VATT Working Papers 67 Self-Selection of Emigrants: Theory and Evidence on Stochastic Dominance in Observable and Unobservable Characteristics George J. Borjas Ilpo Kauppinen Panu Poutvaara VATT INSTITUTE FOR ECONOMIC RESEARCH VATT WORKING PAPERS 67 Self-Selection of Emigrants: Theory and Evidence on Stochastic Dominance in Observable and Unobservable Characteristics George J. Borjas Ilpo Kauppinen Panu Poutvaara George J. Borjas, Harvard Kennedy School, NBER and IZA. Ilpo Kauppinen, VATT Institute for Economic Research. Panu Poutvaara, University of Munich and Ifo Institute, CESifo, CReAM and IZA. We thank participants at Norface Migration Network Conference, Journées Louis-André Gérard-Varet, EEA and CEMIR Junior Economist Workshop in 2013, the Alpine Population Conference, UCFS Workshop, CESifo ESP area conference and VfS annual conference in 2015 and seminars at UC Irvine, ETH Zurich, Labour Institute for Economic Research, VATT, University of Linz, and University of Salzburg for valuable comments. Financial support from Leibniz Association (SAW-2012-ifo-3) is gratefully acknowledged. ISBN 978-952-274-163-9 (PDF) ISSN 1798-0291 (PDF) Valtion taloudellinen tutkimuskeskus VATT Institute for Economic Research Arkadiankatu 7, 00100 Helsinki, Finland Helsinki, April 2016 Self-Selection of Emigrants: Theory and Evidence on Stochastic Dominance in Observable and Unobservable Characteristics VATT Institute for Economic Research VATT Working Papers 67/2016 George J. Borjas – Ilpo Kauppinen – Panu Poutvaara Abstract We show that the Roy model has more precise predictions about the selfselection of migrants than previously realized. The same conditions that have been shown to result in positive or negative selection in terms of expected earnings also imply a stochastic dominance relationship between the earnings distributions of migrants and non-migrants. We use the Danish full population administrative data to test the predictions. We find strong evidence of positive self-selection of emigrants in terms of pre-emigration earnings: the income distribution for the migrants almost stochastically dominates the distribution for the non-migrants. This result is not driven by immigration policies in destination countries. Decomposing the self-selection in total earnings into self-selection in observable characteristics and self-selection in unobservable characteristics reveals that unobserved abilities play the dominant role. Key words: international migration, Roy model, self-selection JEL classes: F22, J61 1 1.Introduction Acentralfindingintheeconomicliteratureoninternationalmigrationisthatemigrantsare notrandomlyselectedfromthepopulationofthesourcecountries.Thenatureofthenon‐ randomselectionaffectsthelevelandthedistributionofwelfarethroughtwomajor channels.First,theskilldistributionofmigrantsaffectsthewagestructureinbothsending andreceivingcountries(Borjas2003).Asecondeffecttakesplacethroughthepublicsector. Immigrationcreatesafiscalsurplusinthereceivingcountryifandonlyifthenetpresent valueofthetaxpaymentsofimmigrantsexceedsthenetpresentvalueofthecoststhey impose.Boththeimmigrationofnetrecipientsandtheemigrationofnetpayersposea challengetothepublictreasury(Wildasin1991;Sinn1997). BeginningwithBorjas(1987),therehasbeenagreatdealofinterestinderivingand empiricallytestingmodelsthatpredicthowmigrantsdifferfromnon‐migrants.Manyof thesestudiesrelyonanapplicationoftheRoymodelofoccupationalself‐selection.Aslong asskillsaresufficientlytransferableacrosscountries,thesortingofpersonsacross countriesismainlydeterminedbyinternationaldifferencesintherateofreturntoskills.A countryliketheUnitedStateswouldthenattracthigh‐skilledworkersfrommore egalitariancountries(i.e.,countriesofferingrelativelylowratesofreturntoskills)andlow‐ skilledworkersfromcountrieswithgreaterincomeinequality(i.e.,countriesoffering higherratesofreturntoskills).Theevidenceindeedsuggestsanegativecross‐section correlationbetweentheearningsofimmigrantsintheUnitedStatesandincomeinequality inthesourcecountries.1 AlthoughtheexistingliteratureonimmigrantselectionfocusesmainlyontheU.S.context oronmigrationflowsfrompoortorichcountries,therearealsosizablemigrationflows betweenrichcountries.AccordingtotheUnitedNations(2013),21.9millionpersonsfrom 1Relatedcross‐countrystudiesincludeCobb‐Clark(1993)andBratsberg(1995).GroggerandHanson(2011) examinetheselectionofmigrantsacrossabroadrangeofcountriesusinganalternativetheoretical frameworkwhereindividualsmaximizelinearutilityandmigrationisdrivenbyabsoluteearningsdifferences betweenhighandlow‐skilledworkers. 2 EU15countriesnowliveoutsidetheirbirthplace,with42percentofthesemigrantsliving inotherEU15countriesandanadditional13percentlivingintheUnitedStates.2 Thispaperexaminestheself‐selectionofemigrantsfromDenmark,oneoftherichestand mostredistributiveEuropeanwelfarestates.In2013,overaquartermillionDaneslived outsideDenmark(correspondingtoabout5percentoftheDanish‐bornpopulation),with 50percentofthemigrantslivinginotherEU15countriesand13percentintheUnited States(UnitedNations,DepartmentofEconomicandSocialAffairs2013).Becausethe returnstoskillsinDenmarkarerelativelylow,thecanonicalRoymodelpredictsthatthe emigrantsshouldbepositivelyselectedinthesensethattheexpectedearningsofthe migrantsexceedtheexpectedearningsofthestayers.3However,therehavebeenfew systematicstudiesoftheself‐selectionofmigrantsfromarelativelyegalitariancountryto seewhetherthisisindeedthecase.4 Ourtheoreticalanalysisshowsthatthecanonicalframeworkdoesnotonlyhave predictionsaboutthedifferencebetweentheexpectedearningsofmigrantsandnon‐ migrants,whichisthebasisforthestandarddefinitionofpositiveornegativeselectionin theliterature,butalsoaboutthestochasticorderingofthetwoearningsdistributions.We showthatthesameconditionsthatpredictthatmigrantsarepositivelyself‐selectedinthe senseofadifferenceinexpectedincomesalsopredictthattheincomedistributionofthe migrantswillfirst‐orderstochasticallydominatetheincomedistributionofthenon‐ migrants.Thetheoryalsodistinguishesbetweenselectioninobservableandselectionin unobservablecharacteristics. 2TheEU15countriesrefertothememberstatesoftheEuropeanUnionpriortotheexpansiononMay1, 2004. 3ForcomparisonsofgrosswagepremiafromtertiaryeducationacrosscountriesseeBoariniandStraus (2010).ArecentpaperstudyingreturnstocognitiveskillsisHanusheketal.(2015).Thestudyfinds significantcross‐countrydifferences.Moreover,thereturnsarerelativelylowinDenmarkaswellasinother Nordiccountries,andhighintheUnitedStates,GermanyandtheUnitedKingdom,whichalsoareamongthe mostpopulardestinationsofDanishmigrants. 4StudiesoftheselectionofmigrantsacrossdevelopedcountriesincludeLundborg(1991),Pirttilä(2004), Klevenetal.(2014),andJungeetal.(2014).Manystudiesalsoexamineselectionissuesinahistorical context;seeWegge(1999,2002),AbramitzkyandBraggion(2006),Abramitzky,Boustan,andEriksson (2012),Ferrie(1996),andMargo(1990). 3 OurempiricalanalysisusestheDanishfullpopulationadministrativedatatoanalyzehow migrantsandnon‐migrantsdifferintheirpre‐emigrationearningsandotherobservable characteristics.Toshedlightontheroleofunobservablecharacteristicsintheselection process,weinvestigatehowmigrantsandnon‐migrantsdifferintermsofunobservable earningsability,asmeasuredbyresidualsfromMincerianearningsregressions.Our empiricalresultsareinlinewiththepredictionsofthemodel:Danishemigrantsareindeed positivelyself‐selectedbothintermsofearningsandintermsofresidualsfromthewage regressions.FollowingourreframingofthecanonicalRoyframeworkintermsofthe conceptofstochasticdominance,ourstudyspecificallytestsforwhethertheearnings distributionoftheemigrantsstochasticallydominatesthatofthestayers(aswouldbe predictedbythemodel).Theevidenceconfirmsthisstrongtheoreticalpredictionover mostofthesupportoftheearningsdistribution. Ourstudyisrelatedtotheflurryofrecentpapersthatexaminetheselectionofmigrants fromMexicototheUnitedStates.ThepioneeringanalysisofChiquiarandHanson(2005) mergedinformationfromtheU.S.censusonthecharacteristicsoftheMexicanmigrants withinformationfromtheMexicancensusonthecharacteristicsoftheMexicannon‐ migrants.Becausethemergeddatadidnotreporttheearningsofmigrantspriortothe move,pre‐migrationearningswerepredictedbasedonobservablecharacteristicsofthe migrants.This“counterfactual”empiricalexercisesuggestedthatMexicanemigrantswere locatedinthemedium‐highrangeoftheMexicanwagedistribution.Thefindingof intermediateselectionintheMexicancontextdoesnotseemconsistentwiththebasic implicationsoftheRoymodelbecausetherateofreturntoskillsisfarlargerinMexico thanintheUnitedStates.MorerecentstudiesbyFernández‐HuertasMoraga(2011)and KaestnerandMalamud(2014)usesurveydatathatreporttheactualpre‐migration earningsandfindevidenceofnegativeselection.Theyalsoconcludethatpartofthe negativeselectioncanbetracedtotheunobservablecharacteristicsthatdeterminea migrant’searnings. Theimportantroleplayedbyunobservablecharacteristicsimpliesthatconstructinga counterfactualearningsdistributionforthemigrantsbasedonobservablecharacteristics 4 cangreatlybiasthenatureoftheselectionrevealedbythedata.Ourfindingssuggestthat theuseofsuchacounterfactualdistributionwilltendtounderstatethetrueselectionin earnings,sothattheselectionimpliedbythecounterfactualdistributionisfarweakerthan thetrueselection—regardlessofwhetherthereispositiveornegativeselection.The numericalbiasthatresultsfromusingthecounterfactualestimationissizableintheDanish context:morethanhalfofthedifferencebetweentheexpectedearningsofmigrantsand non‐migrantsarisesbecauseofdifferencesinunobservedcharacteristics. Thepaperisorganizedasfollows.Section2sketchestheeconomictheoryunderlyingthe analysisandderivestheoreticalpredictionsconcerningtheself‐selectionofemigrants, usingthenotionofstochasticdominanceasaunifyingconcept.Section3introducesand describestheuniquepopulationdatathatweuseandreportssomesummarystatistics. Sections4and5presentthemainempiricalfindings.Insection4,weexaminetheselection intermsofobservedpre‐migrationearnings.Wepresentastatisticalmethodfortesting thetheoreticalimplicationthattheearningsdistributionoftheemigrantsshould stochasticallydominatethecorrespondingdistributionofthenon‐migrants.Section5 extendstheempiricalworkbyexaminingtheselectionthatoccursintheunobserved componentofearnings.Section6evaluatesthebiasthatresultsfrompredictingthepre‐ migrationearningsofemigrantsfromtheearningsdistributionofnon‐migrants.Section7 examineswhethertheselectionofpersonsmovingtootherEU15countriesdiffersfromthe selectionofmigrantsmovingtocountrieswhereimmigrationrestrictionscomeintoplay. Wefindthatimmigrationrestrictionshavelittleeffectontheselectionofemigrants.Finally, Section8summarizesthestudyanddrawssomelessonsforfutureresearch. 