CMU SCS Big (graph) data analytics Christos Faloutsos CMU CMU SCS Outline • • • • Problem definition / Motivation Anomaly detection Time series analysis Conclusions CMU visit '14 C. Faloutsos 2 CMU SCS Motivation • Data mining: ~ find patterns (rules, outliers) • How do real graphs look like? Anomalies? • Time series / Monitoring Measles @ PA, NY, … CMU visit '14 C. Faloutsos 3 CMU SCS Graphs - why should we care? CMU visit '14 C. Faloutsos 4 CMU SCS Graphs - why should we care? Food Web [Martinez ’91] ~1B users $10-$100B revenue Internet Map [lumeta.com] CMU visit '14 C. Faloutsos 5 CMU SCS Outline • Problem definition / Motivation • Anomaly/fraud detection – Financial fraud – Ebay fraud • Time Series Analysis • Conclusions CMU visit '14 C. Faloutsos 6 CMU SCS Network Effect Tools: SNARE • Some accounts are sort-of-suspicious – how to combine weak signals? Before CMU visit '14 C. Faloutsos 7 CMU SCS Network Effect Tools: SNARE • A: Belief Propagation. Before CMU visit '14 C. Faloutsos 8 CMU SCS Network Effect Tools: SNARE • A: Belief Propagation. Before After Mary McGlohon, Stephen Bay, Markus G. Anderle, David M. Steier, Christos Faloutsos: SNARE: a link analytic system for graph labeling CMU visit '14 C. Faloutsos and risk detection. KDD 2009: 1265-1274 9 CMU SCS Network Effect Tools: SNARE • Produces improvement over simply using flags – Up to 6.5 lift – Improvement especially for low false positive rate Results for accounts data (ROC Curve) Ideal True positive rate CMU visit '14 SNARE C. Faloutsos False positive rate Baseline (flags only) 10 CMU SCS Network Effect Tools: SNARE • Accurate- Produces large improvement over simply using flags • Flexible- Can be applied to other domains • Scalable- One iteration BP runs in linear time (# edges) • Robust- Works on large range of parameters CMU visit '14 C. Faloutsos 11 CMU SCS Outline • Problem definition / Motivation • Anomaly/fraud detection – Financial fraud – Ebay fraud • Time series analysis • Conclusions CMU visit '14 C. Faloutsos 12 CMU SCS E-bay Fraud detection Detects ‘non-delivery’ fraud: seller takes $$ and disappears Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos. NetProbe: A Fast and C.Scalable System for Fraud Detection in 3 - 13 visit CMU '14 Faloutsos Online Auction Networks WWW 07. CMU SCS E-bay Fraud detection - NetProbe 3 - 14 visit '14 CMU C. Faloutsos CMU SCS ‘Tycho’ – epidemics analysis Yasuko Matsubara 50 states x 46 diseases CMU visit '14 C. Faloutsos 22 CMU SCS ‘Tycho’ – epidemics analysis Prof. Yasuko Matsubara CMU visit '14 C. Faloutsos 23 CMU SCS ‘Tycho’ – epidemics analysis Flu? Measles? August? No periodicity? CMU visit '14 Prof. Yasuko Matsubara C. Faloutsos 24 CMU SCS ‘Tycho’ – epidemics analysis Flu? Measles? August? No periodicity? CMU visit '14 Prof. Yasuko Matsubara C. Faloutsos 25 CMU SCS ‘Tycho’ – epidemics analysis Flu? Measles? August? No periodicity? CMU visit '14 Prof. Yasuko Matsubara C. Faloutsos 26 CMU SCS ‘Tycho’ – epidemics analysis Flu? Measles? August? No periodicity? CMU visit '14 Prof. Yasuko Matsubara C. Faloutsos 27 CMU SCS ‘Tycho’ – epidemics analysis Flu? Measles? August? No periodicity? CMU visit '14 Prof. Yasuko Matsubara C. Faloutsos 28 CMU SCS ‘Tycho’ – epidemics analysis Prof. Yasuko Matsubara https://www.tycho.pitt.edu/resources.php from U. Pitt (epidemiology dept.) Yasuko Matsubara, Yasushi Sakurai, Willem van Panhuis, and Christos Faloutsos, FUNNEL: Automatic Mining of Spatially Coevolving CMU visit '14 C. Faloutsos 29 Epidemics, KDD 2014, New York City, NY, USA, Aug. 24-27, 2014. CMU SCS Open research questions • Patterns/anomalies for time-evolving graphs (Call graph, 3M people x 6mo) • Spot fraudsters in soc-net (eg., Twitter ‘$10 -> 1000 followers’) CMU visit '14 C. Faloutsos 30 CMU SCS Contact info • www.cs.cmu.edu/~christos • GHC 8019 • Ph#: x8.1457 CMU visit '14 C. Faloutsos 31
© Copyright 2026 Paperzz