FRONTEND DESIGN & OPTIMIZATION STUDIES HISHAM KAMAL SAYED BROOKHAVEN NATIONAL LABORATORY June 26, 2014 Collaboration: J. S. Berg - X. Ding - V.B. Graves - H.G. Kirk - K.T. McDonald - D. Neuffer - R. B. Palmer - P. Snopok - D. Stratakis - R.J. Weggel FRONT END DESING & OPTIMIZATION OUTLINE Goal : Optmize number of useful muons and limit the proton beam power energy transmitted to the first RF cavity in the buncher Involved systems: - Carbon target geometry - Capture field - Chicane design - Be absorber 1- Target geometry parameters: Carbon target length, radius, and tilt angle to solenoid axis 2- Target Capture field: constant field length - taper length - end field 3- Chicane parameters: Length - curvature – focsuing field 4- Be absorber thickness and location 5- Energy deposition in the target area + Chicane will be evaluated and involved in the optimization – future work. Target station 6/26/14 Buncher Decay channel Phase rotator Ionization cooling channel MUON BEAM PRODUCTION Challenges with muon beams: - Short lifetime ~ 2 μs - Require fast and aggressive way of reducing the muon beam transverse and longitudinal emittance to deliver the required luminosity Production and acceleration of muon beam High energy proton beam on Hg or graphite target Captured pion beam has a large emittance Pions decay into muons with even larger emittance Transverse phase space εT(rms) ~ 25 mm-rad Large momentum spread 6/26/14 Longitudinal phase space TAPERED CAPTURE SOLENOID OPTIMIZATION Inverse-Cubic Taper - Initial peak Field B1 – Taper length z – End Field B2 Bz (0, zi < z < z f ) = B1 [1+ a1 (z - z1 ) + a2 (z - z1 )2 + a3 (z - z1 )3 ]p B pB1 ' 1 (B1 / B2 )1/ p -1 2a1 a2 = 3 (z2 - z1 )2 z2 - z1 1/ p (B / B ) -1 a1 a3 = -2 1 2 3 + (z2 - z1 ) (z2 - z1 )2 a1 = - - Impact of the Peak field on the number and phase space of the captured pions - Impact of taper length on the number and phase space of the captured pions/muons - Impact of the end field on the number of captured muons 6/26/14 Target Solenoid on axis field B1 B2 Taper Length z1-z2 NEW SHORT TARGET CAPTURE WITH REALISTIC SUPERCONDUCTING MAGNETS New baseline Muon Target Capture Magnet : Short Taper length = 5 m B = 20-2.0 T, 20 – 2.5 T Taper Magnets Decay channel Triplet On axis field [scale /20 T] 20 – 3.5 T Target Magnets (R. Weggel) 5m V. Graves 6/26/14 CARBON TARGET GEOMETRY OPTIMIZATION http://physics.princeton.edu/mumu/target/hptw5_poster.pdf 6/26/14 CARBON TARGET GEOMETRY OPTIMIZATION Target geometry parameters (channel includes target + chicane + decay channel): Carbon target length -- radius -- tilt angle to solenoid axis Proton beam size Objective: optmize at z=70 m Σ π+μ+κ within pz < 450 MeV/c (to compensate for the Be absorber effect) pt < 150 MeV/c Initial lattice in G4Beamline – using GEANT4 physics list QGSP Bz = 20 to 2.0-7.0 T over variable taper length Initial protons K.E. = 6.75 GeV - σt = 2 ns Tracking includes target + chicane + decay channel The optmization run 6 hours on 240 cores at NERSC using Multiobjective – Multivariable parallel genetic algorithm 6/26/14 CARBON TARGET GEOMETRY OPTIMIZATION 0.25 Optimizing the target geomtery and proton 0.25 beam parameters. 0.2 Objective is the muon count at end of decay channel Muon 0.15 0.15 0.1 Optimal working point 1-2 mm 10 5 0.1 Optimal working point 1-3 degrees 0.25 0.2 0.15 0.1 0.05 0 0.25 0.2 Muon 0 2 4 6 8 10 12 14 16 18 20 Beam radius [mm] 0 0.15 0.1 0.05 0 0 2 4 6 8 10 12 Angle to solenoid axis [degree] 6/26/14 5 0 0.05 10 0.05 105 Muon 105 Muon 0.2 CARBON TARGET GEOMETRY OPTIMIZATION 0.25 0.25 Optimizing 0.15 0.15 0.1 0.1 Optimal working point ~ 1 cm, but r < 1 cm not studied 0.05 0.25 0.05 0 0 1 2 3 4 5 6 7 8 9 10 Target radius [cm] Optimal working point 70-90 cm 0 105 Muon 105 Muon 0.2 105 Muon the target geomtery and proton beam parameters. 0.2 Objective is the muon count at end of decay channel 0.2 0. 0.15 0. 0.1 0. 0.05 0. 