2.Theoreticalframework Previousliteratureontheself‐selectionofmigrantshasfocusedontheconditional expectationsofearningsdistributionsamongmigrantsandstayers.Inthissection,we deriveanovelresult:theRoymodelimpliesthatundercertainconditions,theearnings distributionofmigrantsfirst‐orderstochasticallydominates,orisstochasticallydominated by,theearningsdistributionofstayers.Inabivariatenormalframework,itturnsoutthat 5 theconditionsrequiredforstochasticdominanceareidenticaltotheconditionsthat determinethenatureofself‐selectionintermsofexpectedearnings. Wealsodecomposeself‐selectionintotwocomponents,onethatisdeterminedby differencesinreturnstoobservableskillsbetweensourceandhostcountry,andonethatis determinedbydifferencesinreturnstounobservableskills.Thedistinctionbetween observableandunobservableskills,ofcourse,dependsontheempiricalframeworkandon thedatathatisbeingused;observableskillsincludethevariablesexplainingearningsthat areincludedinthedata,whilethecomponentofearningsthatisleftunexplainedbythe dataistheunobservableskillcomponent.Eventhoughthecontentofthetwocomponents differsamongdatasets,itislikelythatamajorpartofmigrantself‐selectionisdetermined bytheunobservablecomponentsimplybecause“observables”tendtoexplainarelatively smallfractionofthevarianceinearnings. Wetakeasourstartingpointthemigrationdecisionfacedbypotentialmigrantsinatwo‐ countryframework,inlinewithBorjas(1987)andsubsequentliterature.Residentsofthe sourcecountry(country0)considermigratingtothedestinationcountry(country1),and themigrationdecisionisassumedtobeirreversible.Tosimplifythepresentation,wefocus onasingleobservedskillcharacteristicsandsuppressthesubscriptthatindexesa particularindividual.Forconcreteness,thevariablescanbethoughtofasgivingthe worker’syearsofeducationalattainment,butitincludesallthecharacteristicsaffecting individual’sincomethatareobservedinagivensetofdata.Residentsofthesourcecountry facetheearningsdistribution: (1) log wherew0givesthewageinthesourcecountry;r0givestherateofreturntoobservable skills;andtherandomvariable0measuresindividual‐specificproductivityshocks resultingfromunobservedcharacteristicsandisnormallydistributedwithmeanzeroand variance 02 .Thedistributionofobservableskillsinthesourcecountry’spopulationis 6 givenbys=s+s,wheretherandomvariablesisalsoassumedtobenormally distributedwithmeanzeroandvariance s2 . Iftheentirepopulationofthesourcecountryweretomigrate,thispopulationwouldface theearningsdistribution: (2) log wheretherandomvariable1isnormallydistributedwithmeanzeroandvariance 12 . Foranalyticalconvenience,weassumethatCov(0,s)=Cov(1,s)=0,sothatthe individual‐specificunobservedproductivityshocks(i.e.,the“residuals”fromtheregression line)areindependentfromobservablecharacteristics.5Thecorrelationcoefficientbetween 0and1equals01.Itisalsoworthnotingthattherandomvariablesisindividual‐specific andhasthesamevalueforthesameindividualinbothcountries,whereas0and1are bothindividual‐andcountry‐specific. Equations(1)and(2)completelydescribetheearningsopportunitiesavailabletopersons borninthesourcecountry.Assumethatthemigrationdecisionisdeterminedbya comparisonofearningsopportunitiesacrosscountriesnetofmigrationcostsC.Definethe indexfunction: (3) log ∆ , 5Amorerealisticassumptionwouldbethatthecorrelationbetweenobservedandunobservedskillsis positive.However,allowingforpositivecorrelationdoesnotchangethequalitativepredictionsofthemodel. 7 wheregivesa“time‐equivalent”measureofmigrationcosts(=C/w0).Thecross‐country differenceinearningsnetofthetime‐equivalentmigrationcostforanindividualwith averageobservedandunobservedcharacteristicsisgivenby =[(1–0)+(r1–r0)s–].Thedifferenceinearningsattributabletoindividual ,wherevi=(ris+i)for deviationfromaveragecharacteristicsisgivenby ∈ 0,1 .ApersonemigratesiftheindexI>0,andremainsintheorigincountryotherwise. Migrationcostsvaryamongpersons—butthesignofthecorrelationbetweencosts (whetherindollarsorintime‐equivalentterms)andskills(bothobservedand unobserved)isambiguousanddifficulttodetermine.Theheterogeneityinmigrationcosts canbeincorporatedtothemodelbyassumingthatthedistributionoftherandomvariable inthesourcecountry’spopulationisgivenby=+,whereisthemeanlevelof migrationcostsinthepopulation,andisanormallydistributedrandomvariablewith meanzeroandvariance 2 .However,Borjas(1987)andChiquiarandHanson(2005)show thattime‐equivalentmigrationcostsdonotplayaroleinthealgorithmthatdeterminesthe selectionofemigrantsifeitherthosecostsareconstant(sothat 2 =0),orifthecostsare uncorrelatedwithskills.Foranalyticalconvenience,weassumethattime‐equivalent migrationcostsareconstant,sothat=.6Theoutmigrationratefromthesourcecountry isthengivenby: (4) 0 ∗ ∆ ∗ 1 ∆ ∗ , wherev*=(v1v0)/visastandardnormalrandomvariable;*=/v; 2v =Var(v1– v0);andisthestandardnormaldistributionfunction.7 6If werenegativelycorrelatedwithskills,thenegativecorrelationwouldtendtoinducethemoreskilledto migrate,creatingapositivelyselectedmigrantflow.Thiswouldstrengthenpositiveself‐selection,and weakennegativeself‐selection. 7Itisstraightforwardtostudyequation(4)toconfirmthatthemigrationraterises,whenmeanincomeinthe sourcecountryfalls,meanincomeinthehostcountryrises,returnstoobservedskillsinthesourcecountry fall,returnstoobservedskillsinthehostcountryrise,time‐equivalentmigrationcostsfallandwhenmean observedskillsriseifr1>r0orfallifr1<r0. 8 Inadditiontoidentifyingthedeterminantsoftheoutmigrationrateinequation(4),theRoy modelletsusexaminewhichpersonsfinditmostworthwhiletoleavethesourcecountry.8 Inthefollowing,weexaminetheself‐selectionofemigrantsalongtwodimensions: selectionintermsofobservableskillssandselectionintermsofunobservableskills0, whichtogethercombineintoselectionintermsoftotalproductivityorearnings,as measuredbylogw0. LetFM(z)andFN(z)representthe(cumulative)probabilitydistributionsofskillsor earningsformigrantsandnon‐migrantsinthesourcecountry,respectively,wherez denotesaparticularmeasureofskills(e.g.,observableorunobservablecharacteristicsor income).Bydefinition,theprobabilitydistributionofmigrantsFM(z)first‐order stochasticallydominatesthatofstayersFN(z)if: (5) ∀ , andthereisatleastonevalueof forwhichastrictinequalityholds.9Fromnowon, wheneverwerefertostochasticdominance,wemeanfirst‐orderstochasticdominance. Equation(5)impliesthatalargerfractionofthemigrantshaveskillsaboveanythreshold z*.Putdifferently,foranylevelofskillsz*,thepopulationdescribedbytheprobability distributionFMismoreskilledbecausealargerfractionofthegroupexceedsthatthreshold. Themigrants,inshort,arepositivelyselected.Negativeselection,ofcourse,wouldoccurif thereversewastrueand z,withastrictinequalityholdingforatleastone valueof . 8Throughouttheanalysis,weassumethat*isconstant.Themigrationflowiseffectivelyassumedtobe sufficientlysmallthattherearenofeedbackeffectsonthelabormarketsofeitherthesourceordestination countries. 9Analternativeandperhapsmoreintuitivedefinitionofstochasticdominanceisintermsof quantiles.Let and bethequantilefunctionsoforder oftheskilldistributionsofmigrantsand forall0 1andthere non‐migrants.FM(z)stochasticallydominatesFN(z)ifandonlyif isatleastonevalueof forwhichastrictinequalityholds. 9 Iftheskilldistributionofmigrantsstochasticallydominatesthatofnon‐migrants,the stochasticdominancethenalsoimpliesthetypicaldefinitionofpositiveselectionthatis basedonconditionalexpectations: (6) | 0 | 0 , sothatmigrants,onaverage,aremoreskilledthanstayers.Conversely,iftheprobability distributionofstayersstochasticallydominatesthatofmigrants,andtherewasnegative selection,itwouldalsofollowthat | 0 | 0 .Theconverse,however,isnot trueforageneraldistribution:Aclaimofpositiveselectioninexpectations,asdefinedby equation(6),doesnotimplythattheskilldistributionofmigrantsstochasticallydominates thatofnon‐migrants. Toderivethestochasticorderingoftheskilldistributionsofmigrantsandnon‐migrants,let f(x,v)beabivariatenormaldensityfunction,withmeans(x,v),variances ( 2x , 2v ) and correlationcoefficient.Further,lettherandomvariablevbetruncatedfrombelowat pointaandfromaboveatpointb.Arnoldetal.