Correlation 1 Correlation In statistics and probability theory

Correlation
!
!
"
"
#$ %
!
&
"
!
&
!
!
'
#$
(
$
"
(
)
%
(
(
'
%
*
'
1
Correlation
2
+
'
(
,
$"
%"
"
"
•
-
.
.
/
/
•
.
0
.
1
.
2
.
.
&
.
(
' 3
4
&
&
5
&
4& 1
&
'
'6
6
6 .
6
•
.
7
7
•
!
"
8
# $99
9
!
# "$99
: $99 +
'
"
;
""
: $99""
Correlation
5
!
$<==
.
"
"
5
B9 >
B9 $ 9 $
9>
C
B9 @
B9 > 9 >
9@
D
B$9
B9 @ 9 @
$9
9<
"
(
$
-
.
%
>
?
.
@
A
.
*
'
6
7
7
"
3
Correlation
7
E
7
•
!
•
!
•
3
•
+
5
+3 F' 5
(
F.
(
.
F.
(
'
'
!
+
+
+ "
$
#
G
!
%
!
%
&
'
(
)
*
+,
+,
-
*
.
)
$
'
'
+,
/(
0'
/*
+)
(
(
-
/'
0+
/'
(
+
)
*
,
,
,
,
,
*
.
0'
/+
/'
(
+
4
Correlation
+,
)
0(
/'
/*
+)
1
5
+
2
'
.
#9 9
.
+
+
"$9
:$9
"
'
"
#
'5
!/ '
3 94
5,
+,
&
&
E
# " (
C
%@H
# 9 %@
&.
+
&
# 9 @9
+#$9
.
.
1
"
9 9@
"
- =
@H
"
"
7
3 +4
*)
# $I>
%
$=I
5
#9
*
"