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 6/26/14 0. Target Length [m] CARBON TARGET GEOMETRY OPTIMIZATION Optimal working point for C-target Proton beam size 1-2 mm C–rod Length 80 cm C–rod radius < 1 cm Beam + target angle to solenoid axis 2-3 degree (50-75 mrad) 6/26/14 DEPENDENCE OF TRANSVERSE EMITTANCE & CAPTURE EFFICIENCY ON PEAK FIELD Emittance growth due to betatron oscillation decohenrce: 0.14 1.4 0.12 1.2 0.1 1 0.08 0.8 0.06 0.6 0.04 0.4 0.02 0.2 0 0 10 20 30 40 50 60 B [T] pion / proton Strong solenoid field stabilizes the emittance growth by reduction of axial extend The final projected transverse emittance is smaller for higher fields Emittance [m-rad] Pions created at the target Small radial extent (small transverse emittance) Large spread in energy and axial point of origin Particles with different energy and different transverse amplitude rotate over the transverse phase space at different oscillation frequencies. Limit of operation of solenoids in high radiation area 0 MARS Simulation of π+ & μ+ production from 8 GeV proton beam on Hg target. - Emittance calculation from covariance matrix - particle count at end of the target 6/26/14 CARBON TARGET GEOMETRY OPTIMIZATION Optmization of the target end field and decay channel – (no buncher- rotator RF) Points with differing colors have different target geomtry parameters 24 0.2 22 20 0.15 18 0.1 16 14 0.05 0 6/26/14 26 Target Field [T] Muon+/proton 0.25 12 0 2 4 6 8 10 12 14 16 End Field [T] 10 MARS SIMULATIONS & TRANSMISSION Muon count within energy cut at end of decay channel Adiabatic condition: length scale over which the magnetic field changes is large compared to betatron wavelength of the helical trajectory of a particle rfinal=30 cm Muon count at z=50 increases for longer solenoid taper MARS15 Simulation: Counting muons at 50 m with K.E. 80-140 MeV 6/26/14 BUNCHER AND ENERGY PHASE ROTATOR Target: π production Drift: π’s decay to μ’s + creation of time-energy correlations Adiabatic bunch: Converts the initial single short muon bunch with very large energy spread into a train of 12 microbunches with much reduced energy spread Energy phase rotatation: Align microbunches to equal energies - RF 232 to 201 MHz - 12 MV/m Transverse ionization cooling: RF 201.25 MHz Target station Buncher Phase rotator Ionization cooling channel Decay channel Z=80.0 [m] 0.8 0.6 150 100 0.4 50 0.2 0 0 6 8 10 12 14 16 18 20 6/26/14 t [10 ns] 1 200 Z=20.0 [m] 0.8 0.6 150 100 0.4 50 0.2 0 0 26 28 30 32 34 36 38 40 t [10 ns] E [GeV] 1 E [GeV] 1.2 200 E [GeV] 1.2 0.7 12 0.6 10 0.5 8 0.4 6 0.3 4 0.2 2 0 0.1 270 280 290 300 310 320 330 340 350 t [ns] LONGITUDINAL PHASE SPACE DISTRIBUTIONS (SHORT VERSUS LONG TAPER) Temporal difference between the arrival time at a position z of a particle with a nonzero transverse amplitude and that of a particle with zero transverse amplitude Long adiabatic taper 40 m Z=80.0 [m] 0.8 0.6 150 100 0.4 1 50 0.2 0 8 0.8 0.6 150 100 0.4 50 0.2 0 0 6 200 Z=20.0 [m] 1.2 200 1 E [GeV] E [GeV] 1.2 200 1 E [GeV] 1.2 Z=20.0 [m] 0.8 0.6 100 0.4 50 0.2 0 0 0 14 16 18 20 22 24 26 28 t [10 ns] 10 12 14 16 18 20 t [10 ns] 26 28 30 32 34 36 38 40 t [10 ns] End of Decay z=80 m z=20 m Short taper 4 m E [GeV] Z=80.0 [m] 0.8 0.6 150 100 0.4 50 0.2 0 0 6 8 10 12 14 16 18 20 6/26/14 t [10 ns] 1.2 1 After buncher Shorter bunch length Higher longitudinal phase space density 1.2 200 Z=20.0 [m] 0.8 0.6 150 100 0.4 50 0.2 0 0 14 16 18 20 22 24 26 28 t [10 ns] 1 E [GeV] 200 1 E [GeV] 1.2 150 200 Z=20.0 [m] 0.8 0.6 150 100 0.4 50 0.2 0 0 26 28 30 32 34 36 38 40 t [10 ns] DEPENDENCE OF TIME SPREAD & TRANSVERSE EMITTANCE ON TAPER LENGTH Muon beam emittance calculation was done at the end of the decay channel at z = 70 m Initial proton bunch has pancake temporal distribution σt = 0 ns for this calculation Implication on projected emittance Time spread dependence on taper length - Time Spread increase by 90% 6/26/14 - Projected transverse emittance did not change dramatically Longitudnal emittance decreases more dramatically NUMERICAL NONLINEAR GLOBAL OPTIMIZATION ALGORITHMS ON NERSC Expensive objective evaluations on CRAY: (In collaboration with LBNL) High performance parallel