(1993,p.473)showthatthe(marginal) momentgeneratingfunctionofthestandardizedrandomvariable(x‐x)/x,giventhe truncationofv,isgivenby: (7) / , where=(a–v)/v;and=(b–v)v. Intermsofthemigrationdecision,thetruncationintherandomvariablev=v1–v0inthe sampleofmigrantsisfrombelowandimpliesthat=–*=k,and=,wherekisthe truncationpoint.Inthesampleofstayers,thetruncationinvisfromabove,andthe truncationpointsare=–and=k.Bysubstitutingthesedefinitionsintoequation(7),it 10 canbeshownthatthemomentgeneratingfunctionsfortherandomvariablegivingthe conditionaldistributionsofskillcharacteristicxformigrantsandstayersreduceto: (8) 1 Φ 1 Φ and (9) Φ Φ . ConsideranytwodistributionfunctionsF(z)andG(z).Thistle(1993,p.307)showsthatF willstochasticallydominateGifandonlyif: (10) , ∀ 0, wheremFisthemomentgeneratingfunctionassociatedwithdistributionF;mGisthe momentgeneratingfunctionassociatedwithG. Therankingofthemomentgeneratingfunctionsinequation(10)implieswecandetermine thestochasticrankingofthetwodistributionsbysimplysolvingfortherelevant correlationcoefficient,andcomparingequations(8)and(9).Suchacomparisonimplies that: (11) , 0 , 0. 11 Inotherwords,migrantsarepositivelyselectedif>0,andarenegativelyselected otherwise.Considerinitiallythestochasticrankinginobservablecharacteristics.The randomvariablex=s,andtherelevantcorrelationcoefficientisdefinedby: , (12) 1 . Equation(12)showsthatthestochasticorderingofthedistributionsofobservableskillsof migrantsandnon‐migrantsdependsonlyoninternationaldifferencesintherateofreturn toobservableskills.Theskilldistributionofmigrantswillstochasticallydominatethatof stayerswhentherateofreturntoskillsishigherabroad.Conversely,theskilldistribution fornon‐migrantswillstochasticallydominatethedistributionformigrantsiftherateof returntoobservableskillsislargerathome. Considernextthestochasticorderingintheconditionaldistributionsofunobservableskills 0.Therelevantcorrelationfordeterminingthistypeofselectionisgivenby: (13) , 1 . Itfollowsthatthedistributionofunobservableskillsformigrantsstochasticallydominates thatfornon‐migrantswhen 1.Notethatthenecessaryconditionforpositive selectionhastwocomponents.First,theunobservedcharacteristicsmustbe“transferable” acrosscountries,sothat01issufficientlyhigh.Second,theresidualvarianceinearningsis largerinthedestinationcountrythaninthesourcecountry.Theresidualvariances 20 and 12 ,ofcourse,measurethe“price”ofunobservedcharacteristics:thegreatertherewards tounobservedskills,thelargertheresidualinequalityinwages.10Aslongasunobserved 10Thisinterpretationofthevariancesfollowsfromthedefinitionofthelogwagedistributioninthehost countryintermsofwhatthepopulationofthesourcecountrywouldearniftheentirepopulationmigrated there.Thisdefinitioneffectivelyholdsconstantthedistributionofskills. 12 characteristicsaresufficientlytransferableacrosscountries,emigrantsarepositively selectedwhentherateofreturntounobservableskillsishigherinthedestination. Finally,considerthestochasticrankingin“total”productivity.Theearningsdistributionin thesourcecountrygivenbyequation(1)canberewrittenas: (14) log 0 α0 0μs 0ε ε0 α 0 0μ 0, wherethenormallydistributedrandomvariablev0hasmeanzeroandvariance 2v0 .The relevantcorrelationfordeterminingthestochasticrankingoftheearningsdistributionsof migrantsandnon‐migrantsis: , (15) 1 1 1 , where ⁄ and1 ⁄ . Thesignofthecorrelationinequation(15),whichdeterminesthenatureoftheselectionin pre‐migrationearnings,dependsonthesignofaweightedaverageoftheselectionthat occursinobservableandunobservablecharacteristics.Interestingly,theweightisthe fractionofthevarianceinearningsthatcanbeattributedtodifferencesinobservableand unobservablecharacteristics,respectively. Ifthereispositive(negative)selectioninboth“primitive”typesofskills,therewillthenbe positive(negative)selectioninpre‐migrationearnings.If,however,therearedifferent typesofselectioninthetwotypesofskills,theselectionineachtypeisweightedbyits importanceincreatingthevarianceoftheearningsdistribution.Itiswellknownthat observablecharacteristics(suchaseducationalattainment)explainarelativelysmall fractionofthevarianceinearnings(perhapslessthanathird).Asaresult,equation(15) impliesthatitistheselectioninunobservablesthatismostlikelytodeterminethenatureof theselectioninthepre‐migrationearningsofemigrants.Thisimplicationplaysan 13 importantroleinexplainingwhytheevidencereportedinFernández‐HuertasMoraga (2011)andKaestnerandMalamud(2014)conflictswiththatofChiquiarandHanson (2005). Asmentionedearlier,thestochasticdominanceresultsnecessarilyimplyselectioninterms ofconditionalexpectations.Inthecaseofbivariatenormaldistributions,itfollowsthatthe expectationoftheearningsdistributionofmigrantsE(logw0|v*>*)isgivenby: (16) | ∗ Δ ∗ 1 Δ ∗ 1 Δ ∗ , where*)=(*)/[1(*)]>0,andisthedensityofthestandardnormal distribution.Ascanbeseenbyexaminingequation(16),theconditionsthatdeterminethe self‐selectionintermsofexpectationsarethesameastheconditionsthatdeterminethe stochasticorderingoftheskilldistributionsofmigrantsandnon‐migrants.Inthenormal distributionframeworkthatunderliesthecanonicalRoymodel,stochasticdominance impliesselectioninexpectations,andviceversa. Inempiricalapplications,however,thepredictionofstochasticdominanceislikelytobe muchlessrobustthanthepredictionsconcerningexpectationsbecausetestingfor stochasticdominancewillrequireamorerigoroustestthansimplycomparingtheaverage incomesorskillsofmigrantsandnon‐migrants.Ifonejustcomparestheaveragestofind outhowmigrantsareself‐selected,thefindingscanbecompatiblewiththepredictionsof theRoy‐modelevenifalargenumberofindividualsinthedatabehaveagainstthe stochasticdominancepredictionsofthemodel.Asaresult,establishinganempirical patternofstochasticdominanceprovidesverystrongevidencethatdifferencesinskill pricesareindeedimportantinmigrationdecisions. 14 3.Data OuranalysisusesadministrativedatafortheentireDanishpopulationfrom1995to2010. ThedataismaintainedandprovidedbyStatisticsDenmarkanditderivesfromthe administrativeregistersofgovernmentalagenciesthataremergedusingauniquesocial securitynumber.11 Foreachyearbetween1995and2004,weidentifiedallDanishcitizensaged25‐54who livedinDenmarkduringtheentirecalendaryear.12Werestricttheanalysistopersonswho workedfulltime.13Migrationdecisionsofpart‐timeworkersorofworkersoutsidethe laborforcemaybedrivenbydifferentfactors,andtheobservedincomeoftheseworkers maynotbeindicativeoftheirtrueearningspotential.Theincomevariableforeachyearis constructedbyaddingtheworker’sannualgrosslaborincomeandpositivevaluesof freelanceincome.14 Wemergedthisinformationwithdatafromthemigrationregisterfortheyears1995 through2010.Themigrationregisterreportsthedateofemigrationandthecountryof destination.EventhoughitispossibleforDanishcitizenstoemigratewithoutregistering, weexpectthatthenumbersofpersonswhodosoissmallasitisalegalrequirementfor 11AllresidentsinDenmarkarelegallyrequiredtohaveasocialsecuritynumber.Thisnumberisnecessaryto manyactivitiesindailylife,includingopeningabankaccount,receivingwagesandsalariesorsocial assistance,obtaininghealthcare,andenrollinginschool. 12Aperson’sageismeasuredasofJanuary1sttheyearafterthereferenceyear. 13Theadministrativedataallowsthecalculationofavariablethatmeasurestheamountof“workexperience gained”duringthecalendaryear.Themaximumpossiblevalueforthisvariableis1,000.Werestrictour sampletoworkerswhohaveavalueof900orabove,sothatoursampleroughlyconsistsofpersonswho workedfulltimeatleast90percentoftheyear.Inordertomeasuretheworkexperiencegainedduringa givenyear,wesubtractthevaluefromthepreviousyearfromthecurrentvalueofthevariable.Personswho hadamissingvalueforworkexperienceineitherofthetwoyearsweredroppedfromthesample.Missing valuesinthisvariabletypicallyindicatethatthepersonspenttimeabroad. 14Theinformationonearningsistakenfromthetaxrecordsforeachcalendaryear.Thisvariableis consideredtobeofhighqualitybyStatisticsDenmark.Somepersonsalsoreportnegativevaluesforfreelance income.Thesenegativevaluesarelikelytobeduetolossesarisingfrominvestmentsanddonotreflectthe productivecharacteristicsoftheindividual. 15 Danishcitizenstoreportemigration.Danishtaxlawsprovidefurtherincentivesfor migrantstoregisterwhentheyemigrate. Afteridentifyingthepopulationofinterest,wedeterminedforeachpersonwhetherheor sheemigratedfromDenmarkduringthefollowingcalendaryear.Ifwefoundthata particularpersonemigrated,wesearchedforthepersoninthemigrationregisterfor subsequentyearstodetermineifthemigrantreturnedtoDenmarkatsomepointinthe future,andrecordedthedateofpossiblereturnmigration.Themigrationregisterincludes near‐completeinformationonreturnmigration,asregistrationinDenmarkisrequiredfor thereturnmigranttobeeligibleforincometransfersandtobecoveredbynationalhealth insurance. Tofocusonmigrationdecisionsthatarepermanentinnature,werestricttheanalysisto migrationspellsthatareatleastfiveyearslong.15Wedefineamigrantasanindividualwho isfoundinoneofthe1995‐2004cross‐sections,whoemigratesfromDenmarkduringthe followingyeartodestinationsoutsideGreenlandortheFaroeIslands,andwhostays abroadforatleastfiveyears.16Individualswhoemigratedforlessthanfiveyearswere removedfromthedata,andtherestofthepopulationisthenclassifiedasnon‐migrants.17 Theanalysisofbothmigrantsandnon‐migrantsisfurtherrestrictedtoonlyincludeDanish citizenswhodonothavean“immigrationbackground.”18 15Havingstayedabroadforfiveyearspredictslongermigrationspells.Forexample72%ofmenand71%of womenwholeftDenmarkin1996andwerestillabroadafterfiveyearswerealsoabroadaftertenyears. 