 3 . 09 B tu / l bm 2 24 � J = BOO x 1 44 x 0. 5 6 9 1 7 78 . 1 6 = 84 . 26 B t u / 1 bm and fo r a ma s s q u a l i ty X e = 0 . 2 , t h e we i g h t ed error i nv o l ved i n u s i n g en t h a l py i n s t ead o f i n tern a l en ergy can b e e st i ma t ed a s fo l l ows E e = 0 . 8 ( 0 . 6 0 6 ) + 0 . 2 ( 7 . 02 6 ) a n d fo r an a verage ma s s q u a l i ty � = x = = 1 . 89% 0 . 1 , we have 0 . 9 ( 0 . 606 ) + 0 . 1 ( 7 . 026 ) = 1 . 2 5% . F rom t h e a bo ve exampl e , i t c a n be s ee n t h a t the e r ro r i n vo l ved i n u s i n g t h e e n t ha l py i n s t ead o f t he i n ternal en ergy t e rm fo r UTSG a pp l i c a t i on s i s l e s s t han 2% . D i v i d i n g bo t h s i d e s o f E q u a t i o n ( C . l 4 ) by A , we g e t [L Q_ dt • p n] = [G h ] z - ( G · h ] z+L . ( C . l 5) For the homo g en eo u s fl ow mod el , we h a v e (C.l6) ( C . l 7) ( C . l 8) 225 F o r the s l i p f l ow model (C.19) ( C . 20 ) (c.21 ) T h e Momen tum P r i n c i pl e ( Momen t u n Equ a t i o n ) C.3 T h e mom e n t u m equa t i o n c a n g e n e ra l l y b e stated a s fol l ows . " Ra t e o f momen t um a c c umu l a t i o n i n a c o n trol vol ume i s equ a l t o t he n e t ra t e a t w h i c h momentum fl ows i n to t h e c o n t r o l v o l ume p l u s t h e sum o f the s urface and body fo r c e s a c t i n g u po n t h e c o n trol v o l ume . 11 W h e n t h e a bo v e s ta teme n t i s a p p l i ed to the c o n t r o l v o l ume s hown i n F i g u r e C . 3 , we o b ta i n the fo l l owi n g mat h ema t i ca l e x p r e s s i o n s fo r t h e momen tum equa t i o n d A dt [ L p u ] - A [p u = - T w p 2 yw + P] 2 L - g - A[p u 2 + P] z+L p AL where - = a v e r a g e v el oc i ty o f t h e f l u i d i n t he c o n tr o l vol ume (l) = wa l l s he er s t r e s s yw = wa l l wet ted pa ramet e r = a c ce l era t i o n d u e t o gra v i ty u T p g a n d o t h er terms a re a s d e f i ned b e fo r e . ( C . 22 ) 226 z+L (p AL ) · u T w J T [P] � w z z [W · u ] 2 F i gure C . 3 C o n trol Vol ume fo r t h e A p p l i c a t i o n o f t h e Mome n t u� E � u a t i o n . 227 I n t h e c u rrent a pp l i ca t i o n , t h e mome n t um eq ua t i o n i s u s e d i n i t s stea dy s t a t e fo rm ( n o t i me de ri va t i ve ) t o ca l c u l ate t h e s e conda ry fl u i d ma s s fl ow ra t e a t the e n t ra n c e o f t h e t ube b un d l e re g i on a s de sc ri b e d i n A p pe n d i x D . AP PE N D I X D R E C I RCULAT I O N LOOP E QUAT I ON T h e ma s s fl ow r a t e of t h e s econdary fl u i d e n t e r i n g t h e t u b e b u n d l e r e g i on f ro m t h e down comer s ec t i o n ( W 1 ) i s co n s i d er e d a s a n i n l et c o n d i t i o n fo r t h e so l u t i on o f t h e ma s s a n d ene rgy ba l a nc e equ a t i on s i n t h e effe c t i ve heat exc ha n g e re g i on . b e tween w 1 The rel at ion a n d o t h e r state va r i a b l e s i n t h e UTSG mo del i s d e r i ved h e r e u s i n g t h e a s s u mp t i o n that the n et p r es s u r e dro p a l on g t h e r ec i rc u l a t i o n l oo p i s equal t o z ero du r i n g t he tra n s i en t . Thi s a s s umpt i o n mea n s t hat t h e d r i v i n g s ta t i c head due to t h e d i ffe rence i n d en s i ty b e tween t h e down comer sect i on and the t u b e b u n d l e reg i o n i s equal t o t h e to ta l dyna mi c head l o s s a l o n g t he re c i rc u l a t i o n l oo p . Tha t i s (D.l ) w h er e , 6P 6P 6P = s ta t i c pre s s u re d ro p a l o n g t h e l oo p d f = fr i c t i o n a l p r e s s ure d ro p a l o n g t h e l oo p = a c c e l erat i o n pr e s s u r e drop a l o n g the l oo p . a S i nc e the fr i c t i o n a n d a ccel era t i o n pres s u r e d ro p s a re pro po r t i o n a l to t h e s q u a r e o f t h e ma s s fl ow rate , t hen E q uat i o n ( D . l ) c a n b e wr i tten a s ( D . 2) w here C d = effec t i v e dyn am i c h ead l o s s coeffi c i en t . 228 229 Sol v i n g E q u a t i o n ( 0 . 2 ) fo r w , w e g e t 1 w L et c 1 = _1_ v"cd 1 = __ ltJJ: . d ;c:d 1 ( 0. 3) t hen w1 = c1 16 P d • (0.4) Referr i n g to F i g u re 0 . 1 , we h a ve (0 . 5) where p d = d en s i ty i n t h e down comer s ec t i on L dw L d = drum wa ter l evel = down comer l en g t h P s l = d en s i ty o f t h e s eco n d a ry fl u i d i n t he s u bcoo l ed r eg i on L51 = l en g t h o f t h e s u bcoo l ed r eg i o n p b = d en s i ty i n t h e s ec o n d a ry fl u i d i n t h e b o i l i n g r e g i o n Lb = l en g t h o f t he bo i l i n g reg i on L = effec t i ve l en g t h o f t he r i s er/ s ep a rator vol ume r p f = d en s i ty of the s econd a ry fl u i d i n t he r i s e r / s e pa r a t o r vol ume . S i n c e t he d en s i ty o f the s u bcoo l ed l i q u i d i n t h e down c omer reg i o n i s n ea r l y equal t o t he d en s i ty i n t h e s ubcool ed r eg i o n , t hen E qu a t i on ( 0 . 5 ) can b e w r i t ten a s fo l l ow s = p d ( L dw+L d - L S l ) - L b p b - L r p r 1 44 (0.6) 2 30 f S team o u t l et \.J sg r - L ,.._,. ._ ._ ..p.. - .... .... L dw r F eedwa t er i n l et I • I L b ( SFBL ) I I I I ' l I I I L d ' ( S FSL ) Fi g u re D. l I -, I I P r i ma ry o u t l et C a l c u l a t i on o f t h e D r i v i n g P r e s s u r e Head fo r t h e Re c i rcu l at i on Loo p . 