Intelligent Agents Chapter2 Howdoyoudesignanintelligentagent? • Intelligentagentsperceiveenvironmentviasensorsand actra/onallyonthemwiththeireffectors • Discreteagentsreceiveperceptsoneata/me,andmap themtoasequenceofdiscreteac:ons • Generalproper/es – Reac/vetotheenvironment – Pro-ac/veorgoal-directed – Interactswithother agentsthrough communica/onor viatheenvironment – Autonomous sensors/perceptsandeffectors/ac:ons? Humanshave – Sensors:Eyes(vision),ears(hearing),skin(touch),tongue (gusta/on),nose(olfac/on),neuromuscularsystem (propriocep/on) – Percepts: • Atthelowestlevel:electricalsignalsfromthesesensors • AEerpreprocessing:objectsinthevisualfield(loca/on, textures,colors,…),auditorystreams(pitch,loudness, direc/on),… – Effectors:limbs,digits,eyes,tongue,… – Ac:ons:liEafinger,turnleE,walk,run,carryanobject,… • ThePoint:perceptsandac/onsneedtobecarefully defined,possiblyatdifferentlevelsofabstrac/on Example:autonomoustaxi • Percepts:Video,sonar,speedometer, odometer,enginesensors,keyboard input,microphone,GPS,… • Ac:ons:Steer,accelerate,brake,horn,speak,… • Goals:Maintainsafety,reachdes/na/on,maximize profits(fuel,/rewear),obeylaws,provide passengercomfort,… • Environment:U.S.urbanstreets,freeways,traffic, pedestrians,weather,customers,… • Differentaspectsofdrivingmayrequiredifferent typesofagentprograms! Ra:onality • Idealra:onalagentsshould,foreachpercept sequence,acttomaximizeexpectedperformance measurebasedon (1)theperceptsequence,and (2)itsbuilt-inandacquiredknowledge • Ra/onalityincludesinforma/ongathering--Ifyoudon’t knowsomething,findout! • Ra/onality→Needaperformancemeasuretosayhow wellataskhasbeenachieved • Typesofperformancemeasures:falsealarm(false posi/ve)andfalsedismissal(falsenega/ve)rates, speed,resourcesrequired,effectonenvironment,etc. Autonomy • Asystemisautonomoustoextentthatits behaviorisdeterminedbyitsexperience • Asystemisn’tautonomousifguidedbyits designeraccordingtoaprioridecisions • Anautonomousagentcanalwayssay“no” • Tosurvive,agentsmusthave: – Enoughbuilt-inknowledgetosurvive – Theabilitytolearn Someagenttypes (0)Table-drivenagents simple – Useperceptsequence/ac/ontabletofindthenextac/on.Implemented bya(large)lookuptable (1)Simplereflexagents – Basedoncondi:on-ac:onrules,implementedwithanappropriate produc/onsystem;statelessdeviceswithnomemoryofpastworldstates (2)Agentswithmemory – haveinternalstateusedtokeeptrackofpaststatesoftheworld (3)Agentswithgoals – Agentswithastateandgoalinforma:ondescribingdesirablesitua/ons. Agentsofthiskindtakefutureeventsintoconsidera/on. (4)U:lity-basedagents – basedecisionsonclassicaxioma:cu:litytheoryinordertoactra/onally complex (0/1)Table-driven/reflexagentarchitecture Useperceptsequence/ac/ontabletofindthenextac/on. Implementedbya(large)lookuptable (0)Table-drivenagents Tablelookupofpercept-ac/onpairsmappingfrom everypossibleperceivedstatetoop/malac/onforit Problems: – Toobigtogenerateandtostore(Chesshasabout 10120states,forexample) – Noknowledgeofnon-perceptualpartsofthe currentstate – Notadap/vetochangesintheenvironment;en/re tablemustbeupdatedifchangesoccur – Looping:Can’tmakeac/onscondi/onalon previousac/ons/states (1)Simplereflexagents • Rule-basedreasoningmapsperceptstoop/mal ac/on;eachrulehandlescollec/onofperceived states(akareac/veagents) • Problems – S/llusuallytoobigtogenerateandtostore – S/llnoknowledgeofnon-perceptualpartsofstate – S/llnotadap/vetochangesinenvironment; collec/onofrulesmustbeupdatedifchangesoccur – S/llcan’tcondi/onac/onsonpreviousstate – Difficulttoengineerifthenumberofrulesislarge duetoconflicts (2)Architectureforanagentwithmemory internalstateusedtokeeptrackofpaststatesof theworld (2)Agentswithmemory • Encodeinternalstateofworldtoremember pastascontainedinearlierpercepts – Note:sensorsdon’tusuallygiveen/reworld stateateachinput,soenvironmentpercep/on iscapturedover0me. – Stateusedtoencodedifferent"worldstates" thatgeneratethesameimmediatepercept • Requiresrepresen0ngchangeintheworld – Wemightrepresentjustlateststate,butthen can’treasonabouthypothe/calcoursesof ac/on (3)Architectureforgoal-basedagent stateandgoalinforma:ondescribedesirablesitua/ons allowingagenttotakefutureeventsintoconsidera/on (3)Goal-basedagents • Delibera:veinsteadofreac:ve • Chooseac/onstoachieveagoal • Goalisadescrip/onofadesirablesitua/on • KeepingtrackofcurrentstateoEennot enough:mustaddgoalstodecidewhich situa/onsaregood • Achievinggoalmayrequirelongac/on sequence – Modelac/onconsequences:“whathappensifI do...?” – Useplanningalgorithmstoproduceac/on sequences (4)acompleteu:lity-basedagent