May 2004 doc.: IEEE 802.11-04/553r0 MIMO Mode Table for 802.11n DCN 802.11-04/553r0 May 2004 Ravi Mahadevappa, [email protected] Stephan ten Brink, [email protected] Realtek Semiconductors, Irvine, CA Submission Slide 1 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 Overview • • • • • • • • • Why Different MIMO Modes Preliminaries, MIMO Modes Maximum ratio combining (MRC) „Circular Alamouti“ (CIRCAL) versus orthogonal space/time block codes (OSTBC) MIMO mode table „Circular SMX“ (CIRCSMX) Example, discussion 4x4 Conclusions Appendix, results 1x1 to 4x4 Submission Slide 2 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 Why Different MIMO Modes • We should allow both – Small/low cost terminals (moderate speed) with e.g. 2 TX-ant. (for use in handhelds, digital cameras etc.) – And high speed terminals with e.g. up to 4 TX-ant. (for use in laptop computers etc.) • Thus, there will be equipment with a variety of number of TX/RX antennas out there operating under the 802.11n-“umbrella” • Solution: Switch between MIMO modes depending on available number of TX and RX antennas of the equipment involved – Spatial multiplex (SMX): • High data rates, short range; optimal detection tends to be complex – Space time block codes (STBC), e.g. Alamouti 2x1 • Long range, lower data rates; optimal detection is simple • Should be transparent, 11a to 11n modes • From today’s perspective: Max. NT=4 TX antennas, NR=4 RX antennas reasonable (full RF chain TX, RX antennas) Submission Slide 3 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 Preliminaries, MIMO Modes • General scenario: NTxNR – Obvious: For 1xNR use MRC at receiver – For NT>NR, in particular, for NTx1: Use simple TX diversity schemes based on space/time block codes • No general construction known • 2x1: Alamouti (perfect; full diversity, “rate 1”) • Should 3x1, 4x1, full diversity, “rate 3/4”-codes be used? • For NT>NR, NR>1 – use STBC and MRC at receiver – Or, use SMX with subset of TX antennas • For NT<=NR: use SMX for high rate Submission Slide 4 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 1x1 up to 1x4 MRC 70 1x4 MRC 60 1x2 MRC • Code rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 • Modulation QPSK, 16QAM, 64QAM • Performance measure: required SNR for 10% PER • Packet length: 1000 bits • exponential decay, Trms = 60ns • For simulation: Perfect 1x1 Code Rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 64QAM Rate (Mbps) 50 40 16QAM 30 20 QPSK 10 1x3 MRC 0 -10 -5 0 5 10 15 20 25 30 SNR for 10% PER (dB) More receive antennas improve SNR (range) Submission Slide 5 – Channel estimation – Packet detection, synchronization – foff estimation – No clipping DAC/finite precision ADC – No front-end filtering Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 MIMO Mode Table (I) TX ant. RX ant. NT=1 NR=1 1x1 11a 2 1x2 11a MRC 3 1x3 11a MRC 4 1x4 11a MRC 2 3 4 Table specifies the allowed MIMO modes depending on NT, NR NT=1, simple MRC for any NR Submission Slide 6 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 TX Diversity with “Circular Alamouti” • NTx1 Space/Time Block Codes (STBC) – Orthogonal STBC (OSTBC) allow simple ML detection – For NTx1, no general construction of OSTBC known with full spatial diversity and full rate – Moreover, it can be proved that no full rate OSTBC exists with NT>2 – 2x1, Alamouti: only known OSTBC with full diversity and “rate 1” – 3x1, 4x1, full diversity, spatial “rate 3/4” codes known • We can easily build orthogonal NTx1 STBC based on the 2x1 Alamouti code with spatial “rate 1”; however, no full diversity – “circular Alamouti” 2(NT)x1 CIRCAL: • For each channel symbol, only use 2 TX antennas out of the NT available ones • Cycle through all NT!