2 31 S u b s t i t u t i n g from E q u a t i o n ( 0 . 6 ) i n to E q u a t i o n ( 0 . 4 ) , we g e t The d e v i a t i o n o f w 1 f rom s teady s ta t e can b e o bt a i ned from E q u a t i o n ( D . 7 ) a s fo l l ows c, o Wl 24 R � { p ( o l -o L ) - ( p l +L o p ) - L o p } Sl b b b b d r r dw ( 0 . 8) w h er e T h e d e v i a t i o n i n t he two - p ha s e d en s i ty i n t he bo i l i ng re g i o n a n d i n t h e r i s e r/ s e p a ra to r vo l ume can b e e x p r e s s e d a s ( s ee A p p e n d i x E ) ( 0. 1 0) and ( 0. 1 1 ) W h e n E q ua t i o n s ( 0 . 1 0 ) a n d ( 0 . 1 1 ) a re s u b s t i t u ted i n to E q u a t i o n ( 0.8) , we get where a a a a c l 2 3 4 � - - - - - - , pd 24R c , ( p -p b ) d 24 R c ( c L b +c 1 rL r ) 1 1b 24R c, (c l +C l ) 2b b 2 r r 24R APPE N D I X E AVERAGE DE N S I TY I N THE TWO-PHASE REG I O N A n expres s i o n for the d en s i ty i n the two - p ha s e reg i o n , i n terms of sys t em p re s s u r e and bubb l e popu l a ti o n i n the two-pha s e m i x ture , i s nec e s s a ry fo r the so l u t i on of the d e s cr i b i n g equ a t i o n s i n the two pha s e s ec o nda ry fl u i d l umps . I n the s l i p fl ow mo d el , t h e bubbl e popul a t i on i s repre sented by the vo i d fra c t i o n a def i ned by the equa t i on A = .....9. a A (E.1 ) where a A = vo i d fra c t i o n = area occupi ed by the vapor pha s e 9 A = tota l fl ow area . The den s i ty o f t h e two -pha s e mi xture i s g i ven by p < 44 ) = a P + ( 1 -a ) P f g ( E . 2) where p p P f g = two - p ha s e mi xture den s i ty = d e n s i ty o f the l i qu i d p ha s e ( wa te r ) = d e n s i ty of the vapor p ha se ( s team) . A s s umi n g that P f a nd P are l i near func t i o n s of system pre s s ure P g s ( se e Append i x A , page 206 ) d i ffe ren t i a t i ng E q ua t i o n ( E . 2 ) a n d l i near i z i ng g i v e s 2 32 2 33 d op _ 30 f do P dt - aP df - 30 [a( --a-Pf - �) �P o P + ( p f-p g ) do ]. d� ( E . 3) Negl ec t i ng t h e c ha ng e i n l i q u i d p ha s e d en s i ty w i t h p re s s u re , we have ( E .4 ) T h e per t u r ba ti o n equa t i on fo r t h e two pha s e m i x t u r e d e n s i ty can be w r i tten a s (E.5) E q u a t i o n ( E . 5 ) r e l a t e s t h e p e r t u r ba t i o n s i n i n P a nd a. P w i t h t h e pertu rba t i o n ( g) I n t he homo g e n eo u s fl ow mod el , we h a v e 4 (E.6) where p v v f = d en s i ty o f t he two p ha s e m i x t u r e = s p ec i f i c vo l ume o f l i q u i d p ha s e = s pec i f i c vol ume o f v a p o r p h a s e 9 x = ma s s q u a l i ty = ma s s fl ow n o t e o f vapor pha s e tota l ma s s fl ow r a t e D i fferen t i a t i n g E q u a t i o n ( E . 6 ) g i ve s (E.7) 2 34 where I f we n e g l e c t t h e c ha n g e i n v f wi t h p re s s u r e , t h e p e r t u rba t i on equa t i on for the two p ha s e m i x t u r e d en s i ty c a n b e wri tten a s op ( E .B) = I n t h e bo i l i n g s ec o nda ry fl u i d l ump , we h a v e x = x = X e 2 and E q u a t i on ( E . 8 ) becomes (E.9) E qu a t i on ( E . 9 ) c a n b e w r i tten i n t h e s i mpl e form ( E . l O) where c lb = 3V - -X ( v +x v ) fg f fg 3P 2 \1 a nd Cz b = -vf g 2 ( v +x v ) f f9 2 s s I n the r i s e r/ separa to r 1 ump x = x e a n d E q u a t i o n ( E . S ) be come s (Eal l ) 2 35 E q u a t i on ( E . l l ) can b e wr i t ten i n the s i mp l e fo rm op r where c -x lr = a nd c ( v +x v ) f e fg -v 2r = e fg ( v +x e v g ) f f = c 1Y a vf 2 2 oP + c2 r aP ox e g ss ss W h en u s i n g t he a bo v e ex pres s i o n s , i t i s u n d e r s to o d t h a t t h e u n perturbed pa ramet e r s a re ca l c u l a t ed a t t h e steady s t a t e cond i t i o n s corre s po n d i n g t o t h e system pres s ure , e v e n when t h e s u b s c r i pt ( s s . ) i s n o t s hown i n t h e expre s s i o n fo r t h e s e p a rame ters . A P P E ND I X F S UMMARY O F DYNAM I C RE S PONSE RESULTS I n C ha pter I V , p a g e 1 4 1 , t h e s t e p r e s po n s e o f t h e fo u r U TSG dyn am i c m o d e l s to a s t eam va l ve perturba t i o n wa s p r e s e n ted for mod e l s compa r i son . I n t h i s a pp e n d i x , a s umma ry o f t h e dynami c r e s po n s e o f the fou r mod e l s to a l l a n t i c i pa t ed pertu rba t i on s i s pre s e n t ed fo r f u t u r e referen c e . T h e fo u r mo del s a re d e s i g n a t ed a s fo l l ows : Mod e l A : S i mpl i fi ed mod e l Mo d e l B : F i r s t i n term ed i a t e mo d e l Mod e l C : S e c o n d i n termed i a te mod e l Mod e l D : D e ta i l ed mo del . T h e i n p u t p e r tu rba t i o n s a re l. P r i ma ry i n l e t tempera t u r e pertu rba t i o n 2, Fe edwa ter tempe ra t u r e pertu rba t i o n 3. S t e am va l ve p e r t u rba t i o n . Tab l e F . l g i ve s t h e c a s e i de n t i fi cat i on s a n d F i g u re s F . l t h ro u g h F . l 2 show t h e r e s u l t s o f t h e dynami c re s po n s e fo r these c a s e s . 