environment: N cores > 1000 Run parallel evaluations of the objective functions ( Parallel Evolutionary algorithms) Each evaluation of the objective run in parallel to limit the cost of every evaluation (parallel Icool – G4BL , MARS .. etc.). Implemented algorithm: Parallel Differential Evolutionary Algorithms Momentum distribution of "useful muons” at end of phase rotator 70 Ptot end of rotator 60 50 40 N 30 20 10 0 Muon Front End Global Optimization 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.16 24% more than previuos baseline performance End Field Limitations: - Operation of RF cavities in magnetic fields 0.1 P [GeV/c] 0.155 Muon+/proton Multivariable optimization of the Muon Accelerator Front End: Optimal taper length Optimizing the broad band match to the 4D ionization cooling channel 0 0.15 0.145 0.14 0.135 0.13 0.125 0.12 0 1 2 3 End Field [T] 6/26/14 4 5 FRONT END PERFORMANCE AT DIFFERENT END FIELDS Performance of the Front end without the chicane End fields higher than 4 T do not show any improved performance 0.16 2T 3.0 T 3.5T 4.0T Muon+/proton 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 6/26/14 0 50 100 150 Z[m] 200 250 CHICANE - Short taper (6 m ) integrated with the new chicane from Pavel's G4BL lattice (same parameters as in ICOOL) - Started optimizing the chicane parameters (initial values - D. Neuffer's icool lattice) - Chicane half length L (initial value L = 6.0) - Chicane radius of curvature h (initial value = 0.05818 1/m) Bend angle = 351 mrad - Be absorber length (initial value = 100.0 mm) - On-axis field is a free parameter – optimization will be carried for B = 2.0, 2.5, 3.0 T - Chicane aperture 40 cm (might be a free parameter as well) - Objectives minimize total KE of transmitted protons Σ KEprotons Maximize number of transmitted muons Σ π+μ+κ within 0 < pz < 450 MeV/c (to compensate for the Be absorber effect) & 0 < pt < 150 MeV/c Run 100 K particles through the chicane with initial parameters Σ KEprotons = 29 GeV & Σ Nmu= 4377 6/26/14 CHICANE Run 500 K particles through the chicane with automated optimization algorithm Chicane location: z = 21 m from target Absorber location: end of chicane Muons/proton 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Chicane Angle [rad] Absorber Length [m] Absorber Length [m] 0.6 B0 = 2.0 T 0.7 10 0.6 8 0.5 6 0.4 4 0.3 2 0.2 0 0.1 -2 0 -4 0 0.2 0.4 0.6 0.8 6/26/14 Log (S (K.E.protons[GeV]) 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 0.7 1 1.2 1.4 Chicane Angle [rad] CHICANE Run 500 K particles through the chicane with automated optimization algorithm Chicane location: z = 21 m from target Absorber location: end of chicane 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Chicane Angle [rad] B0 = 2.5 T 12 10 8 6 4 2 0 -2 -4 -6 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 6/26/14 Log (S (K.E.protons[GeV]) Absorber Length [m] 0.6 Absorber Length [m] Muons/proton 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 0.7 1 1.2 1.4 Chicane Angle [rad] CHICANE Run 500 K particles through the chicane with automated optimization algorithm Chicane location: z = 21 m from target Absorber location: end of chicane Muons/proton 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 Chicane Angle [rad] Higher end fields increases muon transmission through the front end and also increase the total KE of the transmitted protons after the absorbers Absorber Length [m] Absorber Length [m] 0.8 B0 = 3.0 T 12 1 10 0.8 8 6 0.6 4 0.4 2 0 0.2 -2 -4 0 0 0.2 0.4 0.6 0.8 6/26/14 Log (S (K.E.protons[GeV]) 0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 1 1 1.2 1.4 Chicane Angle [rad] CONCLUSION & SUMMARY - New objective for front end optimization - Handle excesseive proton beam + unwanted secondaries - Capture as much muons - Energy deposition has to be integrated in the optimization study - Partitioning of energy deposited in - Chicane - Be absorber - Optmization includes - Target geomtery - Chicane field + chicane geomtery - Be absorber - Re-tune buncher & phase roation 6/26/14
© Copyright 2026 Paperzz