Chap 13 Phonons • classical theory of vibration • 1-dim, 3-dim • quantum theory of vibration • phonon specific heat • Einstein model, Debye model • thermal expansion • neutron scattering Dept of Phys M.C. Chang One dimensional vibration • consider only longitudinal motion • consider only NN coupling d 2 un M (un 1 un ) (un un 1 ) 2 dt PBC: Assume un Aei ( kX n t ) , where X n na , then we' ll get M ( 2 )eikna 2eikna eik ( n 1) a eik ( n 1) a , which leads to (k )=M sin(ka / 2) , M 2 / M (k )=M sin(ka / 2) Dispersion curve 2a 2a 2a 2a (redundant) k -/a /a The waves with wave numbers k and k+2π/a describe the same atomic displacement Therefore, we can restrict k to within the first BZ [-π/a, π/a] Displacement of the n-th atom un (t ) Aei ( kX n t ) , X n na Pattern of vibration: • k ~ 0, exp(ikXn) ~ 1. Every atom move in unison. Little restoring force. • k ~ π/a,exp(ikXn) ~ (-1)n. Adjacent atoms move in opposite directions. Maximum restoring force. Velocity of wave: • k ~ 0, ω = (ωMa/2)k Linear dispersion, phase velocity = group velocity • k ~ π/a, group velocity ~ 0 PBC Number of “normal modes”: uN u0 exp(ikNa) 1 m 2 △k=2π/Na k N a , m Z Within the 1st BZ, there are N k-points. Each k describes a normal mode of vibration (i.e. a vibration with a specific frequency) Vibration of a crystal with 2 atoms in a unit cell a d 2u2 n 1 M2 (2u2 n 1 u2 n u2 n 2 ), dt 2 d 2 u2 n 2 M1 (2u2 n 2 u2 n 1 u2 n 3 ). dt 2 u2 n1 A1eikX 2 n1 it X 2 n1 (2n 1)a / 2 Assume e , ikX 2 n2 X 2 n2 (n 1)a u2 n 2 A2e 2 M 2 2 2 cos(ka / 2) A1 0, 2 2 cos( ka / 2) 2 M 1 A2 2 M 2 2 2 cos(ka / 2) det 0. 2 2 M1 2 cos(ka / 2) 2 1 1 1 1 4sin 2 (ka / 2) 2 . M M M M M M 1 2 1 2 1 2 Two branches of dispersion curves (assume M2 > M1) a d c b Patterns of vibration similar See a nice demo at http://dept.kent.edu/projects/ksuviz/leeviz/phonon/phonon.html Three dimensional vibration Along a given direction of propagation, there are 1 longitudinal wave and 2 transverse waves, each may have different velocities Sodium (bcc) 3D crystal with atom basis FCC lattice with 2-atom basis cm-1 Rules of thumb • For a 3-dim crystal, if each unit cell has p atoms, then there are 3 acoustic branches, 3(p-1) optical branches • If a crystal has N unit cells, then each branch has N normal modes。 • As a result, the total number of normal modes are 3pN (= total DOF of this system) Quantum theory of vibration Review: 1D simple harmonic oscillator (DOF=1) p2 2 H x 2m 2 • Classically, it oscillates with a single freq ω=(α/m)1/2 • The energy ε can be continuously changed. Quantization: x, p i 1 i m x p 2 m define a then a, a 1 † 1 H a†a 2 1 H n n n 2 Note: a n n n 1 a† n n 1 n 1 a†a n n n 1 • After quantization, the energy becomes discrete n n 2 • The number n of energy quanta depends on the amplitude of the oscillator. Quantization of a 1-dim vibrating lattice (DOF=N) p2 H u 1 u 2 m 2 1 N 2 • Classically, for a given k, it vibrates with a single frequency ω(k). The amplitude ( and hence energy ε) can be continuously changed. Quantization: u , p ' i Fourier transf. u then ' 1 eik a uk N k 1 p eik a pk N k uk , pk† ' i kk ' 1 † mk2 † H pk pk uk u k 2 k 2m Note: u† u ; uk† u k ; p† p pk† p k k=2πm/L, L=Na. A collection of N independent oscillators ! Similarly, define 1 ak 2 i pk mk uk mk ak , ak†' kk ' 1 H ak† ak k 2 k eigenstate n1 , n2 ...nk ,... 