/(2! (NT-2)!) combinations (2 out of NT) • Example: NT=3, cycle period is 2.3=6 combinations; NT=4, cycle period is 2.6=12 combinations • Experiment: Compare performance of 3x1, 4x1 full diversity rate 3/4 OSTBC with 2(3)x1, 2(4)x1 rate 1 CIRCAL for MIMO-OFDM Submission Slide 7 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 2x1 Orthogonal Design (“Alamouti”) • Provides TX diversity • NT=2 TX antennas, NR=1 RX antennas • 2 channel uses, 2 symbols transmitted; thus, spatial rate 1 s1 S * s2 s2 s1* • To read as – At time 1, transmit s1 from antenna 1, s2 from antenna 2 – At time 2, transmit -s2* from antenna 1, s1* from antenna 2 – Repeat pattern with new symbols s1, s2 Submission Slide 8 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 3x1 Orthogonal Design • Provides TX diversity • NT=3 TX antennas, NR=1 RX antennas • 4 channel uses, 3 symbols transmitted; thus, spatial rate 3/4 s1 s2 * * s s 1 2 S s3* s3* 2 *2 s3* s3 2 2 Submission s3 2 s1 s1* s2 s2* 2 * * s 2 s2 s1 s1 2 Slide 9 s3 2 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 4x1 Orthogonal Design • Provides TX diversity • NT=4 TX antennas, NR=1 RX antennas • 4 channel uses, 3 symbols transmitted; thus, rate 3/4 s1 * s2 S s3* *2 s3 2 Submission s2 s3 s1* s3 s3* s1 s1* s 2 s 2* 2 2 2 s3* 2 2 s 2 s 2* s1 s1* 2 Slide 10 2 s 2 s 2* s1 s1* 2 * * s1 s1 s 2 s 2 2 s3 2 s3 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 Example: 2(3)x1 CIRCAL • • • • Based on 2x1 Alamouti (full diversity, spatial rate 1) Cycling for averaging good/bad MIMO subchannels NT=3 TX antennas, 2 used at a time, NR=1 RX antennas 6 channel uses, 6 symbols transmitted; thus, „rate 1“ s1 s * 2 s3 S * s4 0 0 Submission s2 s1* 0 0 s5 s6* 0 0 s4 * s3 s6 * s5 Slide 11 (or any other way of cycling through 2 TX antennas used at a time) Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 Example: 2(4)x1 CIRCAL • • • • Based on 2x1 Alamouti (full diversity, spatial rate 1) Cycling for averaging good/bad MIMO subchannels NT=4 TX antennas, 2 used at a time, NR=1 RX antennas 12 channel uses, 12 symbols transmitted; thus, „rate 1“ s1 s* 2 0 0 s5 * s S 6 0 0 0 0 s11 * s12 Submission s2 0 s1* 0 0 s3 0 s4* 0 s6 0 s5* s7 0 s8* 0 s9 s10 * s10 s9* 0 0 0 0 Slide 12 0 0 s4 s3* 0 0 s8 s7* 0 0 s12 * s11 (or any other way of cycling through 2 TX antennas used at a time) Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 2(NT)xNR CIRCAL • • • • • Based on 2x1 Alamouti (full diversity, spatial rate 1) Rotation for averaging good/bad MIMO subchannels NT TX antennas, nT=2 used at a time, NR RX antennas Use MRC (maximum ratio combining) for NR receive antennas Cycling through all PCIRCAL = NT!