2 36 237 TAB L E F . I S UMMARY O F DYNAM I C RESPONSE RESULTS Ca s e No . Mode l P e rt u r ba t i o n s F i gu r e A-1 A 1 F- 1 A-2 A 2 F 2 A- 3 A 3 F-3 B-1 B B-2 B 2 F- 5 B-3 B 3 F -6 C-1 c C-2 c 2 F-8 C-3 c 3 F-9 D- 1 0 1 F-1 0 0-2 0 2 F-1 1 D-3 0 3 F-1 2 - F -4 F- 7 238 0 0 --- ·-- > (f) \C) S t e am p r e s s ure P 0 6= 35 . 884 s 0 0· �------r--.--�---. 0 . 00 30 . 00 60 . 00 90 . 00 1 20 C (S .T_ I_ M_ E_ _E __J ___ _ _ 0 0 . 00 6= 6 . 226 ru ::l'· > (f) \C) 0 0 T u b e meta l te�pe ra t u r e T 4---------�------�--------�------� en . o o ' 3 o . oo 60 . oo T I ME ( 5ECJ 9o . oo 1 20 . oo ·------ > (f) \C) 0 0 6= 7 . 498 P r i ma ry t empe r a t u r e T p �--------�-------r--------�-------. � . 00 · m Fi g u r e F . l 30 . 00 60 . 00 T I ME (SEC) 90 . 00 S t e p Re s pon s e fo r C a s e A . l . 1 20 . 00 239 0 0 en :::1'· ��v S t e am · pre s s ure P I 9J . 0 0 T I ME o..O 0 0 ·� �� ---- 0 :::1' . ..-. a o..O I 1 20 . 00 (5ECJ �:::. = 0 . 6 s 0 T ube metal tempera t u re T 9J . 0 0 > (J) 90 . 00 ------:---- 0 If) ru 0· > (f) I I 60 . 00 30 . 0 0 s �-- ---- 30 . 00 T I ME ----�------� -- 60 . 00 1 20 . 00 (5ECJ �:::. = 0 . 4 3 1 P r i ma ry tempe ra t u re T p 0 0 T I ME Fi g u r e F . 2 90 . 00 ------ 30 . 00 m 60 . 00 (5ECJ S t e p Re s pon s e fo r Ca s e A . 2 . 90 . 00 1 20 . 00 2 40 0 0 CD 0. > en 0 ...0 0 S team p re s s ure P s � -�-----=;::====::::;:==:::===; .6 = 38 4 1 8 90 . oo 3 0 . oo 60. oo 1 20 . oo 'o . o o . - T I ME . (5ECJ 0 0 (\J __.I > en ...0 0 0 . T u b e meta l tempe ra t u r e T r.1 ------ .6 = � 4-------�--�--� 'o . oo 30 . 00 T I ME 60 . 00 90 . 00 -4 . 38 4 1 20 . 00 (5EC1 0 0 _. I > ([1 P r i ma ry t er.1re ra t u r e T P ...o g ��------�====�==��=� .6 = ' o . oo 3o . oo T I ME F i g ure f . 3 5o . oo ( 5 ECJ S t e p Re s po n s e fo r Ca s e A . 3 . 9o . oo 1 2o . oo -2 . 9 0 6 24 1 ----------- £:,. = 6 . 7 7 6 g/ (r) � > T u b e met a l tempe ra t u re T ., �� "" 9J�'"��----� . OO . ml --� . ----� � --�, 3U . OO T I ME 60 . 00 (5ECJ 9 0 . 00 1 20 . 00 _______ 0 ::J �::,. = 7 . 3 6 5 ru Ln· > tJ) <.0 P r i ma ry tempe ra t u re T 0 0 p2 · �--------�------�---------T--------� '=b . O O > c.n <.0 30 . 00 T I ME 60 . UO (5ECJ 9 0 . UO 1 20 . U O �----- £:,. = 0 0 P r i �a ry tempera t u re T Pl · �--------�------�--------�--------� CU . o o 3o . oo T I ME F i g u re F . 4 5o . oo (5ECJ 9o . oo S te p R e s po n s e fo r Ca s e B . l . 1 2o . oo 8 . 400 242 0 0 o Ln :::r > (f) ..0 ---- ---- S team p re s s u re P 5 0 0 9J . 0 0 £:.,. = 3 7 . 7 2 0 30 . 00 T I ME 60 . 00 (5ECJ 90 . 00 1 20 . 00 ------- £:.,. = > (f) 1.0 T u b e met a l tempera t u r e T 0 0 m2 -·� ---.--------�----� 9J . 0 0 -----.---30 . 00 60 . 00 90. 00 1 20 . 0 0 T I ME F i g u re F . 4 ( Co n t i n ue d ) . (SECJ 6. 315 243 0 ::1' en 0· > ()) ...0 T ub e met a l tempe rat ure T 0 0 ml " 4-------�--�--� 9:J. 0 0 0 ::1' (\j 0" > if) ...0 0 Cl 30 . 00 T I ME 60 . 00 (5ECJ 90 . 00 1 20 . 00 ------ P r i ma ry tempe ra t u r e T p2 �:::. = 0 . 4 s 3 ·· �------�--� 9J . 0 0 0 ru ...0 0 0 9J . 0 0 F i gure F . 5 30 . 00 T I ME 60 . 00 (5ECJ 9 0 . 00 1 20 . 00 ------- P r i ma ry tempera t u re T 3 0 . 00 T t ME 60 . 00 (5EC1 90 . 00 S t e p Re s po n s e fo r Ca s e 8 .2 . �:::. = Pl 1 20 . 00 0 . 275 244 0 0 Ln ::1'" > en !..() Steam p re s s u re P 5 0 0 � . 00 3 0 . 00 T 60 . 00 f ME :::r 0• !..() 0 0 (SECJ ------- � ==- 0 =r > if) 1 20 . 00 90 . JO T u b e me ta l tempera t u re T 00 60 . 00 90 . 00 m2 ·.�------.------.------�------- 9.1 . Fi g ure F . 5 30 . 00 T T ME ( Co n t i n ue d ) . tSECJ 1 20 . 00 0 . 6 34 245 a a (T) a' > (f) T u be meta l t empera t u r e T 1.0 a a ml � �----��====�==� � = - 3 . 7 4 2 ' o . oo 3o . oo 6o . oo T I ME 9o . oo 1 2o . oo (SECJ 0 a (\] a' > (f) Pr i ma ry temp era t u re T 1.0 0 a P2 ------- � = - 3 . 0 5 6 � �------�--� ' o . oo 30 . 00 60 . 00 T I ME 1 20 . 00 9 0 . 00 (SECJ a a > (f) 1.0 a 0 P r i ma ry tempera t u r e T Pl N +-------.--.--�--, ' o . oo 30 . oo T I ME F i g u re F . 6 6o . oo 90 . oo rsECJ S t e p Re s po n s e fo r Ca s e 8 . 3. 6= 1 2o . oo - 1 . 855 246 0 0 l.[) 0" > (jJ o.D 0 0 Steam pre s s ure ------ 6 = - 3 6 � �------�--� ' o . oo 3o . oo 6o . oo 9o . oo 1 2o . o o 0 T I ME ::1' > (jJ P5 . 256 (5ECJ 0 0 ....... I o.D 0 0 T ube meta l t empera t u r e T 2 f'1 ------- 6 = m �------.---��--�--� ' o . oo 30 . 00 T I ME Fi g ure F . 6 ( Cont i n ued ) . 60 . 00 f5ECJ 90. 00 1 20 . 00 -4 . 277 247 ------------- � = -------- �� � �g-�J_----�,----�,----�,----�1 _ u Q_ 11.0 1.0 . . 9b . o o 3o . oo T I ME 5o. oo (5ECJ . 9o . oo 0 0 ml 1 20 . 0 0 ------ �= 7 . 578 li) . p r i ma ry t empe ra t u re T 0 0 p2 " +-------��------�--------�------� 9b . 0 0 a_ a_ 1- t u b e met a l tempera t u re T 7 . 032 0 0 co 30 . 00 T I ME 60 . 00 (5ECJ 90 . 00 1 20 . 00 ------- 0 0 p r i ma ry tempera t u re T Pl " +-------��------�--------�------� en . o o Fi gure F . 7 30 . 00 T I ME 60 . 00 (5ECJ 90 . 00 S t e p Res pon s e fo r Ca s e C . l . �= 1 20 . CO 8 . 