16GreenlandandtheFaroeIslandsareautonomousregionsbutstillpartofDenmark.Wehaveexcluded thesedestinationsasmanyofthesemigrantscouldhaveoriginatedinGreenlandortheFaroeIslands,and manywouldactuallybereturninghomeratherthanemigratingfromDenmark.Theexactduration requirementswere1,825daysorlongerforlong‐termmigrants. 17Wealsoexaminedtheselectionofshort‐termmigrantsandthequalitativeresultsaresimilartothose reportedbelow,althoughtheintensityofselectionisweaker. 18StatisticsDenmarkdefinesapersontohave“noimmigrantbackground”ifatleastoneoftheparentswas borninDenmarkandthepersonis/wasaDanishcitizen.Wesearchedthepopulationregistersfrom1980to 2010fortheparentsofthepersonsinoursample,andifaparentwasfoundheorshewasrequiredtobea Danewithnoimmigrantbackgroundaswell. 16 Table1reportssummarystatisticsfromtheDanishadministrativedata.Thepaneldataset containsover6.4millionmaleand5.1millionfemalenon‐migrants.Theconstructionofthe dataimpliesthatnon‐migrantsappearinthedatamultipletimes(potentiallyonceineach cross‐sectionbetween1995and2004).Wewereabletoidentify7323maleand3436 femalemigrants.Byconstruction,thesemigrantsarepersonswhowefirstobserveresiding inDenmarkandwholeftthecountryatsomepointbetween1996and2005.AsTable1 shows,theDanishemigrantsareyoungerthanthenon‐migrants,regardlessofgender. Despitetheagedifference,theemigrantsearnedhigherannualincomesintheyearpriorto themigrationthanthenon‐migrants. Weconstructasimplemeasureof“standardizedearnings”thatadjustsfordifferencesin age,gender,andyeareffects.Standardizedearningsaredefinedbytheratioofaworker’s annualgrossearningstothemeangrossearningsofworkersofthesameageandgender duringthecalendaryear.19Table1showsthatemigrantsearnmorethannon‐migrantsin termsofstandardizedearnings.Inparticular,maleemigrantsearnabout30percentmore thannon‐migrants,andfemaleemigrantsearnabout20percentmore. Table2reportsthenumberofemigrantsmovingtodifferentdestinations.Thelargest destinationsforbothmenandwomenaretwootherNordiccountries,SwedenandNorway, aswellastheUnitedStates,theUnitedKingdomandGermany.20Thesefivecountries accountfor57percentofallemigration. Finally,itisalsointerestingtosummarizethelinkbetweeneducationandemigration. Table3reportstheeducationdistributionsfornon‐migrantsandmigrants.Itisevident thatthemigrantstendtobemoreeducatedthanthenon‐migrants,amongbothmenand women.Forexample,50percentofDanishmalenon‐migrantshaveavocationaleducation, ascomparedtoonly30percentofmigrantstonon‐Nordicdestinations.Similarly, the 19Bothmigrantsandnon‐migrants,aswellasshorter‐termmigrants,areincludedinthesecalculations. 20Ifwerelaxtheconstraintsonlabormarketstatusandagetoenterthesample,theUnitedKingdom emergesasthelargestdestinationbecauseofthelargenumberofDanishstudentswhopursuetheir educationthere. 17 fraction of male migrants to non-Nordic destinations with a Master’s degree is 24 percent, whereas only 7 percent of male non-migrants have a Master’s degree. In order to add time dimension, the evolution of the emigration rate is presented in figure 1a for men and in figure 1b for women separately for the whole population and for those with higher education and without higher education. As we are looking at long-term migration, the emigration rates are small, but there is an upward trend. The rate is higher for men and for those with higher education. We also computed the difference between the average of the log standardized earnings, or a degree of selection, for migrants and non-migrants for each year from 1995 to 2004 for men and women separately. The results are reported in figures 2a and 2b. There is a downward trend in the difference for both men and women. The finding makes sense: when the migrants are positively self-selected and the emigration rate gets bigger the average standardized earnings of migrants should get smaller. However, the variation across years is small, so that pooling the data is justified. Tosummarize,thedescriptivefindingssuggestastrongdegreeofpositiveselection—at leastasmeasuredbyeducationanddifferencesintheconditionalmeansofearnings. 4.Selectioninpre‐migrationearnings Thissectionpresentsempiricalevidenceontheself‐selectionofemigrantsfromDenmark intermsofstandardizedpre‐emigrationearnings.Themainempiricalfindingisthatlong‐ termemigrantsfromDenmarkwere,ingeneral,muchmoreproductivepriortotheir migrationthanindividualswhochosetostay. Ofcourse,thesummarystatisticsreportedinTable1alreadysuggestpositiveselection amongemigrantsbecausetheirstandardizedearningsexceededthoseofnon‐migrants. However,differencesinconditionalaveragescouldbemaskingsubstantialdifferences betweentheunderlyingprobabilitydistributions.Ourtheoreticalframeworkpredictsthat thedistributionofearningsformigrantsshouldstochasticallydominatethatofnon‐ migrants.Asaresult,ourempiricalanalysiswillmainlyconsistofcomparingcumulative 18 distributionsofstandardizedearningsbetweenmigrantsandnon‐migrants.Anadvantage ofsimplygraphingandexaminingthecumulativedistributionsisthattheanalysisdoesnot requireanytypeofkerneldensityestimation,andthatwedonotneedtoimposeany statisticalassumptionsorparametricstructureonthedata.Wewillalsopresentkernel densityestimatesoftheearningsdensityfunctionsasanalternativewayofpresentingthe keyinsights.Finally,wewillderiveandreportstatisticalteststodetermineifthedata supportthetheoreticalpredictionofstochasticdominance. Figure3aillustratesthecumulativeearningsdistributionsformalemigrantstoNordic countries,malemigrantstodestinationsoutsideNordiccountries,andformalenon‐ migrants.Thevaluesofthestandardizedearningsaretruncatedat‐2and2tomakethe graphsmoretractable.21Thefigureconfirmsthatmigrantswerepositivelyselectedduring thestudyperiod.Thecumulativedistributionfunctionofstandardizedearningsof migrantstodestinationsoutsidetheNordiccountriesisclearlylocatedtotherightofthe correspondingcumulativedistributionfornon‐migrants,aswouldbethecaseifthe cumulativedistributionofmigrantsstochasticallydominatesthatofnon‐migrants.The figurealsoshowsthatthedistributionfunctionformigrantstootherNordiccountriesis locatedtotherightofthatfornon‐migrants.However,theselectionofthemigrantsto Nordiccountriesseemsweaker.Thisweakerselectionmayarisebecausetherateofreturn toskillsinNordiccountriesisrelativelylowwhencomparedtothatinotherpotential destinations.22Figure3bpresentscorrespondingevidenceforwomen.23Themainfindings arequalitativelysimilar,butthepositiveselectionseemsweaker. 21Thetruncationdoesnotaltertheresultsconsiderablyasthesharesofobservationsbelowthelowerand abovetheuppertruncationpointsaresmall.Further,thefollowinganalysisofdifferencesbetween cumulativedistributionfunctionsdoesnotusetruncation.0.07%ofnon‐migrants,0.19%migrantstoother Nordiccountriesand0.11%ofmigrantstootherdestinationsliebelowthelowertruncationpoint. Correspondingly,0.03%ofnon‐migrantsand0.21%ofmigrantstodestinationsoutsideNordiccountrieslie abovetheuppertruncationpoint.TherearenomigrantstootherNordiccountriesabovetheupper truncationpoint. 22Moreover,someDanesmayliveinsouthernSwedenbutworkinDenmark.Asthistypeofmigrationisnot relatedtoreturnstoskillsinthedestinationcountrythisshoulddecreasetheestimatedselectiontoNordic countries. 19 Figure4apresentsthecorrespondingkernelestimatesofthedensityfunctionsofthe logarithmofstandardizedearningsformen,whileFigure4bpresentstherespectivegraphs forwomen.24Thedensityfunctionsagainrevealthepositiveselectionofmigrantsmoving outsidetheNordiccountries,bothformenandwomen. Asisevidentfromthefigures,Kolmogorov‐Smirnovtestscomparingtheearnings distributionsfordifferentgroupsrejectthehypothesisthattheunderlyingearnings distributionsarethesameatahighlysignificantlevel.Inadditiontoshowingthatthe cumulativedistributionsaredifferent,itisalsoimportanttodetermineiftheevidence statisticallysupportsthetheoreticalpredictionthatthecumulativedistributionfunctionof migrantsstochasticallydominatesthatofnon‐migrants.Statisticaltestsforfirst‐order stochasticdominancearehighlysensitivetosmallchangesintheunderlyingdistributions, makingitdifficulttorankdistributionsinmanyempiricalapplications.25Asnotedby DavidsonandDuclos(2013),itmaybeimpossibletoinferstochasticdominanceoverthe fullsupportofempiricaldistributionsifthedistributionsarecontinuousinthetails,simply becausethereisnotenoughinformationinthetailsformeaningfultestingofanystatistical hypothesis.Itwouldthenmakesensetofocusontestingstochasticdominanceovera restrictedrangeofthedistribution.Weapplyanapproachthatcharacterizestherange overwhichthevalueofthecumulativedistributionfunctionfornon‐migrantsis statisticallysignificantlylargerthanthatofnon‐migrants. Inparticular,wecalculatethedifferencebetweenthecumulativedistributionfunctions withconfidenceintervals.Tocalculatetheconfidenceintervalsweusetoolsthatwere 23Forwomen,0.06%ofnon‐migrantsliebelowthelowertruncationpointand0.00%ofnon‐migrantslie abovethehighertruncationpoint.Therearenomigrantslyingbelowthelowerorabovethehigher truncationpoint. 24FollowingLeibbrandtetal.(2005)andFernandes‐HuertasMoraga(2011),weuseSilverman’sreference bandwidthmultipliedby0.75topreventover‐smoothing.Thesamebandwidthisusedalsoinallthekernel densityestimatesreportedinsubsequentcalculations. 25Thiscanleadtodifficultiesinempiricalwork,andlessrestrictiveconceptssuchasrestrictedfirstorder stochasticdominance(Atkinson,1987)andalmoststochasticdominance(LeshnoandKevy,2002)havebeen proposed. 20 introducedinAraar(2006)andAraaretal.