/(nT! (NT-nT)!) combinations on a per OFDM symbol basis – since two OFDM symbols per Alamouti code are used, the cycle period in OFDM symbols is 2. PCIRCAL • For better averaging in OFDM systems, TX antenna cycling can be applied over both, time index and subcarrier index Submission Slide 13 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 3x1: 2(3)x1 CIRCAL versus OSTBC 70 • Code rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 • Modulation QPSK, 16QAM, 64QAM • 3x1 STBC: „full diversity“, but (spatial) rate 3/4, rate loss • 2(3)x1 CIRCAL outperforms 3x1 STBC 3x1 60 Rate (Mbps) 50 40 2(3)x1 CIRCAL STBC “full diversity” Rate 3/4 30 – suffers no rate loss – cycling/rotating compensates some of the diversity losses 20 10 0 -5 0 5 10 SNR for 10 % PER (dB) 15 20 25 2(3)x1 CIRCAL better than 3x1 OSTBC Submission Slide 14 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 4x1: 2(4)x1 CIRCAL versus OSTBC 70 • 4x1 STBC: „full diversity“, but (spatial) rate 3/4, rate loss • 2(4)x1 CIRCAL outperforms 4x1 STBC 4x1 60 2(4)x1 CIRCAL Rate (Mbps) 50 – suffers no rate loss – cycling/rotating compensates some of the diversity losses 40 STBC “full diversity” Rate 3/4 30 • 2(NT)x1 CIRCAL better than known OSTBC • 2(NT)xNR CIRCAL by using MRC at the RX 20 10 0 -5 0 5 10 SNR for 10% PER (dB) 15 20 25 2(4)x1 CIRCAL better than 4x1 OSTBC Submission Slide 15 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 2x1, 2(3)x1, 2(4)x1 CIRCAL 70 64QAM 60 Code Rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 2(4)x1 CIRCAL 2(3)x1 CIRCAL 2x1 AL Rate (Mbps) 50 40 16QAM 30 20 QPSK 10 0 0 5 10 15 SNR for 10% PER (dB) 20 25 • 2(3)x1 CIRCAL improves over 2x1 AL by about 0.5dB • 2(4)x1 CIRCAL improves over 2x1 AL by about 1dB • Only 2 antennas used at a time, but rotated through all combinations • The antenna cycling captures more of the available diversity in the system • More transmit antennas improve diversity, even if only used in rotation with Alamouti code Gains of 2(NT)x1 CIRCAL over 2x1 AL saturate for NT=4 and more Submission Slide 16 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 MIMO Mode Table (II) TX ant. NT=1 2 3 4 NR=1 1x1 11a 2x1 AL 3x1 2(3)x1 CIRCAL 4x1 2(4)x1 CIRCAL 2 1x2 11a MRC 2x2 Low rate, 1: 2x2 ALMRC 3x2 1: 2(3)x2 CIRCAL/MRC 4x2 1: 2(4)x2 CIRCAL/MRC 3 1x3 11a MRC 2x3 1: 2x3 ALMRC 3x3 1: 2(3)x3 CIRCAL/MRC 4x3 1: 2(4)x3 CIRCAL/MRC 4 1x4 11a MRC 2x4 1: 2x4 ALMRC 3x4 1: 2(3)x4 CIRCAL/MRC 4x4 1: 2(4)x4 CIRCAL/MRC RX ant. Table specifies the allowed MIMO modes depending on NT, NR NT>=NR, low rate: Use Circular AL (CIRCAL) and MRC Submission Slide 17 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 Circular SMX • When NT>NR, we use same idea as with CIRCAL: – collect diversity by cycling through TX antennas • nT(NT) CIRCSMX: – Use nT TX antennas per channel use for SMX, out of NT>nT available antennas at transmitter – Cycle through all PCIRCSMX=NT!/(nT! (NT-nT)!) combinations on a per OFDM symbol basis – The cycle period in OFDM symbols is PCIRCSMX • For example, say we have NT=3 TX antennas, but only NR=2 RX antennas – Possible cycling for 2(3)x2 CIRCSMX: • • • • Submission at time 1, transmit from antennas 1, 2 at time 2, transmit from antennas 1, 3 at time 3, transmit from antennas 2, 3 repeat the pattern Slide 18 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 2x2 SMX, 2(3)x2, 2(4)x2 CIRCSMX 140 • Code rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 • Modulation