1 H n1 , n2 ...nk ,... nk k n1 , n2 ...nk ,... 2 k • The number of energy quanta (called phonons) for the k-mode is nk. • There are no interaction between phonons → “free” phonon gas. • If there are p-atoms in a unit cell (p branches), then the total vibrational energy of the lattice is 1 U nk , s k , s 2 k s 1 p Specific heat: experimental fact Specific heat approaches 3R (per mole) at high temperature (Dulong-Petit law) Specific heat drops to zero at low temperature After rescaling the temperature by θ (Debye temperature), which differs from material to material, a universal behavior emerges: Debye temperature In general, a harder material has a higher Debye temperature Specific heat: theoretical framework • Internal energy U of a crystal is the summation of vibrational energies (consider an insulator so there’s no electronic energies) U (T ) (nk , s 1/ 2) k , s , s =L/T, A/O... k ,s • For a crystal in thermal equilibrium, the average phonon number is nk ,s • Therefore, • Specific heat 1 e k ,s / kT U (T )= k ,s e 1 1 k ,s / kT Bose-Einstein distribution 1 k ,s 1 2 CV U / T V • Density of states (similar to electron energy band) f k k V d 3k 2 L D( ) 2 3 3 f k d D( ) f dS k Ex: In 3D if vk , then D( ) V 2 / 2 2v3 Einstein model (1907) Assume that each atom vibrates independently of each other, and every atom has the same vibration frequency ω0 DOS D() 3N 0 3 dim number of atoms 0 1 U 3N n 0 3N 3N 0 2 exp( 0 / kT ) 1 2 e 0 / kT 0 CV (U / T )V 3Nk kT e 0 / kT 1 2 e 0 / kT as T 0 K (Activation behavior) 2 Debye model (1912) Atoms vibrate collectively in a wave-like fashion. U (T ) nk , s k , s ( k ,s /2 neglected) k ,s = d Ds ( ) s e / kT 1 • Debye assumed a simple dispersion relation: ω = vsk. Therefore, Ds ( ) V 2 / 2 2 vs3 Also, the 1st BZ is approximated by a sphere with the same volume 3 d D ( ) 3N s 1 s V D3 2 3 3N s 1 6 vs 3 3 3 1 v3 s 1 vs3 D v(6 n) , n N / V 2 1/3 If vg k 0, then there is "van Hove singularity". 3 V s 1 2 2 vs3 U (T ) = D d 2 0 3V kT 2 2 v3 T =9 NkT 4 xD e dx 0 / kT 1 Debye temperature D x , x , k D D ex 1 kT T 3 3 xD x3 0 dx e x 1 = π4/15 as T→ 0 12 4 T CV Nk T 3 as T 0 5 3 solid Argon (θ=92 K) At low T, Debye’s curve drops slowly because long wavelength vibration can still be excited. A simple explanation of the T3 behavior: Suppose that 1. All the phonons with wave vector k<kT are excited with thermal energy kT. 2. All the modes between kT and kD are not excited. kD kT Then the fraction of excited modes = (kT/kD)3 = (T/θ)3. energy U ~ kT3N(T/θ)3, and the heat capacity C ~ 12Nk(T/θ)3 Thermal expansion Coeff. Of volume expansion: Bulk modulus: 1 V , V T P P B V V T 1 P B T V F P V T Next page we’ll show that, P U (T ) V 1 P cV B T V B (cV CV / V ) T 3 at low T use x 1 and y y z x z x y z 1 y z z x x y Partition function: Z e Ei / kT (Ei are the macroscopic eigen-energies) i 1 = exp kT nks 1 n ks ks 2 ks 1 = exp ks nks 0 kT Grüneisen parameter 1 n ks ks 2 d ks ks F kT ln Z = kT ln e ks /2 kT e ks /2 kT ks 1 ks e F P 2 ks V T e V T P 1 V ks / kT ks / kT 1 1 k s dk s V k s k s V k s dV V dV V 1 P ' B T V 1 1 CV C ks V ,ks B V B V ks C where C ks V , ks ks V , ks ks CV CV ,ks U ks (T ), ks ks where U ks (T ) ks e ks 1 ks / kT 1 1 2 ks (γ~1-2 for most materials) Neutron scattering En k Why neutron? 