(2009).26Moreformally,wetestthefollowing nullhypothesisforeach ∈ ,where isthejointsupportofthetwodistributions: H0:F(w))=FN(w)–FM(w) 0, (17) againstthealternativehypothesis H1:F(w))=FN(w)–FM(w) 0 (18) andcharacterizeanyrelevantrangeof whereweareabletorejectthenull. Let bethestandarddeviationoftheestimator∆ w ,andletz()bethe(1–)th quantileofthestandardnormaldistribution.27DavidsonandDuclos(2000)showthatthe estimator∆ w isconsistentandasymptoticallynormallydistributed.Wecanthen definethelowerboundforaone‐sidedconfidenceintervalfor∆ as:28 (19) ∆ ∆ w . WeestimatethestandarderrorsusingaTaylorlinearizationandallowforclusteringatthe individuallevel.Wethenimplementtheprocedurebycalculatingthelowerboundsofthe confidenceintervalsfortheestimate∆ w definedinequation(19). Table4reportsthesharesofmigrantsandnon‐migrantswhoseearningsareoutsidethe rangeoverwhichthemigrantdistributionstochasticallydominatesata95percent confidencelevel.Considerfirstthedistributionsofnon‐migrantmenandmenmigratingto destinationsoutsidetheNordiccountries.Althoughitisnotclearlyvisiblefromfigure3a, 26ThecalculationsareimplementedusingtheDASPStatamodulepresentedinAraarandDuclos(2013). 27Theasymptoticvarianceof∆ isderivedinAraaretal.(2009). 28Chow(1989)provedthetheoremforthecaseofindependentsamples.DavidsonandDuclos(2000)show thattheresultsalsoextendtothecaseofpairedincomesfromthesamepopulation. 21 thecumulativedistributionfunctionscrossnearthelowertailsofthedistributions.Figure 5adepicts∆ w andlowerandupperboundsfora95%confidenceinterval.29The lowerboundoftheconfidenceintervalispositiveonmostoftherangecoveringthe supportsofthedistributions.Only2.0percentofthemigrantsand3.4percentofthenon‐ migrantsliebelowthelowerboundoftherangewherethelowerboundoftheconfidence intervalispositive,whereasthesharesofmigrantsandnon‐migrantsabovetheupper boundoftherangeare0.1and0.0percent.Putdifferently,theearningsofalmost98 percentofmalemigrantstodestinationsoutsideNordiccountriesareontherangewhere thecumulativedistributionfunctionfornon‐migrantsisstatisticallysignificantlyabovethe functionformigrants. w andtheboundsfora95%confidenceintervalfornon‐migrant Figure5bdepicts∆ womenandwomenmigratingtodestinationsoutsideNordiccountries.Only2.8percentof themigrantsand4.1percentofthenon‐migrantshaveearningsbelowtherangewherethe lowerboundoftheconfidenceintervalispositive,andanevensmaller0.2percentofthe migrantsand0.0percentofthenon‐migrantshaveearningsabovethisrange.Weinterpret thesefindingsassupportforthestochasticdominancepredictionforbothmenandwomen migratingoutsideNordiccountries. Figures6aand6bandthebottompanelofTable4presentacorrespondinganalysisby comparingthecumulativedistributionsofpersonswhomigratetootherNordiccountries withthatofnon‐migrants.Almost12percentofmalemigrantsand16percentofmalenon‐ migrantshaveearningsthatliebelowtherangewhere ∆ ispositive,andanother1.5 percentofthemigrantsand0.7percentofthenon‐migrantshaveearningsabovetherange. Putdifferently,about87percentofthemalemigrantstoNordiccountrieshaveincomeson therangewhere ∆ ispositive.Forwomen,itcanbeseeninTable4thatalmost95 percentofthemigrantsgoingtoNordiccountrieshaveearningsontherangewhere ∆ ispositive.Tosumup,thefindingsoffersupporttothestochasticdominance 29Theupperboundsarecalculatedsimilarlytothelowerbounds. 22 predictionformaleandfemalemigrantsregardlessoftheirdestination,althoughthe evidenceisweakerformenwhomigratedtoNordiccountries. AdditionalsupportforourtheorycomesfromMexico.Ourtheorypredictsthatthe earningsdistributionofmigrantsfromMexicototheUnitedStatesshouldbestochastically dominatedbytheearningsdistributionofnon‐migrants.Fernández‐HuertasMoraga (2011)presentsthesedistributionsformen.Althoughhedoesnotpresentconfidence intervalsaswedo,thefiguressuggestapatternthatmirrorswhatwefindforDenmark, reversingthecurvesformigrantsandnon‐migrants.InMexico,thewagedistributionof non‐migrantsstochasticallydominatesthatofmigrants,apartfromanoverlapforafew percentatthebottomandconvergingatthetop. 5.Selectioninunobservedcharacteristics Intheprevioussection,wedocumentedtheselectionthatcharacterizesthemigrantsusing thetotalpre‐migrationearnings(afteradjustingforageandyear).Wenowexaminea specificcomponentofearnings,namelythecomponentduetounobservedcharacteristics. Inparticular,wenowadjustfordifferencesineducationalattainmentbetweenmigrants andnon‐migrants(aswellasotherobservablevariables)byrunningearningsregressions, anddeterminewhetherthedistributionoftheresidualsdiffersbetweenthetwogroups.30 Byconstruction,theresidualsfromaMincerianwageregressionreflectthepartofearnings thatisuncorrelatedwiththeobservedmeasuresofskill.Obviously,thedecompositionis somewhatarbitrarybecauseitdependsonthecharacteristicsthatareobservedandcanbe includedasregressorsinthewageequation.Nevertheless,thestudyofemigrantselection intermsofwageresidualsisimportantforanumberofreasons. 30Intheearningsregressionsweusenon‐standardizedannualearningsasthedependentvariable.We includeageandyearfixedeffectsandruntheregressionsseparatelyformenandwomen. 23 First,selectionintermsofunobservablecharacteristicsshedslightontheimportanceof thequalityofjobmatchesrelativetotheskillcomponentthatisinternationally transferable.Thetheorypredictsthatthenatureoftheselectioninunobservable characteristicsdependsonthemagnitudeofthecorrelationcoefficientmeasuringhowthe sourceanddestinationcountriesvaluethesetypesofskills.Aslongasthiscorrelationis stronglypositive(sothatunobservedcharacteristicsareeasilytransferableacross countries),Danishemigrantswouldbepositivelyselectedinunobservables.Afterall,the payofftothesetypesofskillsislikelytobegreaterinthedestinationcountries.However,it couldbearguedthatthecorrelationbetweenthewageresidualsinDenmarkandabroad maybe“small”.Forexample,theresidualsfromthewageregressionmaybelargely reflectingthequalityoftheexistingjobmatchintheDanishlabormarket,ratherthan measuringtheworker’sinnateproductivity.Totheextentthatthequalityofthejobmatch playsanimportantroleingeneratingtheresidual,thecorrelationinthisresidualacross countrieswouldbeexpectedtobeweak(infact,apurerandommatchingmodelwould suggestthatitwouldbezero).Asaresult,therewouldbenegativeselectioninunobserved characteristicssimplybecauseDanishworkerswithgoodjobmatches(andhencehigh valuesoftheresidual)wouldnotmove. Second,thetheoryalsosuggeststhatthenatureoftheselectioninpre‐migrationearnings dependsonaweightedaverageoftheselectionthatoccursinobservableandunobservable characteristics,withtheweightsbeingthefractionofearningsvarianceattributableto eachtypeofskill.Becauseobservablecharacteristicsplayonlyalimitedroleinexplaining thevarianceofearningsinthepopulation,itiscrucialtopreciselydelineatethenatureof selectioninunobservablecharacteristics. Table5reportstheMincerianwageregressionsthatweusetocalculatetheresiduals.The sampleincludesthewholepopulationofprimeagedfulltimeworkerspooledoverthe entire1995‐2004period.Inadditiontovectorsoffixedeffectsgivingtheworker’sageand educationalattainment,wealsoincludetheworker’smaritalstatusandnumberofchildren. Theregressionsareestimatedseparatelyformenandwomen. 24 Figure7apresentsthecumulativedistributionsofwageresidualsformalemigrantsto Nordiccountries,malemigrantstodestinationsoutsideNordiccountries,andmalenon‐ migrants.Thevaluesoftheresidualsaretruncatedat‐2and2,arangethatcovers practicallyallofthepopulation.31Thecumulativedistributionfunctionofresidualsfor emigrantswhomovedoutsidetheNordiccountriesislocatedtotherightofthecumulative distributionformigrantstoNordiccountries,whichinturnislocatedtotherightofthe cumulativedistributionofthenon‐migrants.Thevisualevidence,therefore,providesa strongindicationthatmigrantsarepositivelyselectedintermsofunobserved characteristics.Figure7bpresentstheanalogousevidenceforwomen.32Thefigureshows thatfemalemigrantsarealsopositivelyselectedintermsofwageresiduals.Aswasthe casewhencomparingthemeasureofpre‐migrationearningsintheprevioussection,the selectioninunobservedcharacteristicsislesspronouncedforwomenthanformen.One explanationforthiscouldbethatmenaretypicallyprimaryearnersincouples. WealsoperformedKolmogorov‐Smirnovtestsonthedistributionsofresidualsfornon‐ migrantsandmigrantstootherNordiccountriesandformigrantstootherdestinations (separatelyformenandwomen).Allthetestsclearlyrejectedthenullhypothesis, confirmingthatthedistributionsofresidualsindeeddifferamongthegroups.33 Theevidenceonthepositiveselectionofmigrantsinunobservedcharacteristicsobviously impliesthattheselectioninpre‐migrationearningsdocumentedintheprevioussection cannotbeattributedsolelytothefactthatmigrantsaremoreeducated.Instead,wefind thatthereispositiveselectionwithineducationgroups.Thisresultalsohasimplicationson 31Formen,0.05%ofnon‐migrants,0.19%ofmigrantstootherNordiccountriesand0.11%ofmigrantsto otherdestinationsliebelowthelowertruncationpoint.Correspondingly,0.03%ofnon‐migrantsand0.23% ofmigrantstodestinationsoutsideNordiccountrieslieabovetheuppertruncationpoint.Thereareno migrantstootherNordiccountriesabovetheuppertruncationpoint. 32Forwomen,0.05%ofnon‐migrantsliebelowthelowertruncationpointand0.00%ofnon‐migrantslie abovethehighertruncationpoint.Therearenomigrantslyingbelowthelowerorabovethehigher truncationpoint. 33Thep‐valueforthetestbetweenwomenmigratingtootherNordiccountriesandtootherdestinationswas 0.015andalltheotherp‐valueswere0.000,sothatalltestsclearlyrejectthehypothesisthatthe observationsaredrawnfromthesamedistribution. 