Crew Assignment Problems Dr. A.A. Trani Associate Professor of Civil Engineering CEE 5614- Analysis of Air Transportation Systems 1 of 15 General Remarks • Sequentially these problems follow the aircraft assignment problem • Difficult problems because there are substantial constraints associated with a crew schedule Hours of operation (< 8 flight hours per day, < 14 hours in a duty cycle, ,< 30 hours per week, < 90 hours per month, and < 1,000 hours per year) Vacation/rest days (selected by the pilot/crew member) Exogenous parameters • Very important since crew members represent a sizeable amount of the DOC cost of the airline (senior captains make $240,000 per year at makor U.S. airlines) 2 of 15 Crew Scheduling Problem A small airline uses LP to allocate crew resources to minimize cost. The following map shows the city pairs to be operated. 1 New York Denver 3 2 DEN = Denver, DFW = Dallas Dallas 4 Mexico Morning Afternoon Night MEX = Mexico City, JFK = New York 3 of 15 Crew Scheduling Problem. Flight Number O-D Pair Time of Day 100 DEN-DFW Morning 200 DFW-DEN Afternoon 300 DFW-MEX Afternoon 400 MEX-DFW Night 500 DFW-JFK Morning 600 JFK-DFW Night 700 DEN-JFK Afternoon 800 JFK-DEN Afternoon 4 of 15 Crew Scheduling Problem Definition of terms: a) Rotations consists of 1 to 2 flights (to make the problem simple) b) Rotations cost $2,500 if terminates in the originating city c) Rotations cost $3,500 if terminating elsewhere Example of a feasible rotations are (100, 200), (500,800),(500), etc. 5 of 15 Crew Scheduling Problem Ri Single Flight Rotations Ri Twoflight Rotations Cost ($) Cost ($) 1 100 3,500 9 100,200 2,500 2 200 3,500 10 100,300 3,500 3 300 3,500 11 500,800 3,500 4 400 3,500 12 500,600 2,500 5 500 3,500 13 300,400 2,500 6 600 3,500 14 200,100 3,500 6 of 15 Ri Single Flight Rotations Ri Twoflight Rotations Cost ($) Cost ($) 7 700 3,500 15 600,300 3,500 8 800 3,500 16 600,200 3,500 17 600,500 3,500 18 800,100 3,500 19 700,600 3,500 20 700,800 3,500 7 of 15 Decision Variables Decision variables: 1 Ri = 0 if i rotation is used if i rotation is not used 8 of 15 Crew Scheduling Problem Min Cost subject to: (possible types of constraints) a) each flight belongs to a rotation Min z = 3500 R + R1 + 3500 R2 + 3500 R3 + 3500 R4 + 3500 5 3500 R6 + 3500 R7 + 3500 R8 + 2500 R9 + 3500 R 10 9 of 15 3500 R + 3500 3500 11 + 2500 R 12 + 2500 R 13 + 3500 R 14 R 17 + 3500 R 18 + 3500 R 19 R 15 R 16 + 3500 + 3500 R 20 s.t. (Flt. 100) R1 + R9 + R 10 + R 14 + R 18 =1 (Flt. 200) R2 + R9 + R 14 + R 16 =1 (Flt. 300) R3 + R 10 + R 13 + R 15 =1 (Flt. 400) R4 + R 13 (Flt. 500) R5 + R 11 =1 + R 12 + R 17 =1 10 of 15 (Flt. 600) R =1 R6 + R 12 + R 15 (Flt. 700) R7 + R 19 + R 20 (Flt. 800) R8 + R 11 + R 18 + R 16 + R 17 + 19 =1 + R 20 =1 11 of 15 Crew Scheduling Problem Problem statistics: a) 20 decision variables (rotations) b) 8 functional constraints (one for each flight) c) All constraints have equality signs 12 of 15 Crew Scheduling Problem (Matlab) Input File minmax=1; % Minimization formulation a=[1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 01000000100001010000 00100000010010100000 00010000000010000000 00001000001100000010 00000100000100111010 00000010000000000011 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1] b=[1 1 1 1 1 1 1 1]' c=[-3500 -3500 -3500 -3500 -3500 -3500 -3500 -3500 -2500 -3500 -3500 2500 -2500 -3500 -3500 -3500 -3500 -3500 -3500 -3500] 13 of 15 bas=[1 2 3 4 5 6 7 8] 14 of 15 Problem Solution Optimal Solution (after 8 iterations): bas =[ 9 12 13 4 19 18 20 11] The current basic variable values are : b= 1 rotation 9 (100,200) 1 rotation 12 (500,600) 1 rotation 13 (300,400) 0 rotation 4 (400) 0 rotation 19 (700,600) 0 rotation 18 (800,100) 1 rotation 20 (700,800) 0 rotation 11 (500,800) Cost = $2,500 Cost = $2,500 Cost = $2,500 Cost = $3,500 z = $11,000 dollars to complete all flights (4 crews assigned) 15 of 15
© Copyright 2026 Paperzz