basedecisionsonu/litytheoryinordertoactra/onally (4)U:lity-basedagents • Formul/plepossiblealterna/ves,howto decidewhichisbest? • Goalsgiveacrudedis/nc/onbetweenhappy andunhappystates,butoEenneeda performancemeasurefordegree • U/lityfunc/onU:State→Realsgivesmeasure ofsuccess/happinessforgivenstate • Allowsdecisionscomparingchoicesbetween conflic/nggoalsandlikelihoodofsuccessand importanceofgoal(ifachievementuncertain) Proper:esofEnvironments • Fully/Par:allyobservable – Ifagent’ssensorsgivecompletestateofenvironmentneeded tochooseac/on,environmentisfullyobservable – Suchenvironmentsareconvenient,freeingagentsfrom keepingtrackoftheenvironment’schanges • Determinis:c/Stochas:c – Environmentisdeterminis:cifnextstateiscompletely determinedbycurrentstateandagent’sac/on – Stochas:c(i.e.,non-determinis/c)environmentshave mul/ple,unpredictableoutcomes • Infullyobservable,determinis/cenvironments agentsneednotdealwithuncertainty Proper:esofEnvironments • Episodic/Sequen:al – Inepisodicenvironmentssubsequentepisodesdon’t dependonac/onsinpreviousepisodes – Insequen:alenvironmentsagentengagesinaseriesof connectedepisodes – Episodicenvironmentsdon’trequireagenttoplanahead • Sta:c/Dynamic – Sta:cenvironmentsdoesn’tchangeasagentisthinking – Thepassageof/measagentdeliberatesisirrelevant – Theagentneedn’tobserveworldduringdelibera/on Proper:esofEnvironmentsIII • Discrete/Con:nuous – Ifnumberofdis/nctperceptsandac/onsislimited, environmentisdiscrete,otherwiseit’scon:nuous • Singleagent/Mul:agent – Inenvironmentswithotheragents,agentmust considerstrategic,game-theore/caspectsof environment(foreithercoopera/veorcompe//ve agents) – Mostengineeringenvironmentsdon’thave mul/agentproper/es,whereasmostsocialand economicsystemsgettheircomplexityfrom interac/onsof(moreorless)ra/onalagents Characteris:csofenvironments Fully Deterministic? observable? Episodic? Static? Discrete? Single agent? Solitaire Backgammon Taxi driving Internet shopping Medical diagnosis A Yes in a cell means that aspect is simpler; a No more complex Characteris:csofenvironments Solitaire Fully observable Deterministic Episodic Static Discrete? Single agent? No Yes Yes Yes Yes Yes Backgammon Taxi driving Internet shopping Medical diagnosis A Yes in a cell means that aspect is simpler; a No more complex Characteris:csofenvironments Fully Deterministic? observable? Episodic? Static? Discrete? Single agent? Solitaire No Yes Yes Yes Yes Yes Backgammon Yes No No Yes Yes No Taxi driving Internet shopping Medical diagnosis A Yes in a cell means that aspect is simpler; a No more complex Characteris:csofenvironments Fully Deterministic? observable? Episodic? Static? Discrete? Single agent? Solitaire No Yes Yes Yes Yes Yes Backgammon Yes No No Yes Yes No Taxi driving No No No No No No Internet shopping Medical diagnosis A Yes in a cell means that aspect is simpler; a No more complex Characteris:csofenvironments Fully Deterministic? observable? Episodic? Static? Discrete? Single agent? Solitaire No Yes Yes Yes Yes Yes Backgammon Yes No No Yes Yes No Taxi driving No No No No No No Internet shopping No No No No Yes No Medical diagnosis A Yes in a cell means that aspect is simpler; a No more complex Characteris:csofenvironments → Lots of real-world domains fall into the hardest case! Fully Deterministic? observable? Episodic? Static? Discrete? Single agent? Solitaire No Yes Yes Yes Yes Yes Backgammon Yes No No Yes Yes No Taxi driving No No No No No No Internet shopping No No No No Yes No Medical diagnosis No No No No No Yes A Yes in a cell means that aspect is simpler; a No more complex Summary • Anagentperceivesandactsinan environment,hasanarchitectureandis implementedbyanagentprogram • Anidealagentalwayschoosesac/onthat maximizesitsexpectedperformance,given itsperceptsequencesofar • Anautonomousagentusesitsown experienceratherthanbuilt-inknowledgeof environmentbydesigner Summary • Anagentprogrammapsperceptstoac/ons andupdatesitsinternalstate – Reflexagentsrespondimmediatelytopercepts – Goal-basedagentsacttoachievetheirgoal(s) – U:lity-basedagentsmaximizetheiru/lityfunc/on • Represen:ngknowledgeisimportantfor goodagentdesign • Mostchallengingenvironmentsarepar/ally observable,stochas/c,sequen/al,dynamic, andcon/nuousandcontainmul/pleagents Summary • NotallAIproblemsagoodfitfororrequirean agentagentmodel,e.g.,playingsolitaire • NoraremanyAItasksyoumightbeaskedto solve: – Classifymoviereviewsasnega/ve,neutralor posi/ve – Locatefacesofpeopleinanimage – Anefficienttheoremprover – Learnpreferredthermostatseengsforeach hourofeachdayofaweek
© Copyright 2026 Paperzz