Runs Test (Wald-Wolfowitz-Test) Test for randomness ● If test value |z|<1.96, then the histogram is random with significance level 5% ● Equations for runs test (N+ is above/at median, N- below): ● Why do the z-values get that extreme? ● Problem of high bin number / runs IntRad Nbins = 2160 Nbins =20 0 Runs=1080 z=0 Runs=9 z=1 1 Runs=600 Z=-30.39 Runs=6 z=-0.5 Random distribution made with normal distribution Z-distribution for different integration radii Int Rad in Bins Mean RMS 0 -0.0108 0.98 3 -30.39 0.874 15 -38.82 0.9152 30 -42.98 0.9743 90 -42.98 0.9743 135 -43.48 0.9989 Which maps form tales at the z-distribution and are they always the same Tale defintion IntRad =0 IntRad = 3 IntRad = 15 IntRad 30 IntRad = 90 mean +- 1.5 124 maps 16.78% 2.79% 0 0 Mean +- 1 307 maps 32.247% 9.44% 3.91% 2.82% Random distribution made with two sine distribution Z-distributions for different phase shifts phase shift 0 Int Rad in Bins Mean RMS 0 0 0.984 3 -30.42 0.9408 15 -38.79 0.9151 30 -40.94 0.9678 90 -43.1 0.9781 Phase shift pi Int Rad in Bins Mean RMS 0 -41.69 0.44 3 -45.75 0.2144 15 -46.26 0.122 30 -46.36 0.058 90 -46.4 0.0054 Z-distributions for different phase shifts Phase shift pi/2 Int Rad in Bins mean RMS 0 -39.77 0.5279 3 -45.49 0.2606 15 -46.18 0.1665 30 -46.32 0.093 90 -46.4 0.02 Int Rad in Bins mean RMS 0 -1.908 1.046 3 -33.26 0.9114 15 -42.91 0.782 30 -44.65 0.6119 90 -45.74 0.4245 Phase shift 0.1 Random distribution made with one normal and one sine Z-distributions for different phase shifts phase shift 0 Int Rad in Bins Mean RMS 0 -36.72 0.6484 3 -45.07 0.307 15 -46.07 0.2047 30 -46.38 0.338 90 -46.4 0.016 Phase shift pi Int Rad in Bins Mean RMS 0 -36.8 0.616 3 -45.1 0.3096 15 -46.08 0.1943 30 -46.39 0.036 90 -46.4 0.0202 Z-distributions for different phase shifts Phase shift pi/2 Int Rad in Bins mean RMS 0 -36.79 0.656 3 -45.09 0.3076 15 -46.68 0.202 30 -46.26 0.129 90 -46.4 0.016
© Copyright 2026 Paperzz