530 248 � ( S FE H E L ) e x i t q u a l i ty ��_j{_ - --,----,--.,---- � �. -,--- 00 r (f) CL ...0 0 0 . 0 =.t' I 30 . 00 I T I ME ...0 I 9 0 . 00 I 1 20 . 00 (5ECJ �------ 0 0 s t e a m p r e s s u re P 3 0 . 00 T I ME u L:: r- 60 . 00 60. 00 tn 9 0 . 00 (5ECl " 4-------�--�--. 00 F i g u re F . ? 30 . 00 T l ME ( Co n t i n u ed ) . 145 1 20 . 0 0 t ub e metal t empera t u re T 0 0 41 . s �-----:---- b. = 0 0 . �. b. = 60 . 00 (5ECJ 90 . 00 m2 1 20 . 0 0 6 . 608 249 0 0 __ __ 0 1.0 0 0 downcomer tempera t u re T 30. 00 60 . 00 3 . 889 d 90. 00 1 20 . 00 (SECJ T I ME 3: 0 £;;. = 0 0 ::r I1.0 0 0 - �� 9J . o o 3: 0 _j � 3 o . oo ---- drum wa t e r tempe rat ure T ------.--------. -. 1 2o . oo 9o . oo 6o . oo ---- T I ME dw -- (SECJ 0 0 0 drum wa t e r l e vel L 1.0 co dw �---- £;:, = 0 4-----�--�---, ' 1 20 . 0 0 9 o . oo 6o . oo 3o . oo o . oo c: T I ME F i g u re F . 7 ( Co n t i n ue d ) . (SECJ 0 . 073 250 (L 0 :::l' /--- 0 . ......- 1.-L- ..0 �= t u be meta l tempera t ure T 0 0 CU . o o . 3 0 . 00 T I ME 60 . 00 CSECl 90 . 00 Oe 5l3 ml 1 20 . 00 ------ � = ..0 p r i ma ry tempe ra t u re T 0 0 0.419 p2 ·��------r-------�--------�-------, CU . ocr 3 o. au T I ME 6o . ao (SECJ 9o . oo 1 2o. oo ------ 0 C'\1 CL O (L I. p r i ma ry tempe ra t ure T 30. 00 T I ME F i g u re F . 8 60 . 00 (SEC) 90 . 00 S t e p Re s po n s e for Ca s e C . 2 . �= Pl 1 20 . 00 0 . 255 251 N I o6 . ....... ( S FE H E L ) e x i t q ua l i ty I I 6 0' . 00 3 0 . 00 (SECJ T I ME I I 1 20. 00 9 0' . QQ 0 a . !- ('") en (L steam p r e s s u re P ...o a a . s � �------�--� • o . oo u ::E.: 1..0 0 ::1' 6 0 . 0D 3 0 . 00 T I ME (5ECJ 9 0 . 00 1 2 0. 00 ------�- !::. = 0 . 587 0 t ub e meta l t empera t u re T 0 0 m2 ·�L-----�---------.--------.--------. 1 20 . 00 90 . 00 60 . 00 30. 00 � . 00 T I ME Fi gure F . B ( Co n t i n ue d ) . (SEC) 252 ----- 0 0 0 t.0 . C'J dow n c ome r tempera t u re T 2 . 383 d 0 b · �------��------�--------�------� � . 00 3 G . OO T I ME 0 0 0 t- 60. 00 (5ECJ 8 0 . 00 1 20 . 00 ----- . 3:: N ..0 b. = d rum wa t e r tempera t u re T a 0 b. = 2 . 384 dw ' 4---------�------�--------�------� � . 00 30 . 00 T I ME 60 . 00 C5ECJ 80. 1 20 . 00 00 I og .--. . ): 0 � co d r um wa t e r l e vel L dw :3 � -t----�---�====;:===:=:; � = \.(') •a . oo F i g u re F . 8 30 . oo T I ME ( Con t i n ue d ) . 60 . oo (SECJ 80 . oo 1 20 . oo -0 . 007 253 CL L 0 0 0 . t ub e met a l tempera t u re T ml =:[ �-----,-----,-----� �= 'o . oo 0 0 u 30 . oo T I ME oo (SEC) 50 . 90 . oo 1 20 . oo ...... CL 1- p r i ma ry tempe ra t u re T p 2 \.0 0 0 ------- � = . � �------�--� 'a . CL CL 1- -3 . 244 oo 3 D . oo T I ME 50 . oo (SECJ 90 . oo -2 . 65 1 1 20 . oo 0 0 0 . \.0 0 0 p r i ma ry tempera t u re T Pl ------ .6 = N +-------�--�---r---� . 'o . oo F i g ure F . 9 3o . oo 6 o . oo T I ME ( S E C J 9 o . oo S t e p Re s po n s e fo r Ca se C . 3 . -1 1 20 . 00 . 6 09 2 54 I co o0 ----- 6 = � �� -.o r (f1 CL ( S FE H EL ) e x i t qual i ty -'----r------,.---_ ---r----rI I I I 9J . o o 0 0 3o . oo T I ME 0 6o . oo (SECJ so . oo 1 2o . oo . 0 "" 0 0 . s team p re s s u re P s ------- � = � +-------��--�--� 'o . oo 3o . oo T I ME u 2: r- 0 . 009 5o . oo 9 o . oo (SECJ -3 1 . 526 1 2o . oo 0 0 0 . t ube met a l tempe ra t u re T "" 0 0 m 2 �l----�====�==� ' o . oo 3o . oo T I ME F i g ure F . 9 ( Co n t i n ue d ) . 5o . oo ( SEC) 9o . oo 6= 1 2 0 . 00 -3 . 708 255 0 0 0 1\1::) down come r t empe rature T d 0 0 ------ .6 = � �------�---.--� gc . oo so . oo 30 . oo 1 20 . oo 10 . oo T I ME -4 . 362 (5EC1 0 0 .:::s::: 0 1- drum wate r t em pe rat u re T \1::) 0 0 ------ 6 = . � 4-------�---.--�--�. 3o . oo 1o . oo .:::s::: 0 _j o.O dw 0 ::::r a T I ME 5o . oo ( SECJ 9o . oo 1 2o . oo ----- 0 a drum wa te r l ev e l L dw ' 4---------r-------�--------�--------, 9J . o o F i g ure F . 9 3o . oo T I ME ( Co n t i n u e d ) . 6o . oo ( SECJ L� s o . n rJ 1 20 . 00 -4 . 363 0 . 352 256 CL 1- ..0 �= 8 . 3 7 7 ------- p r i ma ry tempera t u re T Z P 0 0 · �--------�------�--------�------� 't 0 0 '. 30 . 00 60 . 00 T I ME CSECJ 90 . 00 1 20 0 0 --- -- ..0 �= 9 . 4 3 8 p r i ma ry temperat ure T P l 0 0 "4---------�------�--------�------� �. 00 30 . 00 6 0 . 00 T I ME (SECJ 90 . 00 1 20 . 00 ------ ..0 . 0 0 �= 9 . 9 9 7 i n l e t p l e n um tempe ra t u r e T . P1 ·�--------�------�--------�------� 9b . o o 3o . oo 6o . oo T I ME (SECJ 9o . oo F i g u re F . l O Ste p Re s pon s e fo r Ca s e 0 . 1 . 1 2o . oo 257 �------ !:::. = 7 . 3 0 7 o u t l e t p l e n um t emperat u re T I 3 0 . 00 T I ME 0 0 I 60. 0 0 I 90 . 00 Po I 1 2 0 . (}0 CSECJ �---- !:::. = 7 . 3 08 ::r · a: tf) a_ t"" p r i ma ry t empera t u re 0 0 T p4 ··4L------�--.--. C:U . oo 3o . oo T I ME 6o. oo 9 o . ao 1 2 o .. o o CSECJ ------- !:::. = 0 0 (Y) " a: lf) Q_ t"" pr i ma ry t empera t u re Tp 3 0 0 ·�--------.-------�--------�------� 9J . o o 3 0 . 00 T I ME F i g u re F . l O ( Co n t i n u e d ) . 60 . 00 (SECJ 90 . 00 1 20 . 0 0 7 . 579 258 �------ 0 0 \.0 t ub e met a 1 t empera t u re r 0 0 30 . 00 60 . 00 T I ME N :L 1\,() . l.f) 0 a 6 . 425 m3 9 0 . 00 1 20 . 