QPSK, 16QAM, 64QAM • CIRCSMX improves TX diversity • 2(4)x2 SMX gains about 1dB over 2x2 SMX 2x2 120 2(4)x2 CIRCSMX 2(3)x2 CIRCSMX 100 Rate (Mbps) 64QAM 2x2 SMX 80 64QAM 60 2(4)x2 CIRCAL/MRC 16QAM 40 2(3)x2 CIRCAL/MRC 20 2x2 AL/MRC QPSK 0 -5 0 5 10 15 20 25 30 • CIRCAL curves given as references SNR for 10% PER (dB) For NT>NR: NR(NT)xNR CIRCSMX better than NRxNR SMX Submission Slide 19 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 MIMO Mode Table (III) TX ant. NT=1 2 3 4 NR=1 1x1 11a 2x1 AL 3x1 2(3)x1 CIRCAL 4x1 2(4)x1 CIRCAL 2 1x2 11a MRC 2x2 Low rate, 1: 2x2 ALMRC High rate, 2: 2x2 SMX 3x2 1: 2(3)x2 CIRCAL/MRC 2: 2(3)x2 CIRCSMX 4x2 1: 2(4)x2 CIRCAL/MRC 2: 2(4)x2 CIRCSMX 1x3 11a MRC 2x3 1: 2x3 ALMRC 2: 2x3 SMX 3x3 1: 2(3)x3 CIRCAL/MRC 2: 2(3)x3 CIRCSMX 3: 3x3 SMX 4x3 1: 2(4)x3 CIRCAL/MRC 2: 2(4)x3 CIRCSMX 3: 3(4)x3 CIRCSMX 2x4 1: 2x4 ALMRC 2: 2x4 SMX 3x4 1: 2(3)x4 CIRCAL/MRC 2: 2(3)x4 CIRCSMX 3: 3x4 SMX 4x4 1: 2(4)x4 CIRCAL/MRC 2: 2(4)x4 CIRCSMX 3: 3(4)x4 CIRCSMX 4: 4x4 SMX RX ant. 3 4 1x4 11a MRC Any NT, NR, high rate: SMX, or Circular SMX (CIRCSMX) Submission Slide 20 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 Example, Discussion of 4x4 300 • Code rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 • Modulation QPSK, 16QAM, 64QAM • The rate/SNR envelope includes 4x4 250 4x4 SMX Rate (Mbps) 200 – 2(4)x4 CIRCAL for lowest rates – 2(4)x4 CIRCSMX – 3(4)x4 CIRCSMX – 4x4 SMX for highest rate 3(4)x4 CIRCSMX 150 • To simplify: 100 – Omit 2(4)x4 CIRCSMX – Use 4x4 SMX for highest two rates – Use 2(4)x4 CIRCAL for lowest 2(4)x4 CIRCSMX 50 2(4)x4 CIRCAL/MRC 0 -10 -5 0 5 10 15 SNR for 10 % PER (dB) 20 25 30 35 For NT>NR: NR(NT)xNR CIRCSMX better than NRxNR SMX Submission Slide 21 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 MIMO Mode Table (IV), any NT, NR 1 2 3 ... NT 1 1x1 11a 2x1 AL 3x1 2(3)x1 CIRCAL ... NTx1 2(NT)x1 CIRCAL 2 1x2 11a MRC 2x2 Low rate, 1: 2x2 ALMRC High rate, 2: 2x2 SMX 3x2 1: 2(3)x2 CIRCAL/MRC 2: 2(3)x2 CIRCSMX ... NTx2 1: 2(NT)x2 CIRCAL/MRC 2: 2(NT)x2 CIRCSMX 3 1x3 11a MRC 2x3 1: 2x3 ALMRC 2: 2x3 SMX 3x3 1: 2(3)x3 CIRCAL/MRC 2: 2(3)x3 CIRCSMX 3: 3x3 SMX . . . . . . . . . . . . RX TX NR 1xNR 11a MRC Submission 2xNR 1: 2xNR ALMRC 2: 2xNR SMX 3xNR 1: 2(3)xNR CIRCAL/MRC 2: 2(3)xNR CIRCSMX … For NT>NR: NR: NR(NT)xNR CIRCSMX For NT<=NR: NT: NTxNR SMX Slide 22 ... NTx3 1: 2(NT)x3 CIRCAL/MRC 2: 2(NT)x3 CIRCSMX 3: 3(NT)x3 CIRCSMX . . . ... NTxNR 1: 2(NT)xNR CIRCAL/MRC 2: 2(NT)xNR CIRCSMX 3: 3(NT)xNR CIRCSMX … For NT>NR: NR: NR(NT)xNR CIRCSMX For NT<=NR: NT: NTxNR SMX Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 Conclusions • Use 2(NT)x1 CIRCAL rather than full diversity, spatial rate 3/4 STBC for NT=3, 4 • Always use all receive antennas • Not always use all transmit antennas – Only when very high rates are desired – For medium rates, it is better to use less antennas, but higher modulation/rate; to have at least one excess antenna at receiver • CIRCSMX NR(NT)xNR always better (slightly) than SMX NRxNR • For low-complexity, suboptimal MIMO detection, excess antennas pay off – For example 3x3 • for medium rate, use 2(3)x3 CIRCSMX (high rate code/modulation) rather than 3x3 SMX (medium code rate/modulation) • Only use 3x3 SMX when really high rates are desired Submission Slide 23 