Equilibration of non-extensive systems T. S. Bíró and G. Purcsel MTA KFKI RMKI Budapest • NEBE parton cascade • Zeroth law for non-extensive rules • Common distribution • Extracting temperatures Talk given at Varos Rab, Croatia, Aug.31-Sept.3 2007 Thermodynamics • Boltzmann – Gibbs: • Tsallis and similar: • Extensive S(E,V,N) • non-extensive • 0: • 0: an absolute temperature exists ??? • 1: energy is conserved • 1: (quasi) energy is conserved • 2: entropy does not • 2: entropy does not decrease spontan. decrease NEBE parton cascade Boltzmann equation: f1 t w 1234 f3 f4 f1 f 2 234 w 1234 M 2 1234 p1 p 2 p 3 p 4 h( E 1 , E 2 ) h( E 3 , E 4 ) Special case: E=|p| Energy composition rule Associative rule mapping to addition: quasi-energy h ( h ( x , y ), z ) h ( x , h ( y , z )) X ( h) X ( x ) X ( y ) h( x , y ) x y Taylor expansion for small x,y and h X ( 0 ) X(0) xy Stationary distribution in NEBE Gibbs of the additive quasi-energy = Tsallis of energy Boltzmann-Gibbs in X(E) 1 X ( E )/T f ( p) e Z Generic rule h ( x , y ) x y a xy Quasi-energy Tsallis distribution X(E) 1 a ln 1 aE 1 1 aE 1 / aT f ( p) Z Abilities of NEBE • Tsallis distribution from any initial distribution • Extensiv (Boltzmann-) entropy • Particle collisions in 1, 2 or 3 dimensions • Arbitrary free dispersion relation • Pairing (hadronization) option • Subsystem indexing • Conserved N, X( E ) and P Boltzmann: energy equilibration Tsallis: energy equilibration Boltzmann: distribution equilibration Tsallis: distribution equilibration Mixed: distribution equilibration Mixed: distribution equilibration Thermodynamics: general case S ( E 1 , E 2 ) max . h ( E 1 , E 2 ) const . S 1 dE 1 S 2 dE 2 0 h1 dE 1 h 2 dE 2 0 S 1 ( E 1 , E 2 ) h1 ( E 1 , E 2 ) S 2 ( E 1 , E 2 ) h 2 ( E 1 , E 2 ) ( E1 ) ( E 2 ) If LHS = RHS thermal equilibrium, if same function: universal temperature Thermodynamics: normal case S ( E 1 ) S ( E 2 ) max . E 1 E 2 const . S ( E 1 ) dE 1 S ( E 2 ) dE 2 0 dE 1 dE 2 0 S ( E1 ) 1 S ( E 2 ) 1 S ( E1 ) S ( E 2 ) If LHS = RHS thermal equilibrium, if same function: universal temperature Thermodynamics: NEBE case S ( E 1 ) S ( E 2 ) max . S ( E 1 ) dE 1 S ( E 2 ) dE 2 0 X ( E 1 ) X ( E 2 ) const . X ( E 1 ) dE 1 X ( E 2 ) dE 2 0 S ( E1 ) X ( E1 ) S ( E 2 ) X ( E 2 ) S ( E1 ) S ( E 2 ) X ( E1 ) X ( E 2 ) If LHS = RHS thermal equilibrium, if same function: universal temperature Thermodynamics: Tsallis case Tsallis entropy: S(E1,E2) = S1 + S2 + (q-1) S1 • S2; Y(S) additiv, Rényi Y ( S ( E 1 )) Y ( S ( E 2 )) max . E 1 E 2 const . Y ( S ( E 1 )) S ( E 1 ) dE 1 Y ( S ( E 2 )) S ( E 2 ) dE 2 0 dE 1 dE 2 0 Y ( S ( E 1 )) S ( E 1 ) 1 Y ( S ( E 2 )) S ( E 2 ) Y ( S ( E 1 )) S ( E 1 ) Y ( S ( E 2 )) S ( E 2 ) If LHS = RHS thermal equilibrium, if same function: universal temperature Thermodynamics: NEBE case S X(E) f ln f f X ( E p ) max 1 X ( E p ) f e Z X ( E ) 1 ln f ( E ) S ( E ) T slope ( E ) E T T slope T T ( 1 aE ) T ( q 1 ) E X ( E ) = 1 / T in NEBE; the inverse log. slope is linear in the energy Boltzmann: temperature equilibration T = 0.50 GeV T = 0.32 GeV T = 0.14 GeV Tsallis: temperature equilibration T=0.16 GeV, q=1.3054 T=0.12 GeV, q=1.2388 T=0.08 GeV, q=1.1648 Summary • NEBE equilibrates non-extensive subsystems • It is thermodynamically consistent • There exists a universal temperature • Not universal but equilibrates: different T and a systems (not different T and q systems: Nauenberg)
© Copyright 2026 Paperzz