Optimal topologies in case of probabilistic loading János Lógó Department of Structural Mechanics Budapest University of Technology and Economics Hungary IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Introduction, Motivation Mathematical background Assumptions, Mechanical models Parametric Study Conclusions IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Introduction, Motivation K. Marti “Stochastic Optimization Methods”, Springer-Verlag, Berlin-Heidelberg, 2005. K. Marti, “Reliability Analysis of Technical Systems/Structures by means of polyhedral Approximation of the Safe/Unsafe Domain”, GAMM-Mitteilungen, 30, 2, 211-254, 2007. G. Kharmada, N. Olhoff, A. Mohamed, M. Lemaire “Reliability-based Topology Optimization”, Structural and Multidisplinary Optimization, 26, 295-307, 2004. A. Prékopa ”Stochastic Programming”, Akadémia Kiadó and Kluwer, Budapest, Dordrecht, 1995. J. Logo „New Type of Optimality Criteria Method in Case of Probabilistic Loading Conditions”, Mechanics Based Design of Structures and Machines, 35(2), 147162, 2007. IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Mathematical background 1,2 ,...,n Joint normal distribution P( x11 x22 ... xnn 0 ) q, x n (1) Prekopa (1995) -Kataoka (1963): n -1 T x + q x i i K ov x 0 i=1 where i E i ; (i 1, 2,..., n) K ov : covariance matrix -1 q : probit function IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria 2 Mechanical models, Assumptions G 1 p g g W g A t min! g 1 (3.a) subject to u T F C 0; t g tmin 0; t g tmax 0; for g 1,..., G , for g 1,..., G . (3.b-d) P(uT F C 0 ) q (4.a) Stochastically linearized form: uT F 2uT F uT F P(2uT F uT F C 0 ) q (4.b) (4.c) IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Probabilistic compliance constraint P 2 u1 f1 u2 f 2 ... un f n u1 f1 u2 f 2 ... un f n C 0 q FT f1 , f 2 ,..., f n , f n1 , fi E fi , ij ; i 1,..., n , i 1,..., n ; f n1 E( f n1) 1; j 1,..., n : given and n1,i 0; i,n1 0; xT x1 , x2 ,..., xn1 xi ui , i 1,..., n ; xn 1 u1 f1 u2 f 2 ... un f n C / 2 n 1 P(2 xi fi 0 ) q (4.d) i 1 Prekopa model: n+1 2 xi fi +2 -1 q xT K ov x 0 (4.e) i=1 IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria 4.c Mechanical model G 1 p g g W g A t min! g 1 (5.a) subject to P 2 u1 f1 u2 f 2 ... un f n u1 f1 u2 f 2 ... un f n C 0 q, t g tmin 0; for g 1,..., G , t g tmax 0; for g 1,..., G . n+1 2 xi fi +2 -1 q xT K ov x 0 i=1 n+1 x f i i uT Ku C i=1 uT Ku C +2-1 q xT K ov x 0 5.e IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria (5.b-d) Minimum weight design with stochastically calculated compliance G 1 p g g W g A t min! g 1 (6.a) subject to uT Ku C +2 -1 q xT K x 0; ov t g tmin 0; for g 1,..., G , t g tmax 0; for g 1,..., G . (6.b-d) IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Iterative formulation Determination of the active and passive sets p Rg Bg tg Ag g if if tmin p p 1 p Rg Bg Ag g tmax if tmin t g tmax gA p p 1 p Rg Bg Ag g p p 1 t g tmin g P t g tmax g P IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Calculation of the Lagrange-multiplier n uT Ku C +2-1 q xT K ov x =0, C 2 -1 q xT K ov x C 2 -1 q xT K ov x gP Rg tg gA Rg p Rg Bg Ag g p p 1 gP Rg tg g A Rg tg , . p p 1 Ag g R g p R B g g g A Rg -1 T C 2 q x K ov x gP t g p 1 p IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria , (for A 0). Example 1. 42 f1=50 30 f2=50 30 30 30 20160 FEs, Poisson’s ratio is 0. The compliance limit is C=410000. q=0.9 IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Stochastic optimal topology with covariances: 0.1, 0.1, 0, 0 and expected probability value 0.9 IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Stochastic optimal topology with covariances: 0.1, 0., 0, 0 and expected probability value 0.9 IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Stochastic optimal topology with covariances: 0, 0.1, 0, 0 and expected probability value 0.9 IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Stochastic optimal topology with covariances: 0.5, 0.5, 0.0, 0.0 and expected probability value 0.9 IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Stochastic optimal topology with covariances: 5, 5, 0, 0 and expected probability value 0.9 IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Probabilistic topologies with variable expected probability with fix mean and covariance values: 0.4, 0.4, 0.01, 0.01 expected probability value: 0.60 IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Probabilistic topologies with variable expected probability with fix mean and covariance values: 0.4, 0.4, 0.01, 0.01 expected probability value: 0.65 IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Probabilistic topologies with variable expected probability with fix mean and covariance values: 0.4, 0.4, 0.01, 0.01 expected probability value: 0.70 IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Probabilistic topologies with variable expected probability with fix mean and covariance values: 0.4, 0.4, 0.01, 0.01 expected probability value: 0.75 IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Probabilistic topologies with variable expected probability with fix mean and covariance values: 0.4, 0.4, 0.01, 0.01 expected probability value: 0.80 IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Probabilistic topologies with variable expected probability with fix mean and covariance values: 0.4, 0.4, 0.01, 0.01 expected probability value: 0.85 IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Probabilistic topologies with variable expected probability with fix mean and covariance values: 0.4, 0.4, 0.01, 0.01 expected probability value: 0.90 IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Probabilistic topologies with variable expected probability with fix mean and covariance values: 0.4, 0.4, 0.01, 0.01 expected probability value: 0.95 IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Minimum volumes in function of the expected probability value volume-probability 2200 2150 volume 2100 2050 2000 1950 1900 1850 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95 expexted probability IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria 1 Example 2. Cantilever with two forces 40 f1=50 f2=50 40 40 24200 FEs, Poisson’s ratio is 0. The compliance limit is C=320000 q=0.9 The covariances: 2 1,12 0.0 , 2,2 0.4 , 2 1,2 0.0 , 2 2,1 0.0 IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Probabilistic topologies with variable expected probability expected probability value: 0.75 IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Probabilistic topologies with variable expected probability expected probability value: 0.95 IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria Minimum volumes in function of the expected probability value 1950 1900 1850 volume 1800 1750 1700 1650 1600 1550 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95 expexted probability IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria 1 Conclusions The probabilistically constrained topology optimization problem was solved The introduced algorithm provides an iterative tool which allows to use thousands of design variables The algorithm is rather stable and provides the convergence to reach the optimum. Needs rather simple computer programming The covariance values have significant effect for the optimal topology IFIP/IIASA/GAMM, 10-12 Dec, 2007, Laxenburg, Austria
© Copyright 2026 Paperzz