25 theinterpretationofearningsregressionresidualsingeneral.Theresidualsfromwage regressionsaresometimesinterpretedasreflectingthevalueofthejobmatchbetweenthe workerandtheemployer.Ifahighvaluefortheresidualonlyreflectsagoodmatch,we wouldthenexpecttofindthatworkerswithlargeresidualswouldbelesslikelytochange jobsandlesspronetomigrate.Ourfindingsclearlyrejectthisinterpretation.Comparing resultsontheself‐selectiontootherNordiccountriesandtherestoftheworldsuggests thatsearchforabetterjobmatchtothosewhohaveabadjobmatchinDenmarkismore pronouncedamongmigrantstootherNordiccountries.34 Asintheprevioussection,wealsocalculatedthedifferencebetweenthecumulative distributionfunctionswithconfidenceintervalstodeterminewhetherempiricalevidence supportsthestochasticdominanceprediction.ThetestresultsaresummarizedinTable6. Figure8adepicts∆ w andthelowerandupperboundsfora95%confidenceinterval forthecomparisonbetweennon‐migrantmenandmenmigratingtodestinationsoutside Nordiccountries.Thelowerboundofthe95%confidenceintervalispositiveontherange ofresidualscoveringmostofthesupportofthetwodistributions.9.9percentofthe migrantsand15.2percentofthenon‐migrantshavewageresidualsbelowthelowerbound ofthisrange,whereasthesharesofmigrantsandnon‐migrantsabovetheupperboundof therangeare0.1and0.0percent.35 Figure9adepicts∆ w andtheboundsfora95%confidenceintervalfornon‐migrant menandmenmigratingtootherNordiccountries.A13percentshareofmigrantsand15 percentofnon‐migrantshavevaluesofthewageresidualthatarebelowthelowerbound oftherangewherethelowerboundofthe95%confidenceintervalispositive,andshares of2percentand1percentofmigrantsandnon‐migrantshavevaluesoftheresidualthat 34Forthisgroup,returnstounobservedproductivityarenotasimportantacriterionforself‐selectionas amongmigrantstotherestoftheworld,simplybecausedifferencesinreturnstoskillsbetweenDenmarkand otherNordiccountriesareminor.Asaresult,themechanismofsearchingforabettermatchqualityismore pronounced. 35Forwomen,20percentofmigrantsand25percentofnon‐migrantshaveearningsresidualsbelowthe lowerboundoftherangewherethelowerboundoftheconfidenceintervalispositive,andsharesofmigrants andnon‐migrantsabovetherangearelessthanonepercent. 26 wouldplacethemabovethisrange.Putdifferently,theresidualsofover84percentofmale migrantstodestinationsoutsideNordiccountriesareontherangewherethecumulative distributionfunctionfornon‐migrantsisstatisticallysignificantlyabovethefunctionfor migrants.36Interestingly,thereisasizableareainthelefttailofthedistributionof residualswheretheupperboundoftheconfidenceintervalisnegative.37 Weconcludebysummarizingtheevidenceasfollows:thereisstrongpositiveselectionin unobservablecharacteristicsinthesampleofmigrantsthatmovedoutsidetheNordic countriesandweakerevidenceofpositiveselectioninthesampleofmigrantswhomoved tootherNordiccountries. 6.Biasincounterfactualpredictions Thefactthatemigrantsareself‐selectedintheirunobservedcharacteristicsimpliesthat usingtheobservablecharacteristicsofmigrantstopredicttheircounterfactualearnings hadtheychosennottomigratewillleadtobiasedresults.Duetodataconstraints,thisis preciselytheempiricalexerciseconductedbyChiquiarandHanson(2005),whoadoptthe methodologyintroducedbyDiNardo,Fortin,andLemieux(1996)andbuilda counterfactualwagedensityofwhattheMexicanimmigrantswouldhaveearnedinMexico hadtheystayed.TheactualwagedensityofMexican“stayers”isthencomparedtothe counterfactualdensityformigrants.Byconstruction,thisapproachignorestheroleof unobservablecharacteristicsintheestimationofthecounterfactualwagedistribution. AclearadvantageoftheDanishadministrativedataisthattheearningsofemigrantscanbe observedbeforetheyemigrate,sothereisnoneedtobuildacounterfactualdensity.One justneedstocomparetheearningsdistributionofnon‐migrantstotheactualdistribution 36Forwomen,20percentofmigrantsand25percentofnon‐migrantshaveearningsresidualsbelowthe lowerboundoftherangewherethelowerboundoftheconfidenceintervalispositive,andsharesofmigrants andnon‐migrantsabovetherangeare3percentand2percent. 37A2percentshareofmigrantsand2percentshareofnon‐migrantshaveresidualsinthisarea,andthe interpretationwouldbethatmalemigrantstootherNordiccountriesarenegativelyselectedintermsof residualsinthelefttailofthedistribution. 27 offuturemigrants,aswehavedoneintheprecedinganalysis.Theadministrativedata, however,allowsustopreciselymeasuretheextentofthebiasresultingfromcarryingout thecounterfactualexerciseinChiquiarandHanson(2005).Inparticular,wecancontrast thepredictedcounterfactualwagedistributionofmigrantshadtheynotmovedtothe actualwagedistributionofmigrantspriortotheirmove.Wecarryoutthisexerciseby preciselyreplicatingthevariousstepsintheChiquiar‐Hansoncalculations.Itisworth emphasizingthatthistypeofbiaswillarisenotonlyinstudiesthatexaminetheselectionof migrants,butinanystudythatreliesonobservablestopredictacounterfactualwage distribution. Let representthelogarithmofstandardizedannualearningsasdefinedearlier(i.e. | bethedensityfunctionof earningsadjustedforage,gender,andyeareffects).Let wagesinDenmark,conditionalonasetofobservablecharacteristics .Also,let bean indicatorvariableequaltooneiftheindividualmigratesthefollowingyearandequalto zerootherwise.Definefurther | 0 astheconditionaldensityofobserved characteristicsamongworkersinDenmarkwhochoosenottomigrate,and | 1 be thecorrespondingconditionaldensityamongmigrants.Theobservedwagedensityforthe non‐migrantsis (20) | 0 | , 0 | 0 . 1 . Similarly,theobserveddensityforthemigrantsis (21) | 1 | , 1 | Uptothispoint,theanalysisreportedinthispaperconsistsofdirectlyestimatingand comparingthedistributionfunctionsassociatedwiththedensitiesinequations(20)and (21).Supposethatthepre‐migrationearningsdensityfornon‐migrantswerenotavailable. Wewouldinsteadattempttoestimateitfromtheobservablecharacteristicsofthe migrants.Theimpliedcounterfactualdistributionis: 28 | (23) | , 1 | 0 1 . Equation(23)correspondstothedensityofincomefornon‐migrants,butitisinstead integratedoverthedensityofobservablecharacteristicsformigrants.Notethatthe counterfactualdensityin(23)canberewrittenas: (24) | | , 1 | 0 | | 0 1 0 | , 0 | 0 , where | | .Tocompute ,weuseBayes’lawtowrite: | (25) | | and | , where istheunconditionaldensityofobservedcharacteristics. Wecanthencombinethesetwoequationstosolvefor: (26) 1| 1 1| 0 . 1 TheproportionPr(I=0)/Pr(I=1)isaconstantrelatedtotheproportionofmigrantsinthe data.Itcanbesettooneinkerneldensityestimationwithoutlossofgenerality.Theweight weuseintheestimationisthengivenby: 29 (27) 1| 1 1| . AsinChiquiarandHanson(2005),theindividualweightsearecalculatedbyestimatinga logitmodelwherethedependentvariableindicatesifapersonemigrated.Theregressors includeavectorofagefixedeffects,avectorofschoolingfixedeffects,variablesindicating whethertheworkerismarriedandthenumberofchildren(andaninteractionbetween thesetwovariables),andavectorofyearfixedeffects.38Table7reportsthelogit regressionsestimatedseparatelybygender.Thecoefficientsarethenusedtocomputethe weightsforeachnon‐migrantpersoninthesample.39Figures10aand10bpresentthe resultingcounterfactualdensityfunctionsofthelogarithmofstandardizedearningsaswell astheactualdistributionsformigrantsandnon‐migrants.40 Thedifferencebetweentheactualdensityfornon‐migrantsandthecounterfactualdensity formigrantsreflectsthepartofself‐selectionthatisduetoobservablecharacteristics. Similarly,thedifferencebetweenthecounterfactualandactualdensitiesformigrants reflectsthepartofselectionthatisduetounobservedcharacteristics(i.e.,allthose variablesthatcouldnotbeincludedinthelogitmodel). Onesimplewayofquantifyingthesedistributionaldifferencesistocomputetheaverages ofthevariousdistributions.ThesecalculationsarereportedinTable8.Considerinitially theresultsinthemalesample.Thedifferencebetweenthemeanoftheactualdistributions formigrantsandnon‐migrantsis0.245logpoints,butthedifferencebetweenthe counterfactualdistributionandthedistributionfornon‐migrantsis0.073.Thisimpliesthat onlyabout30percentofthepositiveselectioninpre‐migrationearningscanbeattributed 38Wealsotriedspecificationswithage,agesquaredandinteractionsofexplanatoryvariables,butwedonot reporttheseanalysesastheresultingcounterfactualdistributionsdidnotpracticallydifferfromthe distributionsresultingfromthissimplerspecification. 39Asearlier,weuseSilverman’sreferencebandwidthmultipliedby0.75. 40Toconductthecounterfactualanalysiswepoolthesampleofallmigrants(regardlessofwhetherthey movedtoNordiccountriesornot). 30 totheobservablecharacteristicsincludedinthelogitmodel,whileabout70percentis attributabletounobservabledeterminantsofproductivity. Thecalculationsinthefemalesampleyieldadifferenceof0.157logpointsbetweenthe meansoftheactualdistributionsformigrantsandnon‐migrantsandadifferenceof0.074 pointsbetweenthecounterfactualdistributionandthedistributionfornon‐migrants.Asa result,observableandunobservablecharacteristicseachaccountforabouthalfofthe positiveself‐selectioninthepre‐migrationearningsofwomen.41Thekeylessonisclear: selectioninunobservablecharacteristicsplaysacrucialroleindeterminingtheskill compositionofemigrants. Thedistinctroleofobservablesandunobservablesindeterminingtheselectioninthepre‐ migrationearningsofmigrantsisevidentifwereturntotheRoymodelandequation(16), whichpresentstheconditionalexpectationE(logw0|v*>*). Equation(16)yieldsaninterestingandpotentiallyimportantinsight.Thenatureofthe selectioninpre‐migrationearnings,ofcourse,isgivenbythesumoftheselectionin observablesandtheselectioninunobservables.Note,however,thateachoftheseselection termshasaweightingcoefficientthatrepresentsthevarianceinearningsattributableto observablecharacteristics( r02 2S)ortounobservablecharacteristics( 20 ).Asnotedearlier, observablecharacteristicsexplainarelativelysmallfractionofthevarianceinearnings.Put differently,equation(16)impliesthatitistheselectioninunobservablesthatismostlikely todeterminethenatureoftheselectionthatcharacterizestheemigrantsample. Totheextentthatbothtypesofselections(i.e.,inobservablesandunobservables)workin thesamedirection,thecounterfactualexercisedescribedinthissectionwillinevitably underestimatethetrueextentofpositiveselectioninpre‐migrationearnings.Conversely, 41Thecomponentofself‐selectionthatisduetounobservablecharacteristicsplaysasomewhatsmallerrole forwomen.Onereasoncouldbethatwomenaremoreoftentiedmigrants,andthemigrationdecisionmaybe mainlybasedontheskillsofthespouse.Thevarianceinincomeisalsosmallerforwomen,whichalsomakes theselectionbothintermsofobservableandunobservablecharacteristicsweaker. 