00 C S ECJ -----:-- 0 0 b. = t ube meta 1 tempe ra t u r e T m n= 6 . 780 2 ··4-------�--------�-------.--------. t:tJ . o o a 0 3o . o o T I ME 6o . oo (SECJ 9o . oo 1 2o . o o ------ n = 7 . 554 . lJ) :L 1\,() t ub e me t a 1 t empera t 1,1 re T m1 0 0 ' 4-------�--------�------�--------. '1J . 0 0 F i g u re F . 1 0 30 . 00 60 . 00 T I ME ( Con t i n ue d ) . (SECJ 9 0 . 00 1 20 . 00 259 0 ('I') ------- � = ro 0· :::> c.n _j s ubcoo l e d l en gth L 0 . 256 51 . 0 �------�--� 'a . o o 30 . oo T I ME 60 . oo (SECJ 90 . oo 1 20 . oo 0 0 > 0" w _j 0 down comer l evel L d _______ 1.0 0 co . 0 �------�--, 'o . o o :::14 ::L t1.0 0 0 3o . oo T I ME so. oo (SECJ so oo . .6. = 1 2o . oo ------- .6. = :=1' . t ub e meta l tempe ra t u re T �4 0 0 30. 00 T I ME F i g ure F. l O ( Co n t i n ued ) . 60 . 0 0 (SECJ 9 0 . 00 -0 . 5 1 1 · 1 20 . 00 6 230 .. 260 0 0 L: ' �------� w ::::r ;0 1.0 !::, = 3 . 4 2 3 downcomer tempera t u re 0 a -��----��------�------�------� 30 . 00 � . 00 60 . 00 T I ME __, a 90 . 00 1 20 . 00 (SEC} ------ b,. = bo i l i n g s ec t i on e x i t q ua l i ty X 0.012 e 1.0 0 0 . 0 �------�--� •o . oo 3o . oo T I ME so . oo 9o . oo 1 2 0 . 00 CS E C J 0 0 t (f) a_ 1.0 . a =:1' ------- b,. = 3 7 . 9 1 7 steam pre s s u re P s a 0 ·�------�--------�------�------� 9J . oo 3 o . oo T I ME F i gure F. l O ( Co n t i n ue d ) . so . oo (5ECJ 9 0 . oo 1 20 . 00 261 0 ('!") �------ (\J " ce o CL t- �= 0. 310 p r i ma ry tempera t ure T PZ ..0 0 . 0 +-------��---r--�--� ' o . oo so . oo 3o . oo 9 o . oo 1 20 . 0 0 (SECJ T I ME ------- �= 0 . 5 2 3 pr i ma ry tempe ra t u re T l P ..0 0 - . 0 +-------.---�--�---, 1 0 . 00 60 . 00 30 . 00 T IME 90 . 00 1 20 . 0 0 (SECJ 0 0 ..o 0 i n l et pl e n um t empera t u r e T Pi �+-------�------�------�----� � = 0 . 0 0 0 1 20 . 00 90 . 00 60 . 00 30 . 00 � . 00 T I ME (SECJ F i g u re F . l l S t e p Re s pon s e fo r Ca s e D . 2 o 262 �----- !::. = 0 ::r � 0· _J o_ 1..0 o u t l e t p l e n um t empe ra t u re T _ _ ___ a: o_ 1- Po 0 0 · �--------r--------r--------�-------� 30 . 00 60 . 00 90 . 00 1 20 . 00 '1J . 0 0 T I M E�(_ S_ E_ CJ 0 ('II ::r a 0 . 534 L::. = . 4 O 53 p r i ma ry tempera t u r e T p 4 ..0 0 . 0 �------�--� - • o . oo 3o . oo so . oo T I ME 9o . oo 1 2o . oo (SECJ ------ !::. = p r i ma ry t empe ra t u r e T p 3 · ���----�------�--------�------� � . 00 F i g u re F . l l 3 0 . 00 60 . 00 T J ME ( Co n t i n u ed ) . (SECJ 9 0 . 00 1 20 . 00 0 . 28 1 263 ______ .6 = ('t") t\C) 0 . 572 a . t u b e met a l tempe ra t u re T a a m3 1 20 . 00 - �L-----�--------.--------.--------. '13 . 0 0 60 . 00 30 . 00 T I ME 9 0 . 00 (SECJ ______ a ::r t ub e meta l t empera t u r e T .6 = 0 . 585 m2 . a �------�--� •o . oo 3o . o o 6o . oo T I ME 9 o . oo 1 2o . oo (SECJ a co a . \C) t u b e met a l temperat ure T ml a a · �------�--------�------�------� � . 00 30 . 00 60 . 00 T I ME F i gure F . l l ( Co n t i n ue d ) . (SECJ 90 . 00 1 20 . 00 264 0 0 co a ::J �: I � I 0. 00 s ubcoo l e d l en gt h L 1 5 I 30 . 00 6 0 . 00 T I ME 90 . 00 0 .6 = -0 . 38 1 1 20 . 00 I (SECJ ----- a ('f) >a w _J I downcomer l eve l L .6 = 0 . 400 d . 0 �-------.--�--. • o . oo 3o . oo ..0 9o. oo 1 2o . oo CSECJ ------ .6 = 0 (X) ::r :L 1- 6o . oo T I ME . 0 t ub e met a l t empe ra t u re T 0 . 994 m4 a 0 · �------�--------�------�------� � . 00 30 . 0 0 60 . 0 0 T I ME Fi g u re F . l l ( Co n t i n ue d ) . (SECJ 90 . 00 1 20 . 0 0 265 ------- D= 0 0 z: • 2 . 693 W C\J 0 ..0 downcomer t emperat ure 0 0 · �----�-,--------.--------.--------. � . 00 30 . 00 60. 00 T I ME 90. 00 1 20 . 00 £SECl ______ a:::l N wo b= bo i l i n g s e ct i on e x i t q ua l i ty X >< a �---�--� 30 . oo 60 . oo so. oo 1 2 0 . oo \.() ' a . o o T I ME t (f) Q_ ..0 . ::r steam p re s s u re P s 0 0 · ��----�--------�------�------� � . 00 30 . 00 60 . 00 T IME F i g u re F . l l e CSECJ ------ D= 0 0 -0 . 00 1 ( Con t i n u ed ) . (SEC) 90 . 00 1 20 . 00 5 . 556 266 0 0 C\.1 0' 0: o._ 11.0 p r i ma ry te mpera t u re T 0 c::: P2 �------ �= - 1 848 1 20 . 0 0 N 4-------r--r--�--� ' o . oo 3 o . oo T I ME 6o. oo s o . oo (SEC) pr i ma ry tempe rat ure T 1.0 0 0 Pl ------- � = ' 4---------r--------r--------�-------, � . 00 3 0 . 00 T I ME . 60 . 00 90 . 00 0 . 075 1 20 . 0 0 ( S E C) 0 0 �_J (L t1.0 0 i n l et p l en um temp e ra t u re T p; c::: -+-----.....--..- b,. = 0 0 0 0 30 . 00 6 0 . 00 9 0 . 00 1 2 0 . 00 �. 00 • T IME F i g u re F . l 2 (SECJ S t e p Re s po n se fo r C a s e 0 . 3 . 26 7 0 0 o o· _J Q_ t- o u t l e t p l en um tempe rat u re T \.0 0 0 Po -3 . 033 . � 4-------�--�--.--. 1 2o . o o so . oo 6o . oo 3 o . oo 'o . oo ------- b. = T I ME (5ECJ pr i ma ry temperat u r e T p 4 ------- b. = - 3 . � 4-------�--�--.---� 1 20 . oo 90 . oo 3 0 . oo 60 . oo •o . o o \.0 0 0 T I ME ..0 0 0 (5ECJ pr i ma ry tempe rat u re T p 3 . � �------�--� ' 30 . 00 o . oo 6 0 . 00 1 20 . 00 90 . 00 ------ b. = T I ME Fi g u re F . l 2 ( Co n t i n u ed ) . . 033 (5ECJ -3 . 075 268 0 0 (l'") l - tube met a l t empe ra t u r e T m ..0 0 0 . m �------.--r--�--� •o . o o 3 ------ b= 3 0 . 