Non-equilibrium superconductivity in microwave resonators CooperPairs 2Δ hν Pieter de Visser Quasipar/cles SRON: Stephen Yates, Jochem Baselmans, Pascale Diener, Andrey Baryshev Delft: Teun Klapwijk, Nuria Llombart, Andrea Neto Cambridge: Tejas Guruswamy, David Goldie, Stafford Withington Moscow: Sasha Semenov, Igor Devyatov Superconductivity and Photons From light to signal CooperPairs 2Δ hν S21 [dB] Quasipar/cles δf F [Ghz] F0 Incoming photons break Cooper pairs =>quasipar/cles =>Higherresistanceandinductance =>Resonanceshi@sandgetsshallower Microwavereadout,energiesfarbelowthegap P. Day, et al., Nature 425, 817 (2003) From light to signal CooperPairs 2Δ hν Quasipar/cles Microwave:Qi,A Pairbreaking Microwave:fres,θ Nonequilibrium Absorp/on: - Cooperpairbreakingbyphotons - Microwaveabsorp/onbyquasipar/cles Fieldeffect: - Densityofstatesbroadensduetofield=>nonlinearity Removing nonequilibrium QP’s with trap/sink tricks does notworkfordetectors,wewanttocollectthem! Nonequilibrium due to absorption Injec/onrateofquasipar/clesatenergyE - Microwave - Cooper-Pairbreaking Excessquasipar/cles Microwave power dependent Phys. Rev. Lett. 106, 167004 (2011) Appl. Phys. Lett. 100, 162601 (2012) Influenceofmicrowavedissipa/onon pair-breakingresponse(1.5THz) Detector sensitivity limited by excess QPs due to microwave readout We need the microwave power, because we want to be limited by qp-fluctuations Nature Communications 5, 3130 (2014) Influenceofmicrowavedissipa/onon pair-breakingresponse(1.5THz) Not limited by stray-light Detector sensitivity limited by excess QPs due to microwave readout Nature Communications 5, 3130 (2014) Non-linearresonatorresponsecurves LowTquasipar/clecrea/on,butat higherTQienhancement Non-equilibriumf(E) Ivlev, Lisitsyn, Eliashberg, JLPT 10, 449 (1973) - Microwave absorption, gap enhancement close to Tc Chang and Scalapino, PRB 15, 2651 (1977) - kinetic equations Goldie and Withington, SuST 26, 015004 (2013) – low temperature, resonators Non-equilibriumf(E) Ivlev, Lisitsyn, Eliashberg, JLPT 10, 449 (1973) - Microwave absorption, gap enhancement close to Tc Chang and Scalapino, PRB 15, 2651 (1977) - kinetic equations Goldie and Withington, SuST 26, 015004 (2013) – low temperature, resonators Non-equilibriumf(E)–steadystate Goldie and Withington, SuST 26, 015004 (2013) Phys. Rev. Lett. 112, 047004 (2014) Examplef(E)->σ1,Qi Phys. Rev. Lett. 112, 047004 (2014) Nonequilibrium due to absorption Injec/onrateofquasipar/clesatenergyE - Microwave - Cooper-Pairbreaking ‘Efficiency’ in converting photon energy to QPs close to the gap Phonon trapping factor Guruswamy, Goldie, Withington, SuST 27, 055012 (2014) Arises because observable is mainly sensitive to quasiparticles close to gap Broadband antenna + lens Tantalum KID, energy gap at 324 GHz Absorber detector will not work, due to Zs(ω), constant power needed Neto, IEEE Trans. Antennas and Prop. 58, 2238 (2010) Neto et al. IEEE Trans. THz Sci. Tech. 4, 26 (2013) FTS response of Tantalum resonator Absorption measurement, Detector phase response (a.u.) 1 resonator is detector in FTS 0.8 0.6 0.4 4Δ 0.2 0 2Δ 200 400 600 800 Frequency (GHz) 1000 • FTS dependence (calibrated) • Antenna efficiency • Absorption superconductor • Response superconductor CPW absorption x antenna efficiency Detector phase response (a.u.) 1 0.8 0.6 Energy 0.4 gap Ta: 324 GHz 0.2 0 200 400 600 800 Frequency (GHz) 1000 Steady state f(E) Non-equilibrium quasiparticle distribution Constant power, only effect is F-dependence through f(E) Steady state f(E) QP creation efficiency Non-equilibrium quasiparticle distribution 1 0.8 0.6 0.4 0.2 Constant power, only effect is F-dependence through f(E) 0 200 400 600 800 Frequency (GHz) 1000 We measured ‘pair-breaking efficiency’ due to f(E,F) Appl. Phys. Lett. 106, 252602 (2015) • • Monochromatic pair-breaking illumination (high energy) Microwave power dependence consistent with our observations Phys. Rev. B 93, 024514 (2016) R. P. Budoyo, PhD Thesis (2015) Absorp/ondoesnotexplaineverything One level deeper Absorp/onisonlypartofthenon-equilibriumstoryofasuperconductorin anACfield. Vectorpoten/alA,pullsapartthepairinmomentumspace - Inequilibriumthetwoelectronshaveoppositemomenta:k1+k2=0. - InaDC-fieldthisbecomesk1+k2=q=>densityofstatesbroadening=> nonlinearL DC Anthore et al. PRL 90, 127001 (2003) Eom et al. Nature Phys. 8, 623-627 (2012) Densityofstatesbroadens,butgapremains‘hard’. Inductance shows an I2 non-linearity => used to model (RF!) travelling waveparametricamplifier DC Anthore et al. PRL 90, 127001 (2003) Eom et al. Nature Phys. 8, 623-627 (2012) Densityofstatesbroadens,butgapremains‘hard’. Inductance shows an I2 non-linearity => used to model (RF!) travelling waveparametricamplifier One level deeper Absorp/onisonlypartoftheinfluenceofthefieldonthesuperconductor, throughf(E). Vectorpoten/alAcos(ωt),pullsapartthepairinmomentumspace - Inequilibriumthetwoelectronshaveoppositemomenta:k1+k2=0. - InaDC-fieldthisbecomesk1+k2=q=>densityofstatesbroadening=> nonlinearL - Forfinitefrequency:k1+k2=q0cos(ωt),nowitdependsonthefrequency andfieldstrength NOTE:themomentumeffectisalsoknownasdepairingor‘pair-breaking’, butitisNOTthesameaspair-breakingduetoaphoton/phononwithE>2Δ Microwave: ‘Coherent excited states’ Semenov, Devyatov, de Visser, Klapwijk, arXiv:1603.02726 Superconducting state (density of states) changes drastically 2 differences compared to DC: Steps at multiples of hf Exponential subgap tail triggers absorption? Much richer structure than DC Effect on complex conductivity Nonlinear frequency-shift for Al resonator that is not due to f(E) effect, is quantitatively explained! But needs other type of experiments to fully explore the density of states. Semenov, Devyatov, de Visser, Klapwijk, arXiv:1603.02726 Summary Phys. Rev. Lett. 112, 047004 (2014) Nature Comm. 5, 3130 (2014) Appl. Phys. Lett. 106, 252602 (2015) arXiv:1603.02726 Current direction: move to much smaller detection volumes => nonlinear, single quasiparticle
© Copyright 2026 Paperzz