31 thecounterfactualexercisewillalsoattenuatetheextentof“true”negativeselectionif thereisnegativeselectioninbothcomponentsofskills.Infact,Fernández‐HuertasMoraga (2011)presentsacorrespondinganalysisusingsurveydatafromMexicoandfindsthat counterfactualestimatesgreatlyunderestimatetheextentofnegativeselectioninthepre‐ migrationearningsofMexicanswhomovetotheUnitedStates.Putdifferently,the counterfactualexercisemayleadtoqualitativelyrightconclusionsaboutthenatureofthe selection,butitmayalsogenerateasizablebias,greatlyunderestimatingthetrueextentof eitherpositiveornegativeselection. 7.Selectionandimmigrationrestrictions Asappliedintheimmigrationliterature,theRoymodelfocusessolelyontheeconomic factorsthatmotivatelaborflowsacrossinternationalborders.Themodelingtypically ignoresthefactthattheseflowsoccurwithinapolicyframeworkwheresomereceiving countriesenactdetailedrestrictionsspecifyingwhichpotentialmigrantsareadmissible andwhicharenot. WecanusetheadministrativedatafromDenmark,combinedwiththeuniquepolitical circumstancesthatguaranteefreemigrationwithinEurope,topartiallyaddressthe questionofwhetherimmigrationpolicyaffectsselectionallthatmuchintheend. Specifically,wecansubdividethegroupofmigrantswhomovedoutsideNordiccountries intotwogroups:thosewhomovedtoacountryintheEU15ortoSwitzerland,andthose whomovedtoacountryoutsidetheEU15andSwitzerland.Movementoflaborwas unrestrictedbetweenDenmarkandotherEU15countriesandSwitzerlandintheperiod understudy,butwasobviouslyrestrictedbyimmigrationregulationstodestinations outsidetheEU15,suchastheUnitedStates. ItturnsoutthatthesedifferentimmigrationpoliciespursuedbytheEU15andSwitzerland andtherestoftheworldbarelymatterindeterminingtheselectionofDanishemigrants. Figure11adepictsthecumulativedistributionfunctionsofthelogarithmofstandardized annualincomeformenandfigure11bforwomen.Itisevidentthatthedistribution 32 functionsofstandardizedearningsareverysimilarforthetwogroupsofmigrants.42We alsoconductedtheanalysisusingthewageresiduals(notshown),andthedistributionsof residualsarealsosimilarbetweenthetwogroups. Thereisanimportantsenseinwhichthesepolicyrestrictionscannotmattermuch. Suppose,forexample,thatareceivingcountryenactsapolicythatlimitsentryonlytohigh‐ skillimmigrants.Ifthehigh‐skillimmigrantsfromasendingcountrydonotfinditoptimal tomove,thepolicycannotforcethosehigh‐skillworkerstomigrate.Allthepolicycandois essentiallycutthemigrationflowfromthatparticularsendingcountrydowntozero.The low‐skillworkerswouldliketomovebutarenotadmitted,andthehighskillworkersare admissiblebuttheydonotwanttomove. Insum,thepositiveself‐selectionthatissoevidentintheDanishemigrantdatacannotbe explainedbyimmigrationrestrictions.EventhoughlaborflowstotheEU15and Switzerlandwereunrestricted,thereisnoevidenceofweakerpositiveselectiontothese countriesthantotherestoftheworld.Our results also have tentative implications for the question of whether migration patterns reflect differences in rate of returns or migration costs. Although it is plausible that migration costs are higher when moving to other continents, our results suggest that such differences do not play a significant role in the sorting of emigrants between Europe and other continents, most notably North America. 8.Conclusion ThispapershowsthattheRoymodelhasmoredramaticpredictionsontheself‐selectionof emigrantsthanpreviouslyexamined.Thesameconditionsthathavebeenshowntoresult inemigrantsbeingpositively(negatively)self‐selectedintermsoftheiraverageearnings actuallyimplythattheearningsdistributionofemigrantsfirst‐orderstochastically dominates(orisfirst‐orderstochasticallydominatedby)theearningsdistributionofnon‐ 42Forwomen,aKolmogorov‐Smirnovtestisnotabletorejectthenull‐hypothesisthattheobservationsfor thetwogroupsofmigrantscomefromthesameunderlyingdistribution. 33 migrants.Ourtheoreticalanalysisalsodistinguishesbetweenselectioninobservableand selectioninunobservablecharacteristics. OurempiricalanalysisusestheDanishfullpopulationadministrativedatatoanalyzethe self‐selectionofemigrants,intermsofeducation,earningsandunobservableability, measuredbyresidualsfromMincerianearningsregressions.Theresultsareinlinewith thetheory;themigrantsarebettereducatedandbothpre‐emigrationearningsandwage regressionresidualsofmigrantsstochasticallydominatethoseofnon‐migrantsovermost ofthesupportofthedistributions.Consider,forexample,thecaseoffull‐timeworkers aged25‐54.For98percentofmenand97percentofwomenwhomigrateoutsideother Nordiccountriesthecumulativeearningsdistributionintheyearbeforeemigration stochasticallydominatesthatofnon‐migrantswitha95%confidenceinterval.The differencebetweenthecumulativedistributionsisnotstatisticallysignificantlydifferentin eitherdirectionfortheremaining2to3percent. Decomposingtheself‐selectionintotalearningsintoself‐selectioninobservable characteristicsandself‐selectioninunobservablecharacteristics(asmeasuredbyresiduals fromMincerianwageregressions),revealsthatunobservedabilitiesplaythedominantrole. Formen,about70percentofthepositiveself‐selectioninpre‐migrationearningsis attributabletounobservabledeterminantsofproductivity.Forwomen,thefractionis about50percent.Thissuggeststhatrelyingoncounterfactualdistributions,basedon observedcharacteristics,wouldstronglyunderestimatepositiveself‐selection.Thisresult complementstheFernández‐HuertasMoraga(2011)findingthatcounterfactualestimates alsogreatlyunderestimatetheextentofnegativeselectioninthepre‐migrationearningsof MexicanswhomovetotheUnitedStates.Inshort,theuseofcounterfactualearnings distributionsbasedonobservablecharacteristicsgreatlyunderstatethetrueextentof selectionintotalearnings.Strongpositiveself‐selectioninresidualsalsosuggeststhat unobservedabilitiesplayamuchbiggerroleinmigrationdecisionsthanmatchquality. Ourfindingsalsohaveimplicationsforimmigrationpolicies.Receivingcountriescanonly basetheiradmissionpoliciesonskillvariablesthatareobserved,whereasmuchofthe 34 selectionofimmigrantsis“hidden”intheirunobservedcharacteristics.Itcanbeexpected thatmigrantswillbeself‐selectedintermsofunobservedcharacteristicsevenwhen admissionrestrictionsareapplied,andtheself‐selectionamongthosefulfillingadmission criteriacanbeexpectedtoreflectrelativeskillprices.Thisraisesaquestionaboutthe effectivenessofpointsystemsthatarenecessarilybasedonobservablecharacteristics.The importanceofrelativeskillpricesisalsosupportedbyourseparateanalysesofself‐ selectionofDanesmigratingtothecountriesbelongingtocommonEuropeanlabormarket (excludingotherNordiccountriesthathaveskillpricessimilartoDenmark)andnothaving anyimmigrationrestrictions,andtheself‐selectiontotherestoftheworld.Thereis virtuallynodifferenceintheself‐selectiontothesedestinationareas. 35 References Abramitzky,R.,L.Boustan,andK.Eriksson(2012).“Europe’sTired,Poor,HuddledMasses: Self‐SelectionandEconomicOutcomesintheAgeofMassMigration.”AmericanEconomic Review102(5):1832–56. Abramitzky,R.andF.Braggion(2006).“MigrationandHumanCapital:Self‐Selectionof IndenturedServantstotheAmericas.”JournalofEconomicHistory66(4):882–905. Araar,A.(2006).“Poverty,InequalityandStochasticDominance,TheoryandPractice:The CaseofBurkinaFaso.”CahiersderecherchéPMMA2007‐087,PEP‐PMMA. Araar,A.andJ.Y.Duclos(2013).“UserManualforStataPackageDASP:Version2.3.” UniversitéLavalPEP,CIRPÉEandWorldBank. Araar,A.,J.Y.Duclos,M.Audet,andP.Makdissi(2009).“TestingforPro‐poornessofGrowth, withanApplicationtoMexico.”ReviewofIncomeandWealth55(4):853–881. Arnold,B.C.,R.Beaver,R.A.GroeneveldandW.Q.Meeker(1993).“TheNontruncated MarginalofaTruncatedBivariateNormalDistribution.”Psychometrika58(3):471–488. Atkinson,A.B.(1987).“OntheMeasurementofPoverty.”Econometrica55:749–764. Boarini,R.andH.Strauss(2010).“WhatisthePrivateReturntoTertiaryEducation?:New Evidencefrom21OECDCountries.”OECDJournal:EconomicStudies,Vol.2010/1. Borjas,G.J.(1987).“Self‐SelectionandtheEarningsofImmigrants.”AmericanEconomic Review77:531–553. Borjas,G.J.(2003).“TheLaborDemandCurveisDownwardSloping:Reexaminingthe ImpactofImmigrationontheLaborMarket.”QuarterlyJournalofEconomics118(4): 1335–1374. Bratsberg,B.(1995).“TheIncidenceofNonReturnAmongForeignStudentsintheUnited States.”EconomicsofEducationReview14(4):373–384. Chiquiar,D.andG.H.Hanson(2005).“InternationalMigration,Self‐Selection,andthe DistributionofWages:EvidencefromMexicoandtheUnitedStates.”JournalofPolitical Economy113(2):239–281. Chow,K.V.(1989).“StatisticalInferenceforStochasticDominance:aDistributionFree Approach.”Ph.D.Thesis,UniversityofAlabama. Cobb‐Clark,D.(1993).“ImmigrantSelectivityandWages:TheEvidenceforWomen.” AmericanEconomicReview83:986–93. 