Business Analysis II Mat 211 Test 1 Review: Do not forget to do all homework problems before you try the following problems: Chapter: Function of several variables Function notation: 1. Given f ( x, y ) x 2 y , find f (0,1), f (2,1), f (2, 1), f (a, b), f (a h, b) f (a, b) 2. Given f ( x, y ) 2 x 2 y , find f (0,1), f (2,1), f (2, 1), f (a, b), f (a h, b) f (a, b) 3. Given f ( x, y ) x 2 y , find f (1/ x,1/ y ), F ( x, y ) f ( x h, y h) f ( x. y ), F ( x, y ) / h 4. Given f ( x, y) 10 x 3 y , x 0, y 0. Find f (9, 27), f (2 x, 2 y ) Answer: 1. 2, 4, 0, a 2b, h 3. 1 2 , 3h, 3 x y 4. 90, 25/ 6 f ( x, y) Domain: Plot the domain: 5. Determine the domain of z x 2 y 2 Answer: x 2 y 2 0 6. Determine the domain of z x 2 y 2 36 x2 y 2 x2 y 2 7. Determine the domain of z Answer: x 2 y 2 0 8. Determine the domain of z x 2 y 2 25 36 x 2 y 2 1 9. Determine the domain of z x 2 y 2 25 36 x 2 y 2 Answer: 25 x 2 y 2 36 10. Determine the domain of z x 2 y 2 36 x y x 2 y 2 36 x y 11. Determine the domain of z 12. Determine the domain of z 13. Determine the domain of z 3 Answer: x 2 y 2 36, x y x 2 y 2 36 x y x 2 y 2 36 x y Answer: 36 x 2 y 2 , x y 14. Determine the domain of z 7 x 2 y 2 36 x y 15. Determine the domain of z 7 x 2 y 2 36 x 2y x y Answer: x y Answer: x y Level curves: Definition: If g ( x, y ) c is a level curve of z f ( x, y ) then g ( x, y ) c will make z f ( x, y ) a constant. 16. Show that x 2 y 2 c is a level curve of f ( x, y) e x 2 y2 x4 2x2 y 2 y 4 . Solution: Given x 2 y 2 c , we have f ( x, y) e x y x 4 2 x 2 y 2 y 4 e c ( x 2 y 2 ) 2 e c c 2 which is a constant. Therefore x 2 y 2 c is a level curve of f ( x, y ) at a distance e c c 2 . 2 2 6. Draw the graphs of the following functions in 3D space and draw atleast 3 level curves in each. a) z f ( x, y ) 12 3x 4 y b) z f ( x, y ) 9 x 2 y 2 c) z f ( x, y ) 9 x 2 y 2 Answer: a) a plane b) Half of a sphere below the xy plane, z is negative c) Half of a sphere above the xy plane, z is positive 7. Draw the hyperbolic paraboloid z x 2 y 2 (check the graph in your text book, chapter 15, page# 1089) Application: 8. Show that the function z f ( x, y) 2 x 2 y 2 4 x 4 y 3 has a maximum. Find the maximum. Solution: f x 4 x 4 0 x 1 and f y 2 y 4 0 y 2 , the stationary point is (1, 2). Moreover f xx 4 0 and f yy 2 0 with f xx f yy ( f xy ) 2 8 0 , we have maximum at (1, 2). 9. For the given function f ( x, y) x 2 2 xy2 2 y 2 , find all stationary points and classify them. Solution: f f f x f1 2 x 2 y 2 , f y f 2 4 xy 4 y , x y 2 f 2 f 2 f 2 f f xy f12 4 y, f yx f 21 4 y , f f 2, f 22 4 x 4 xx 11 yx xy x 2 y 2 Now, solve f1 2 x 2 y 2 0 , f 2 4 xy 4 y 0 and find that the solution gives you the points (0, 0), (-1, 1), (-1, -1) and classify them as in 1. 10. A firm produces two different kinds A and B of a commodity. The daily cost of producing x units of A and y units of B is C ( x) 0.04 x 2 0.01xy 0.01y 2 4 x 2 y 500 . Suppose that the firm sells its output at aprice per unit is 15 for A and 9 for B. Find the daily production levels x and y that maximizes profit per day. Answer: x = 100, y = 300, profit = 1100 The Lagrange Multiplier Method To find max (min) of z f ( x, y ) subject to g ( x, y ) c proceed as follows 1) Write down the Lagrangian function L( x, y ) f ( x, y ) ( g ( x, y ) c) where is a constant. 2) Find Lx 0 , L y 0 3) Solve the system Lx 0 , L y 0 and g ( x, y ) c . 4) The max/min of the given function will be found at the solution(s). 11. maximize f ( x, y ) xy subject to g ( x, y ) 2 x y 100 The Langrangian for this problem is L( x, y ) f ( x, y ) ( g ( x, y ) c) xy (2 x y 100) Now we have Lx y 2 0 y 2 , L y x 0 x . We have y 2 x and from g ( x, y ) 2 x y 100 we find x = 25 and y = 50. The solution for this maximization problem is x = 25 and y = 50 and z = 1250 Go through the example problem 2 and 3 at page # 270-271. 12. max xy subject to x 3 y 24 Notice that f ( x, y ) xy and g ( x, y ) x 3 y and c = 24 The Langrangian for this problem is L( x, y ) f ( x, y ) ( g ( x, y ) c) xy ( x 3 y 24) Lx y 0 y , L y x 3 0 x 3 . So that x = 3y Form x 3 y 24 we find x = 12, y = 4 The solution for the given problem is (12, 4) 13. (Compare with example 21) max Ax a y b subject to px qy m has the solution x a m b m and y ab p ab q In our case max xy subject to x 3 y 24 A = 1, a = 1, b = 1, m = 24, p = 1, q = 3 a m 1 24 b m 1 24 Thus x 12 and y 4 a b p 11 1 a b q 11 3 Derivatives 14. Find f y , f x , f xy , f yy : for f ( x, y) (1 xy)2 f x 2(1 xy) y, f xy 2(1 2 xy), f xx 2 y 2 f y 2(1 xy) x, f yy 2 x2 15. Find f y , f x , f xy , f yy : for f ( x, y) (1 3xy 2 )2 16. Find f y , f x , f xy , f yy : for f ( x, y ) 1 fx 3x y 3 3 , f xy 2 , f xx 0 y y 3x 6x , f yy 3 2 y y 1 17. Prove that if z ln( x 2 y 2 ) then z xx z yy 0 2 18. When f ( x, y) x 2 2 xy y 2 then f (2 x, 2 y ) 4 f ( x, y) 19. If f ( x, y ) eax by find f xx f yy f xy f yx fy 20. Show that x 2 y 2 6 is not a level curve of f ( x, y ) x 2 y 2 x 2 y 2 3 . x2 y 2 21. Given f ( x, y) 3 . Compute and simplify xf x yf y ay bx3
© Copyright 2025 Paperzz