00 6 0 . 00 T I ME (SECJ 90 . 00 -4 . 286 1 20 . 0 0 0 0 ..o o o t ube me t a l t empe rature T . m2 ;�----�====�==� b= •o . oo 6o . oo 3o . o o T I ME (SEC) so . oo -3 . 740 1 2o . o o 0 0 . ..--i :L 1- 0 t ub e met a l tempe ra t u re T ..0 0 0 . ml ------- N �------��--�---. •a . oo F i g u re F . l 2 60 . oo 3 0 . oo T I ME (SEC) ( Con t i n ue d ) . 90. oo �= 1 20 . oo -1 .813 269 cn 0 C\.1 . o ::::> ' �---- � = �-�-�--------,-------�--------,-------� -0 . 266 s ubcool e d l en g t h L 1 5 1 01. o o "' · - � w _J 0 3o. oo T I ME sb . oo (SEC) 90. oo 1 2 o . oo 1 . 292 ------- � = 0 0 > ....: ..0 0 0 down comer l ev e l L d " 4-------�--------�------�------� 93 . 00 ::f4 L t- 3 0 . 00 T I ME 60 . 00 C S ECl 90 . 00 1 20 . 00 0 0 . 0 t ub e met a l t empera t u re T ..0 0 0 m4 ��------��====�==� � = 'o . oo 3 o . oo 6o . oo so . oo 1 2o . oo Fi gure F . l 2 - T IME ( Con t i n ue d ) . (SECJ 3 745 . 2 70 0 0 � _.... w ' t o downcomer tempera t u re � 0 0 . - 4. . 5 7 0 ------- 6 = � �------�--� 'o . o o 30. 00 60 . 00 T IME 9 0 . 00 1 20 . 00 (SEC) 0 . 004 ------- 6 = bo i l i n g s e ct i o n e x i t q u a l i ty X co co wo >< o ;,i:J ten o._ I0 . 00 30 . 00 T IME 60 . 00 90 . 00 (5ECJ ----r--r--�--� 1 2Q • e 00 0 0 . 0 0 "" b s t eam p re s s u r e P s 6= - 3 6 � ;-------�.---�--�--� 30 . oo so. oo 'o . o o so. oo 1 20 . ao 0 T I ME Fi gure F . l 2 ( C o n t i n ued ) . (5ECJ . 2 7 4. AP P E N D I X G I NS TRUC T I O N S FOR U S I NG TH E D E TA I LED MO D E L DY NAM I C RES PONSE CQt.1 PUTE R PROGRAt1 W h en Mod e l A or B i s u sed fo r t h e dynami c r e s po n s e c a l c u l a t i o n fo r a U TS G , t he on l y computer i n pu t s n ee d ed a re t h e c o e ff i c i en t matr i c e s a n d fo rc i ng vec to r s o b ta i n ed from steam gen erato r d e s i gn a n d i n pu t data . O n c e t h e coeff i c i en t mat r i c e s a re c a l c u l a ted , t h ey ca n b e u s ed to pro v i d e t h e i n p u t t o t h e comp uter codes MATEXP ( o r S FR- 3 ( 40 39 ) ) to ca l c u l a t e t h e t i me o r frequ en cy r e s po n s e r e s p ec t i vel y . I n c a s e o f Mo de l s C a n d D , t h e c a l c u l a t i on proced u r e i s mo re com p l i ca ted d u e to t h e u s e o f the m i x ed ( d i fferen t i a l + a l gebra i c ) fo rmu l a t i o n , t he c omp uter program t ha t wa s prepa red to c a l c u l a t e t h e t i me r e s po n s e fo r Mo d e l 0 i s o u t l i n ed a n d t h e i n s t r u c t i on s fo r u s i n g i t a r e g i ven i n t h i s a p pend i x . The computer program i s a FORTRA N I V program prepa red to b e i m p l emen t ed on t h e I BM 3 6 0 Mo del 65 compu t e r . T h e prog ram con s i st s o f a ma i n rou t i n e a n d s ev er a l s u bro u t i n e s , t h e fu n c t i o n s o f w h i c h a r e d e s c r i bed bel o w . l. The �� r�A I W ro u t i n e s r e a d i n i n pu t data a nd c a l c u l a t e t he pa rameters n eeded fo r t h e st eady state c a l c u l at i on . Th ere are some bu i l t - i n data t ha t c a n be col l ec t ed i n d a ta sta temen t s fo r i mpro v i n g t he reada b i l i ty o f t he pro g ra m . 2 71 2. 2 72 T h e s ub r o u t i n e " S TlJYST" i s c a l l ed from " �1/\ I W to c a l c u l a t e t h e t em p era t u re s a n d ma s s q u a l i ty prof i l e s a l o n g t he heat tran s fe r pat h in the effec t i ve heat exc ha n g e re g i on ( core) . The s u bcoo l ed l e n g t h a n d b o u n d a ry temper a t u r e s a re pa s s ed from " S TDYST" to '' MA I N " so t ha t i t can be u s ed to ca l c u l ate the c o e f f i c i e nt mat r i c e s AONE a n d ATWO . 3. After AO N E a n d ATWO a re c a l c u l a t ed , t h e progr ar.1 proc eeds by r e ad i n g i n t he con t ro l i n pu t data u s ed for s u b ro u t i ne " PART" w h i c h ha ndl e s t h e p a rt i t i on i n g o f AO NE a n d ATI-JO to red uc e the sy stem of a l g e b ra i c pl u s d i ffere n t i a l equat i o n s i n to a s et o f p u r e d i ffere n t i a l equat i on s . After t hat , t h e fo rc i n g vecto r fo r " PU RE D I F F " i s read i n . 4. Aft er t he p u r e d i ffe ren t i a l sys t em i s obt a i n ed , s u b rou t i n e " MATE X P " i s c a l l ed to c a l c u l a t e a n d p l o t t h e t i me r e s pon s e u s i n g t h e r e d u ced A mat r i x a n d fo rc i n g vecto r . 5. T h e same procedure can b e u s ed t o ca l c u l a t e t h e f re q u ency r e s po n s e by ca l l i n g t he " S FR - 3 " pro g ra m i n s t ead o f " 11ATE X P " . G. 1 I n put Data and Fo rma t T h e fo l l ow i n g a re t he i n p u t d a ta con ta i n ed i n ea c h d a t a c a rd tog e ther w i t h t h e r ea d i n g format u s ed . 2 73 Card :lo . l ( Geometr i ca l pa rame t e r ) C o l ur,1 11 l -5 Fo rma t I5 I n put NT NT H1T TO O t I 1 6 -25 1 1 7 ( El 0 . 