36 DavidsonR.andJ.Y.Duclos(2000).“StatisticalInferenceforStochasticDominanceandfor theMeasurementofPovertyandInequality.”Econometrica68:1435–64. DavidsonR.andJ.Y.Duclos(2013).“TestingforRestrictedStochasticDominance.” EconometricReviews32:84–125. DiNardo,J.,N.M.Fortin,andT.Lemieux(1996).“LaborMarketInstitutionsandthe DistributionofWages,1973–1992:ASemiparametricApproach.”Econometrica64 (September):1001–44. Fernández‐HuertasMoraga,J.(2011).‘‘NewEvidenceonEmigrantSelection.’’Reviewof EconomicsandStatistics93(1):72–96. Ferrie,J.(1996).“ANewSampleofMalesLinkedfromthePublicUseMicroSampleofthe 1850U.S.FederalCensusofPopulationtothe1860U.S.FederalCensusManuscript Schedules.”HistoricalMethods29:141–56. Grogger,J.andG.H.Hanson(2011).“IncomeMaximizationandtheSelectionandSortingof InternationalMigrants.”JournalofDevelopmentEconomics95(1):42–57. HanushekE.A.,G.Schwerdt,S.Wiederhold,andL.Woessmann(2015).“ReturnstoSkills aroundtheWorld:EvidencefromPIAAC.”EuropeanEconomicReview73:103–130. Junge,M.,M.D.Munk,andP.Poutvaara(2014).“InternationalMigrationofCouples.”CESifo WP4927. Kaestner,R.andO.Malamud(2014).“Self‐SelectionandInternationalMigration:New EvidencefromMexico,”TheReviewofEconomicsandStatistics,96(1):78–71. Kleven,H.J.,C.Landais,E.Saez,andE.Schultz(2014).“MigrationandWageEffectsof TaxingTopEarners:EvidenceoftheForeigners’TaxSchemeinDenmark.”Quarterly JournalofEconomics129:333–78. Leibbrandt,M.,J.Levinsohn,andJ.McCrary(2005)."IncomesinSouthAfricasincetheFall ofApartheid."NBERworkingpaperno.11384. Leshno,M.andH.Kevy(2002).“PreferredbyAllandPreferredbyMostDecisionMakers: AlmostStochasticDominance.”ManagementScience48:1074–1085. Lundborg,P.(1991).“DeterminantsofMigrationintheNordicLaborMarket.”The ScandinavianJournalofEconomics93(3):363–375. Margo,R.A.(1990).RaceandSchoolingintheSouth,1880–1950:AnEconomicHistory. Chicago:UniversityofChicagoPress. 37 Pirttilä,J.(2004).“IsInternationalLabourMobilityaThreattotheWelfareState?Evidence fromFinlandinthe1990’s.”FinnishEconomicPapers17(1):18–34. Sinn,H.‐W.(1997).“TheSelectionPrincipleandMarketFailureinSystemsCompetition.” JournalofPublicEconomics66:247‐274. Thistle,P.D.(1993).“NegativeMoments,RiskAversionandStochasticDominance.“Journal ofFinancialandQuantitativeAnalysis28(2):301–311. UnitedNations,DepartmentofEconomicandSocialAffairs(2013).TrendsinInternational MigrantStock:MigrantsbyDestinationandOrigin(UnitedNationsdatabase, POP/DB/MIG/Stock/Rev.2013). Wegge,S.A.(1999).“ToPartorNottoPart:EmigrationandInheritanceInstitutionsin Nineteenth‐CenturyHesse‐Cassel.”ExplorationsinEconomicHistory36(1):30–55. Wegge,S.A.(2002).“OccupationalSelf‐SelectionofEuropeanEmigrants:Evidencefrom Nineteenth‐CenturyHesse‐Cassel.”EuropeanReviewofEconomicHistory6(3):365–94. Wildasin,D.E.(1991).“IncomeRedistributioninaCommonLaborMarket.”American EconomicReview81(4):757–774. 38 Figurre1.Evolu utionofthe eemigratio onrate a.Men b.Wom men 39 ebetweenaveragelo ogstandarrdizedearn ningsof Figure2.Evoluttionofthedifference migranttsandnon‐migrants a.Men b.Wom men 40 nctionsofsstandardizzedannuallearningsformigran ntsand Figurre3.Distributionfun n non‐migran nts a.Men men b.Wom 41 yfunctionssforstandardizedea arningsforrmigrantssandnon‐m migrants Figure4.Density a.Men b.Wom men 42 ure5.Diffe erenceoftthecumula ativedistriibutionfun nctionsforrpre‐migrration Figu earn ningsbetw weenmigra antsmovin ngoutsideNordiccountriesan ndnon‐mig grants a.Men men b.Wom 43 ure6.Diffe erenceoftthecumula ativedistriibutionfun nctionsforrpre‐migrration Figu earningso ofmigranttsgoingtootherNorrdiccountrriesandno on‐migrantts a.Men men b.Wom 44 Figure e7.Distrib butionfun nctionsofrresidualsfrromearnin ngsregresssionform migrants and dnon‐migrrants a.Men b.Wom men 45 gure8.Diffferenceoffthecumu ulativedisttributionfu unctionso ofresidualssfor Fig migran ntsgoingo outsideoth herNordiccountriesandnon‐m migrants a.Men men b.Wom 46 gure9.Diffferenceoffthecumu ulativedisttributionfu unctionso ofresidualssfor Fig mig grantsgoin ngtootherNordiccountriesan ndnon‐mig grants a.Men men b.Wom 47 gure10.Co ounterfactu ualandacttualdensittiesofstan ndardizedgrossearn nings Fig a.Men men b.Wom 48 Figure e11.Distrributionfun nctionsofannualgrossearnin ngsformig grantstoth heEU15 andSwitze erlandand dmigrantsstootherd destination ns a.Men men b.Wom 49 Table1.Summarystatistics Non-migrant men Migrant men Non-migrant women Migrant women 6450665 7323 5163129 3436 39.8 40.0 33.0 35.4 40.2 40.0 35 33.0 Annual earnings in 2010 euros Average Median 52725 46675 68151 57350 40299 37976 46412 42393 Standardized annual earnings Average Median 1.0 0.9 1.3 1.2 1.0 0.95 1.2 1.1 Observations Age Average Median 50 Table2.Numbersofmigrants,bydestination Sweden The United States The United Kingdom Norway Germany Spain Switzerland France Other Men Women 1466 763 725 576 560 255 233 222 2523 699 363 432 273 249 147 118 156 999 51 Table3.Educationlevelsofnon‐migrantsandmigrantsgoingtoNordiccountriesor tootherdestinations Men Women Nonmigrants Nordic countries Other destinations Nonmigrants Nordic countries Other destinations Comprehensive school 21.4 19.8 8.3 21.5 15.7 8.9 High school 3.2 7.8 8.6 3.1 6.9 8.9 Vocational school 49.8 43.5 30.3 41.8 36.5 30.8 Advanced vocational 5.6 5.7 6.6 4.9 5.1 7.8 Bachelor or equivalent 12.2 11.6 20.6 23.3 22.9 25.4 Master’s or equivalent 7.3 10.6 23.9 5.1 12.3 17.6 Doctoral or equivalent 0.5 1.0 1.7 0.2 0.7 0.7 Education Notes: The unit is percentage. The category “advanced vocational” includes all the tertiary education programs below the level of a Bachelor’s program or equivalent. Programs on this level may be referred to for instance with such terms as community college education, advanced vocational training or associate degree. 52 Table4.Summaryoftestsofstochasticdominanceindistributionsofstandardized pre‐migrationearnings Distributions being compared: Percent of sample below lower bound Percent of sample above upper bound Migrants Non-migrants Migrants Non-migrants 2.0 2.8 3.4 4.1 0.1 0.2 0.0 0.0 11.6 2.6 15.5 4.1 1.5 2.6 0.7 1.3 Migrants outside Nordic countries and nonmigrants Male Female Migrants to Nordic countries and nonmigrants Male Female Notes:Lowerboundandupperboundrefertotherangeoverwhichthedifferenceofthecumulative distributionfunctionsissignificantata95percentconfidencelevel. 53 Table5.Mincerianearningsregressions,bygender Married Children High school Vocational school Advanced vocational Bachelor Master’s PhD 1996 1997 1998 1999 2000 2001 2002 2003 2004 Constant Age fixed effects N R-squared (1) men (2) women B Se B 0.068*** (0.00) -0.016*** 0.025*** (0.00) -0.048*** 0.224*** (0.00) 0.190*** 0.092*** (0.00) 0.089*** 0.186*** (0.00) 0.198*** 0.298*** (0.00) 0.225*** 0.498*** (0.00) 0.536*** 0.490*** (0.00) 0.622*** 0.020*** (0.00) 0.017*** 0.043*** (0.00) 0.041*** 0.078*** (0.00) 0.083*** 0.103*** (0.00) 0.112*** 0.141*** (0.00) 0.143*** 0.175*** (0.00) 0.175*** 0.207*** (0.00) 0.210*** 0.236*** (0.00) 0.235*** 0.252*** (0.00) 0.258*** 12.131*** (0.00) 11.931*** Yes Yes 6470720 5173706 0.2597 0.3062 *p<0.05, ** p<0.01, *** p<0.001 se (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) The table reports OLS results for the log annual earnings. Individually clustered standard errors are in parentheses. Coefficients for the age dummies are not shown. 54 Table6.Summaryoftestsofstochasticdominanceindistributionsofresiduals Distributions being compared: Percent of sample below lower bound Percent of sample above upper bound Migrants Nonmigrants Migrants Non-migrants Migrants outside Nordic countries and non-migrants Male Female 9.9 19.6 15.2 24.7 0.1 0.4 0.0 0.0 Migrants to Nordic countries and non-migrants Male Female 13.4 19.5 15.2 24.7 2.0 3.4 0.9 1.8 Notes:Lowerboundandupperboundrefertotherangeoverwhichthedifferenceofthecumulative distributionfunctionsissignificantata95percentconfidencelevel. 55 Table7.Logitestimatesoftheprobabilityofemigration,bygender Married Children Married*Children High school Vocational school Advanced vocational Bachelor Master’s PhD y1996 y1997 y1998 y1999 y2000 y2001 y2002 y2003 y2004 Constant N Pseudo (1) men B Se -0.110** (0.04) -1.137*** (0.05) 0.460*** (0.07) 1.377*** (0.05) 0.186*** (0.04) 0.648*** (0.06) 1.097*** (0.04) 1.652*** (0.04) 1.723*** (0.10) -0.032 (0.06) 0.002 (0.06) -0.024 (0.06) 0.230*** (0.05) 0.260*** (0.06) 0.161** (0.05) 0.208*** (0.05) 0.198*** (0.05) 0.246*** (0.05) -6.700*** (0.08) 6470720 0.0540 *p<0.05, ** p<0.01, *** p<0.001 (2) women B -0.191*** -1.232*** 0.374*** 1.158*** 0.159** 0.714*** 0.581*** 1.444*** 1.655*** -0.001 -0.016 -0.001 0.131 0.238** 0.146 0.046 0.112 0.178* -6.951*** 5173706 0.0557 se (0.05) (0.07) (0.09) (0.08) (0.06) (0.08) (0.06) (0.07) (0.21) (0.08) (0.08) (0.08) (0.08) (0.09) (0.08) (0.08) (0.08) (0.08) (0.12) Notes: The table reports logit results for the long-term emigration. Individually clustered standard errors are in parentheses. Coefficients for the age fixed effects are not shown. 56 Table8.Actualandcounterfactualdifferencesbetweentheaveragelogstandardized earningsofmigrantsandnon‐migrants Men Women Non-migrant average Estimated average for migrants True average for migrants True difference -0.065 0.008 0.180 0.245 -0.040 0.034 0.117 0.157 Counterfactual difference 0.073 0.074 Share of the actual difference explained by observable characteristics, % 29.6 47.0
© Copyright 2026 Paperzz