Discrete Math you need to know @tlberglund 1 Discrete Math ? 2 Discrete Math •Math with Integers •Number theory •Modular Arithmetic •Graphs...another time 3 Acknowledgements •http://bit.ly/discrete-math-course •http://www.math.hmc.edu/~benjamin/ •http://bit.ly/ted-mathemagic 4 Counting 5 g n i t n u Co Sequences Arrangements Subsets Multi-subsets 6 s e c n e u q e S Ordered, Repeating K stacks of octocat stickers Take N, stack them 7 n a r r A s t n e m e g Ordered, non-repeating K individual octocat stickers Take N, stack them 8 s t e s b u S Non-ordered, non-repeating K individual octocat stickers Put N of them in a bag 9 s t e s b u s i t l u M Non-ordered, repeating K stacks of octocat stickers Put N of them in a bag 10 Number Theory 11 n o i s i v i D m e r o e h T a = dq + r 12 s i v Di y t i l i ib a = dq + r 13 s i v Di y t i l i ib a = dq d|a 14 s i v Di y t i l i ib Greatest Common Divisors (x ,y) gcd(x,y) 15 s ’ t u o z é B y t i t n e d I (a ,b)=g ax+by=g 16 s ’ d i l c u m h E t i r o g l A For a, b, and x: gcd(a ,b)=gcd(b, a-bx) ) x h s i g g i ) (pick b o = B l i t n u (recurse 17 s ’ d i l c u m h E t i r o g l A Modular Edition! gcd(a ,b)=gcd(b, a mod b) (recurs e until B =o) 18 Modular Arithmetic 19 r a l u d c o i t M e m h t i Ar Clocks Calendars Charles Frederick Gauss 20 r a l u d c o i t M e m h t i Ar a≡b (mod m) if m|(a-b) for m>0 21 r a l u d c o i t M e m h t i Ar a≡b (mod m) if a mod m = B mod m 22 r a l u d o M n o i t i d d A if a≡b and c≡d (mod m) a+c≡b+d (mod m) 23 r a n l o u i d t o a c M i l p i t l u M if a≡b and c≡d (mod m) ac≡bd (mod m) 24 d e Se g n i t n a Pl 1100111 7 103 1 25 d e Se g n i t n a Pl ➜ 1100111 7 103 1 * 7 = 7 2 1 26 d e Se g n i t n a Pl ➜ 1100111 7 103 7 * 7 = 343 2 7 27 d e Se g n i t n a Pl ➜ 1100111 7 103 343 = 117649 2 343 28 d e Se g n i t n a Pl ➜ 1100111 7 103 117649 2 = 13841287201 117649 29 d e Se g n i t n a Pl ➜ 1100111 7 103 13841287201 2 *7= 1341068619663964900807 13841287201 30 d e Se g n i t n a Pl ➜ 1100111 7 103 1341068619663964900807 2 *7= 12589255298531885026341962383987545444758743 1341068619663964900807 31 d e Se g n i t n a Pl ➜ 1100111 7 103 12589255298531885026341962383987545444758743 2 *7= 1109425442801291991031214184801374366124020697224286512520326098667350170655466324580343 12589255298531885026341962383987545444758743 32 d e Se g n i t n a Pl 7 103 11094254428012919910312141848013 74366124020697224286512520326 098667350170655466324580343 33 d e Se g n i t n a Pl 1100111 7 103 mod 53 1 34 d e Se g n i t n a Pl mod 53 ➜ 1100111 7 103 1 *7 mod 53= 7 2 1 35 d e Se g n i t n a Pl mod 53 ➜ 1100111 7 103 7 *7 mod 53= 25 2 7 36 d e Se g n i t n a Pl mod 53 ➜ 1100111 7 103 25 mod 53= 42 2 25 37 d e Se g n i t n a Pl mod 53 ➜ 1100111 7 103 42 mod 53= 15 2 42 38 d e Se g n i t n a Pl mod 53 ➜ 1100111 7 103 15 *7 mod 53= 38 2 15 39 d e Se g n i t n a Pl mod 53 ➜ 1100111 7 103 38 *7 mod 53= 38 2 38 40 d e Se g n i t n a Pl mod 53 ➜ 1100111 7 103 38 *7 mod 53= 38 2 38 41 d e Se g n i t n a Pl 38 7 103 mod 53 42 A S R Private Key Public Key 43 A S R Private Key Decr ypt with this t p y r c n E is h t h t i w Public Key 44 A S R •Pick two big primes p and q •Let n = pq •Compute Euler’s totient ø(n) •Happily, ø(n) = (p-1)(q-1) 45 A S R •Find d such that (d, ø(n))=1 •Employ that Extended Euclidean Algorithm! ax+by=1 46 A S R •Find d such that (d, ø(n))=1 •Employ that Extended Euclidean Algorithm! dx+by=1 47 A S R •Find d such that (d, ø(n))=1 •Employ that Extended Euclidean Algorithm! dx+ø(n)y=1 48 A S R •Find d such that (d, ø(n))=1 •Employ that Extended Euclidean Algorithm! de+ø(n)y=1 49 A S R •Find d such that (d, ø(n))=1 •Employ that Extended Euclidean Algorithm! de+ø(n)f=1 50 A S R •Distribute (e , n) on tee-shirts •Keep (d , n) secret 51 A S R Sending message M C = M mod N e M = C mod N d 52 53 Thank You! @tlberglund 54
© Copyright 2026 Paperzz