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 Appendix • Rate versus SNR-charts for NTxNR = 1x1 to 4x4 Submission Slide 24 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 Performance Criteria/Abbreviations • • Receiver sensitivity for 10% PER Abbreviations: – – – – – – • SEL: selection diversity at RX MRC: maximum ratio combining at RX AL/MRC: Alamouti Space/Time with MRC at RX [7,8] SMX: spatial multiplexing (i.e. MIMO mode, [4,5,6]) nT(NT) CIRCAL: “circular Alamouti”, using nT=2 antennas per channel use, out of NT>nT available antennas at transmitter, and cycling through all PCIRCAL = NT!/(nT! (NT-nT)!) combinations on a per OFDM symbol basis; since two OFDM symbols per Alamouti code are used, the cycle period in OFDM symbols is 2. PCIRCAL nT(NT) CIRCSMX: “circular SMX”, using nT transmit antennas per channel use for SMX, out of NT>nT available antennas at transmitter, and cycling through all PCIRCSMX=NT!/(nT! (NT-nT)!) combinations on a per OFDM symbol basis; the cycle period in OFDM symbols is PCIRCSMX MIMO detection used in following plots – – Submission ZF and APP post processing Note: ZF with APP post processing provides close to optimal performance for higher order modulation (increasing number of excess antennas); for small constellations (QPSK), i.e., low-rate communication, ZF/APP suffers significant performance loss; that’s the main reason why AL-type of STBC are a good choice for low-rate communication Slide 25 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 Simulation Environment/Assumptions • 802.11a PHY simulation environment, plus – – – Higher order QAM constellations Higher/lower channel code rates TX/RX diversity/MIMO OFDM • • • • ZF detection and soft post processing (shown in plots) APP and reduced APP detection Perfect channel knowledge/synchronization Idealized multipath MIMO channel – Sub-channels independent; exponential decay, Trms = 60ns – Quasi static (channel stays constant during one packet) • • Packet length: 1000 bits Perfect – – – – – Submission Channel estimation Packet detection, synchronization foff estimation No clipping DAC/finite precision ADC No front-end filtering Slide 26 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 1x1 up to 1x4 MRC • Code rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 • Modulation QPSK, 16QAM, 64QAM • More receive antennas improve SNR (range) 70 1x4 MRC 60 1x2 MRC 1x1 Code Rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 64QAM Rate (Mbps) 50 40 16QAM 30 20 QPSK 10 1x3 MRC 0 -10 -5 0 5 10 15 20 25 30 SNR for 10% PER (dB) Submission Slide 27 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 2x1 Alamouti STBC 70 • Code rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 • Modulation QPSK, 16QAM, 64QAM 2x1 AL 60 Code Rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 64QAM Rate (Mbps) 50 40 16QAM 30 20 QPSK 10 0 0 5 10 15 20 25 SNR for 10% PER (dB) Submission Slide 28 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 2x2 140 • Code rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 • Modulation QPSK, 16QAM, 64QAM • Low rate: AL/MRC • High rate: SMX 2x2 120 2x2 SMX Rate (Mbps) 100 80 60 40 2x2 AL/MRC 20 0 -5 0 5 10 15 20 25 30 SNR for 10% PER (dB) Submission Slide 29 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 