4 ) TMT I USHO l 1 36-45 26-35 USHT I 46-55 LSHO \ 56 - 6 5 1 66-75 l L S H T I OUHT n umber of U - t u b e s = TO O 6-1 5 t u be o u t s i d e d i ameter ( i n c h e s ) = t u b e meta l t h i c k n e s s ( i n c he s ) = USH D = s team gen erator u p p e r s he l l d i ameter ( i n c h e s ) USHT = s t eam g en erato r u p p er s he l l t h i c k n e s s ( i nc he s ) LSH D = s t eam g en e rator l ower s he l l d i amet er ( i nc h e s ) LSHT = OVHT = s t eam g e n e ra to r l ower s h e l l t h i c k n e s s ( i n c he s ) s team generator o v eral l h e i g ht* ( ft ) . C a rd No . 2. ( P r i ma ry s i d e p a ramet er s ) l -1 0 C o l umn Fo rma t \iP In put / I l l -2 0 VP l 2 l - 30 l 3l -40 B( E l 0 . 4 ) I CPl I TP I 1 4l -50 , J TPO I 5l -60 pp / Gl -70 1 7 1 -80 I TO P I PHC pr i ma ry wa ter ( r eactor coo l a n t ) ma s s fl ow ra t e i n to t he WP s t eam g en era to r ( l b/ h r ) steam gen erator pr i ma ry wa t er v o l ume ( i nc l ud i n g i n l e t 3 a n d o u t l e t pl en um s ) ( ft ) VP CPl = s p ec i f i c hea t at con sta n t pre s s u r e o f t he pr i ma ry wa t e r ( l3 t u / l b " F ) u sed * Th i s i n pu t i s re d u n d a n t . I t wa s read i n beca u s e i t may b e t h e fu t u r e to ca l c u l a t e wa t e r a n d s t eam vol ur:1es . in 2 74 TPI = p r i ma ry wa t e r i n l et t em p e r a t u r e ( ° F ) TPO = pr i ma ry wat e r o u t l et t empera t u re ( ° F ) PP p r i rna ry l oo p a verage pre s s u re ( ps i a ) = ROP = 3 a v e r a g e d en s i ty o f pr i ma ry wa t e r ( l b / f t ) PHC = pr i �a ry s i de h ea t co n te n t* ( B tu ) . C a rd No . 3 ( Se co n da ry s i de parameter s ) Col umn w P T T V 50 = STG s team fl o w ra te ( l b/ hr ) = s t eam g e n erato r pr e s s u r e ( p s i g ) = s a t u ra t i on t empera t u r e a t P = f e edwa t e r i n l et t emper a t u r e ( ° F ) SAT FW I SW 1 -1 0 STG ( °F) 3 v o l ume o f s econdary wa t e r ( ft ) i n t h e s t eam g en era to r = ( i n c l u d i n g downcomer ) v 55 R 05 1 CP 2 3 v o l u me o f s econdary s team i n t he d rum st eam v o l ume ( ft ) = = = 3 s u bcool ed s ec o n da ry wat er a v era g e d en s i ty ( l b / ft ) s pec i f i c heat o f s econ d a ry s i de s ubcool ed wa t e r ( B t u / l b ° F ) C a r d No . 4 ( He a t tran s fer coeffi c i en t s ) C o l umn 1 -1 o Fo rma t I n pu t H TA 1 I 1 1 -20 1 2 1 -30 5 ( El 0 . 4 ) HP 1 u r� 1 I 3 l -4o Hs 1 j 4 1 - 5o I HS 2 *T h i s i n p u t i s red u n da n t . I t c a n b e repl a c ed by 0 . 0 wi t hout a ffect i n g t he r e s u l t s ; it wa s i n c l u ded for po s s i b l e f u t u re u s e . 2 75 2 H TA = o v e r a l l heat tran s fer a rea o f t h e s t eam gen era t o r U - t u b e s ( ft ) 2 H P = pr i ma ry s i de f i l m h ea t t ra n s fer co eff i c i en t ( B t u / h r n o F ) 2 U M = t u b e meta l co n d u ct a n c e ( B t u / h r ft ° F ) llS HS 1 2 2 = s u b coo l ed s econ dary f i l m h ea t tran s f e r coeffi c i en t ( B t u / h r ft ° F ) 2 = bo i l i n g s e co n d a ry fi l m h ea t tra n s fer coeffi c i e n t ( B t u / hr ft ° F ) . C a rd No . 5 ( S t ea dy s t a t e th ermodyn am i c pro pert i e s ) C o l u mn 1 -1 0 Forma t I n put 1 1 1 1 -20 1 2 1 -30 6 ( El 0.4) I H FG / H G HF 1 31 - 4 0 I !vF 4 1 -50 V FG 1 51 -60 I VG H F = en thal py of s a t u ra t ed wa t e r ( Bt u / l b ) H FG = l a t e n t hea t o f v a po r i za t i o n ( B tu/ l bm) H G = en thal py· o f s a t u ra ted s team ( Bt u/ l b ) 3 V F = s pe c i f i c heat o f saturated wa ter ( ft / l b ) V FG = d i ffe r en c e b etween s pe c i f i c vo l umes fo r s a t u ra ted s t ea m and 3 wa t er ( ft / l b ) 3 V G = s p ec i fi c heat o f sa turated s t ea m ( ft / l b ) C a r d No . 6 ( The rmo dyn a m i c p ro pe rty g rad i en t s ) C o l umn 1 -1 0 Fo rma t 1 1 -2 0 DTSAT l oH F I n pu t DT 1 I = aT SAT 1 l 2 1 -30 DHFT sa t / a P ( ° F / p s i a ) 1 l D H F = a h / a P ( B t u/ l b/ ps i a ) f DHFG = ah fg / a P ( B t u / l b/ p s i a ) 31 -4 0 1 41 -50 8 ( E1 0 . 4 ) DHG l DV F 1 I 5 1 -60 DVFG 1 I 6 1 -70 DVG 1 1 7 1 -80 DROG 2 76 DHG = a h / a P ( B t u/ l b/ ps i a ) 9 3 DV F = a v / a P ( ft / l b/ p s i a ) f 3 DVFG = a v / a P ( ft / l b/ p s i a ) fg 3 DVG = a v / a P ( ft / l b / p s i a ) 9 3 DROG = a p / a P ( l b/ ft / pS i a ) g (p g = d en s i ty o f s a t u ra t e d s t eam) . C a r d s 7 throu g h 1 1 ( 5 t i tl e card s ) Fo rma t ( 1 8 A . 4 ) eac h . Card No . 1 2 C o l umn 1 -5 6-1 0 Format 15 15 I n pu t rmE D NALG U se the fo l l ow i n g i n pu t v a l u es : NRE D = 1 5 = order o f reduced ( pu r e d i fferen t i a l sys t em ) NAL G = 3 = n umber o f a l g ebra i c v a r i a b l e s i n t he m i xed mod e formul a t i on . C a rd r�o . 1 3 Col umn 1 -5 6 -1 0 1 1 -1 5 Format I5 I5 I5 I n pu t LALG ( l ) LJ.\LG ( 2 ) LALG ( 3 ) LALG ( I ) , I = 1 , 2 , • . . , NAL G i s t h e l i s t o f NAL G a l g eb ra i c v a r i a bl e s . T h e al gebra i c va r i a bl e s i n t h e c u rr en t prog ram a r e 1 6 , 1 7 , a n d 1 8 . 2 77 C a rd N o . 1 4 ( No n z ero fo rc i n g fu n c t i on el emen t s ) Co l umn l -5 6-1 5 Forma t I5 E l 0-4 I n pu t IU(J ) UX ( J ) Re peat 4 p e r c a rd I U ( J ) = row n umber o f ea c h n o n z ero compo n e n t o f t h e forc i n g fu n c t i o n vector UX ( J ) = v a l u e o f eac h n o n z ero compo n en t o f the fo r c i n g fun c t i o n vecto r . * Card No . 1 5 B l a n k ca rd to end the i n pu t o f t he non zero fo rc i n g fun ct i on el emen t s . Ca rd No . 1 6 C o l umn 1 -2 Fo rma t I2 I n pu t riE ( MATE X P con tro l pa ramet er s ) 6-7 I2 3X 3X LL l l -2 0 2 1 - 30 3 1 -4 0 4 1 -50 5 1 - GO 6 1 -6 2 Fl 0 . 0 Fl O . O Fl 0 . 0 Fl 0 . 0 Fl O. O I2 p TZERO T TnAX P L T I N C MATYES t�TEXP co n trol paramet e r s ( co n t i n ue d ) C o l umn Fo r:-1i1 � I n pu t 6 3-64 I2 I CSS 65-66 I2 J FLAG 67 -69 70 I3 Il 12 I H1AX LASTCC IlZ 7 1 - 72 73 - 74 75-80 12 F6 . 0 r c o rnR VAR N E = n u mber o f e q u a t i on s = 1 5 L L = co effi c i e n t mat r i x tag n umber, u se L L = l P = prec i s i o n o f C a n d H P - r ecommen d 1 0 - 6 or l e ss TZE RO = z ero t i me ( u s ual l y 0 . 0 ) *See S ec t i o n I I I . 7 . 5 , pa g e 1 0 5 , fo r the c a l c u l a t i o n of the fo rc i n g vecto r el emen t s . 2 78 � i me T = compu ta t i on i nterval TMAX = ma x i mum t i me P LT I NC = p r i n t i n g t i me i n t e r v a l MATY E S = c o e ffi c i e n t ma tr i x ( A) c o n t ro l fl a g = u s e p re c i o u s A a n d T 2 = re a d. n ew c o e ff i c i e n t s to a l t e r A 3 = r e a d e n t i re n ew A ( n o n z e ro val ues ) 4 = D I STRB t o c a l c u l a t e e n t i re n ew A , ( Use ICSS = i n i ti a l MAT Y E S = 3 for t h i s a p pl i cat i o n c o n d i t i o n v e c to r ( XIC ) ) fl ag = re a d i n a l l n ew n o n z ero v a l u e s 2 = r ea d n ew v a l u e s to a l t e r p r ev i o u s vecto r 3 = u se p r ev i o u s ve cto r 4 = ve c to r = 5 0 = u s e l a s t v a l ue o f X v e c t o r from p r ev i o u s run ( Current pro gram u s e s I C S S = 4 . ) J FLAG = forc i n g fu n c t i on ( Z) fl a g l t h r u 4 = same a s fo r I C S S for c o n s t a n t 5 = cal l Z D I STRB a t e a c h t i me ste p fo r va r i a b l e ( c ur r e n t program u s e s J FLAG = 3.) I H1AX = ma x i mum n umb er of t e rm s i n s e r i e s a p pro x i ma t i on o f e x p ( r ecomm e n d I TMAX = 10) LAS TCC = n o n z e ro for l a s t ca s e I l Z = row o f Z i f o n l y o n e n o n z ero , o t herw i s e = 0 ( AT ) 279 I CO NTR for i n ternal contro l o pt i o n s = 0 -1 = read n ew contro l c a r d f o r n ext c a s e = go to 2 1 2 c a l l D I STRB fo r n ew = go to 2 1 5 cal l D I STRB fo r n ew i n i t i a l c o n d i t i on s ( C u rren t p ro gram u s e s I C O NT R VAR = = A or T 0. ) ma x i mum a l l owa b l e va l ue o f l a r g e s t c o e f f i c i en t �� t r i x e l emen t *T ( Re c ommen d VAR = 1 .0) . C a rd N o . 1 7 B l a n k c a r d to end t he i n pu t data . V ITA Mo hame d Ra b i e Ahme d Al i w a s born i n Mata i , E l - i1i nya , E gypt on t·1ay 9 , 1 940 . Aft e r rece i v i n g t he B a c h e l o r o f S c i e n ce de g ree i n E l ectri c a l En g i ne e r i n g ( Powe r S e ct i o n ) i n 1 9 62 , he worke d i n t e a c h i n g E l e ct r i c a l E n g i neeri n g a n d s pe c i a l t e c h n o l o gy o f e l e ct r i c a l powe r e q u i pme n t a t t he Abba s s i a E l e c t r i c a n d E l e ct ron i c T e c h n i ca l T r a i n i n g Cen t e r i n Ca i ro , E gypt from No vembe r 1 96 2 to Feb rua ry 1 96 5 . S i nce f1a rch , 1 96 5 , he h a s wo rke d fo r t h e E gy pt i a n Atomi c E n e rgy Comm i s s i on N u c l e a r Powe r P roj e c t De pa rtme n t . I n 1 96 5 , h e mat r i cul a t e d a t Ca i ro Un i ve rs i ty a n d o b ta i ne d t h e re t h e Di pl oma o f H i gh e r S t ud i e s ( Eq u i va l en t t o a non - t h es i s M. S. de g ree ) i n Powe r S t a t i on s a n d E l e c t r i c a l Netwo rk s i n 1 96 7 . H e c a me t o t h e Un i ted S t a t e s i n J u ne 1 96 9 wh e re h e wo r k e d wi t h t h e A g r o I n d u s t r i a l Compl e x S t u dy T e a m at O a k R i dge N a t i o n a l L abo rato ry from J un e t o De cemb e r o f 1 96 9 . I n J a n ua ry 1 9 70 , h e s ta rt e d h i s s t u dy a t t h e G ra duate S c ho o l of T h e U n i vers i ty o f Tenn e s s ee o n a n I AEA Fel l ow s h i p s po n so re d by the U . S . Nat i o na l Aca demy of S c i e n ces fo r a pe r i o d o f f i fte e n mon t h s . S t a rt i n g Apr i l 1 , 1 9 71 , he h a s b e e n awarded a re s e a r c h a s s i s tan t s h i p from t he N ucl e a r E n g i ne e r i n g De pa rtme n t o f T he Un i v e r s i ty o f Tennes s e e . I n De cemb e r 1 9 7 1 , h e obta i ne d t h e M . S . degre e i n N uc l ea r E n g i n ee ri n g . I n J ul y 1 9 74 , h e wa s emp l oyed by t he Powe r Sys tems G ro u p of Comb u s t i o n E n g i ne e r i n g , I n c . He h e l d t h e po s i t i o n o f a s en i o r N S S S E n g i n e e r i n the Re actor Dynami c s S e c t i on un t i l May 1 9 76 w h e n he ret u rn e d to T h e Un i vers i ty o f Te n n e s s ee a n d obta i ne d t he Ph . D . de gree i n N uc l e a r E n g i ne e r i n g i n A u g u s t 1 9 76 . 2 80 281 Ra b i e i s m a rr i e d to t h e fo rme r Mi s s Sohe i r Moh amed 11o s t a fa Kame l o f C a i ro , E gypt a n d h a s a d a u ghter n a me d Ama n i a n d a s o n n amed Y a s e r .
© Copyright 2026 Paperzz