2x3 140 • Code rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 • Modulation QPSK, 16QAM, 64QAM • Low rate AL/MRC • High rate SMX 2x3 120 2x3 SMX Rate (Mbps) 100 80 60 40 2x3 AL/MRC 20 0 -10 -5 0 5 10 15 20 25 SNR for 10 % PER (dB) Submission Slide 30 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 2x4 140 • Code rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 • Modulation QPSK, 16QAM, 64QAM • Low rate AL/MRC • High rate SMX • Almost all rates can be covered with SMX only 2x4 120 2x4 SMX Rate (Mbps) 100 80 60 40 2x4 AL/MRC 20 0 -10 -5 0 5 10 15 20 SNR for 10 % PER (dB) Submission Slide 31 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 3x1 70 3x1 60 Rate (Mbps) 50 40 2(3)x1 CIRCAL STBC “full diversity” Rate 3/4 30 20 10 0 -5 Submission 0 5 10 SNR for 10 % PER (dB) 15 Slide 32 20 25 • Code rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 • Modulation QPSK, 16QAM, 64QAM • 3x1 STBC: „full diversity“, but (spatial) rate 3/4, rate loss • 2(3)x1 CIRCAL outperforms 3x1 STBC (suffers no rate loss; no significant loss due to smaller diversity; circulating/rotating compensates some of the diversity losses, see next slide) Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 3x2 140 • Code rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 • Modulation QPSK, 16QAM, 64QAM • 2(3)x2 CIRCAL/MRC better for low data rates • 2(3)x2 CIRCSMX better for higher data rates (no rate loss); for low data rates: loss due to ZF/APP detection for small constellation size 3x2 120 2(3)x2 CIRCSMX Rate (Mbps) 100 80 60 40 2(3)x2 CIRCAL/MRC 20 0 -5 Submission 0 5 10 15 SNR for 10 % PER (dB) 20 Slide 33 25 30 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 3x3 200 180 • Code rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 • Modulation QPSK, 16QAM, 64QAM • 3x3 SMX only for high rate • 2(3)x3 CIRCSMX better for medium rate (easier detection since excess antenna) 3x3 3x3 SMX 160 140 Rate (Mbps) 120 100 80 2(3)x3 CIRCSMX2 60 40 20 0 -10 Submission 2(3)x3 CIRCAL/MRC -5 0 5 10 15 SNR for 10 % PER (dB) 20 Slide 34 25 30 35 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 3x4 200 180 • Code rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 • Modulation QPSK, 16QAM, 64QAM • 3x4: highest rate • 2(3)x4: medium rate • 2(3)x4 CIRCAL/MRC: lowest rate 3x4 160 3x4 SMX 140 Rate (Mbps) 120 100 80 2(3)x4 CIRCSMX 60 40 20 0 -10 Submission 2(3)x4 CIRCAL/MRC -5 0 5 10 SNR for 10 % PER (dB) 15 Slide 35 20 25 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 4x1 70 4x1 60 2(4)x1 CIRCAL Rate (Mbps) 50 40 STBC “full diverity” Rate 3/4 30 20 10 0 -5 Submission 0 5 10 SNR for 10% PER (dB) 15 Slide 36 20 25 • Code rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 • Modulation QPSK, 16QAM, 64QAM • 4x1 STBC: „full diversity“, but (spatial) rate 3/4, rate loss (as with 3x1 STBC case) • 2(4)x1 CIRCAL outperforms 4x1 STBC (suffers no rate loss; no significant loss due to smaller diversity; circulating/rotating compensates some of the diversity losses, see next slide) Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 4x2 140 • Code rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 • Modulation QPSK, 16QAM, 64QAM • 2(4)x2 CIRCAL/MRC better for low data rates 4x2 120 2(4)x2 CIRCSMX Rate (Mbps) 100 80 60 40 2(4)x2 CIRCAL/MRC 20 0 -5 Submission 0 5 10 15 SNR for 10% PER (dB) 20 Slide 37 25 30 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 4x3 200 180 3(4)x3 CIRCSMX 4x3 160 140 Rate (Mbps) 120 2(4)x3 CIRCSMX 100 80 60 40 20 0 -10 2(4)x3 CIRCAL/MRC -5 0 5 10 15 20 SNR for 10% PER (dB) Submission Slide 38 25 30 35 • Code rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 • Modulation QPSK, 16QAM, 64QAM • 2(4)x3 CIRCAL/MRC better for low data rates (hardly) • 2(4)x3 CIRCSMX better for medium data rates • 3(4)x3 CIRCSMX better for high data rates • Note for all SMX at low data rates: loss due to ZF/APP detection for small constellation size; that is why 2(4)x3 CIRCSMX better than 3(4)x3 CIRCSMX at medium data rates Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 4x4 300 • Code rates 1/4, 1/3, 1/2, 2/3, 3/4, 7/8 • Modulation QPSK, 16QAM, 64QAM • Similar situation as for 3x3 • 4x4 SMX only for highest rates 4x4 250 4x4 SMX Rate (Mbps) 200 3(4)x4 CIRCSMX 150 100 2(4)x4 CIRCSMX 50 2(4)x4 CIRCAL/MRC 0 -10 Submission -5 0 5 10 15 SNR for 10 % PER (dB) 20 Slide 39 25 30 35 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 Other Designs Considered • Linear dispersion (LD) codes [9] – – – – Very general set-up Powerful codes designed using an optimization algorithm Good performance for any NT, NR However, generally requires ML/APP detection (e.g. Sphere detection); complexity is an issue • Delay diversity – good for MIMO-OFDM since guard interval eliminates need for multi-tap channel equalizer – However, it has been shown that to obtain „full diversity“, the delay needs to be bigger than the guard interval (and, in turn, would require a multi-tap channel equalizer, counteracting the benefits of OFDM transmission) Submission Slide 40 Ravi Mahadevappa, Stephan ten Brink, Realtek May 2004 doc.: IEEE 802.11-04/553r0 Some References [1] [2] [3] [4] [5] [6] [7] [8] [9] IEEE Std 802.11a-1999, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, High-speed Physical Layer in the 5 GHz Band S. Sandhu, M. Ho, “Transmit diversity for MIMO OFDM”, IEEE 802.11-03/847r0, Nov. 2003 H. Sampath, R. Narasimhan, “Advantages and drawbacks of circular delay diversity for MIMO-OFDM”, IEEE 802.11-04/075r1 J. H. Winters, J. Salz, R. D. Gitlin, “The impact of antenna diversity on the capacity of wireless communication systems”, IEEE Trans. Commun., vol. 42, no. 2/3/4, pp. 17401751, Feb./Mar./Apr. 1994 G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas”,Bell Labs. Tech. J., vol. 1, no. 2, pp. 4159, 1996 H. Sampath, S. Talwar, J. Tellado, V. Erceg, A. Paulraj, “A fourth-generation MIMO-OFDM broadband wireless system: Design, performance, and field trial results”, IEEE Commun. Mag., pp. 143-149, Sept. 2002 S. M. Alamouti, “A simple transmit diversity technique for wireless communications”, IEEE J. on Select. Areas in Commun., vol. 16, pp. 1451-1458, Oct. 1998 V. Tarokh, H. Jafarkani, A. R. Calderbank, “Space-time block codes from orthogonal designs”, IEEE Trans. Inform. Theory, vol. 45, pp. 1456-1467, July 1999 B. Hassibi, B. M. Hochwald, “High-rate codes that are linear in space and time,” IEEE Transactions on Information Theory, July 2002. Submission Slide 41 Ravi Mahadevappa, Stephan ten Brink, Realtek
© Copyright 2026 Paperzz