2 2mn 2.07k 2 meVA 2 • Neutron has no charge (can probe bulk properties) • Neutron wavelength comparable to interatomic spacings (1-5 Å) • Neutron energy comparable to phonon’s (5-100 meV) • Neutron has spin (can probe magnetic structure and magnetic excitations) Measure phonon dispersions by neutron scattering More than one phonon mode may be excited nq.s n 'q.s nq.s out E’,p’ in E, p Conservation of energy En ' q , s nq , s En q,s Conservation of crystal momentum (for a proof. see App. M of A+M) p ' qnq,s p G q,s (momentum of phonon with λ< a must be shifted by G) One phonon scattering En ' En s (q ) p' p q G Neutron energy: p '2 p2 s (q ), 2mn 2mn En=p2/2mn Consider phonon absorption p '2 p2 s k ' k 2mn 2mn f k (q ) 2 p' k '; p k q (k ' k ) k=0 2 2 k | q k |2 s q 2mn 2mn q and ωs can be determined from the intersections in the figure. 2 q2 2M n (q ) q k≠0 several solutions at a given direction. → a series of peaks in the data Phonon dispersion curve for Si, comparing experimental data and ab initio calculation (Wei and Chou 1994) • Width of one-phonon peaks due to anharmonic effect • Multi-phonon scatterings give a continuous background Neutron scattering: formal theory 2 f V i E f Ei • Fermi golden rule (transition rate) Ri f • Neutron states scattered to d3k’ (per unit time) mn k ' d d d 3k ' Rk k ' V R V k k ' (2 )3 (2 )3 2 f j v • Differential cross-section d 2 d d d 2 d d Rk d ,d d d incident particle flux initial: final: i k ( r ) i , f k ' ( r ) f , 1 ik r e V 2 k2 Ei Ei 2mn Ef 2 2 k 1 k mn V mn k ' (Vmn ) 2 Rk k ' 3 k (2 ) • Quantum state of “neutron + crystal” k (r ) crystal , k ( r ) k 2 k' Ef 2mn Neutron Crystal energy energy • The energy gained by a neutron due to a phonon in crystal 2 2 2 k '2 k Ei E f 2mn 2mn Momentum transfer q k ' k Neutron-ion interaction potential V (r ) v r r ( R) , where r ( R) R u ( R) v(r) is the atomic potential R Matrix element let v r r ( R) 1 vq eiq r e iq r ( R ) V q f V i k ' f v k i R = 1 vq k ' eiq r k f e iq r ( R ) i V R ,q k q ,k ' = d d d vk ' k 1 vk ' k f e i ( k ' k )r ( R ) i V R k ' v0 mn 2 k 2 2 E f v0 since k for phonon the range of vq Ei f eiqr ( R ) i f Sum over a complete set of phonon states R 2 108 cm 1 1013 cm 1 d One can re-write d d using dynamical structure factor 1 E f Ei 1 E f Ei = 2 use e i ( E f Ei ) t / d then d d it dt e e i ( E f Ei ) t / for phonon absorption (always from neutron’s viewpoint) f A i f A(t ) i k ' 1 mn v0 2 k h 2 2 dt e i t i eiq r ( R ') e iq r ( R ,t ) i R,R ' 2 k ' 1 mn v0 = 2 NSi (q , ) 2 k h 2 Dynamical structure factor Si ( q , ) Density operator (for ions) 1 dt it iq r ( R ') iq r ( R ,t ) e e e i i N 2 R,R ' (r ) (r r ( R)) R q d 3r eiq r (r ) eiq r ( R ) dt it 1 = e i q (0) q (t ) i 2 N R Density correlation function For a crystal at finite temperature i q (0) q (t ) i q (0) q (t ) T e i Ei / kT i q q (t ) i e i Ei / kT Evaluation of the dynamical structure factor eiqr ( R ') e iqr ( R ,t ) T eiq ( R ' R ) eiq u ( R ') e iq u ( R ,t ) It can be shown that, for A, B linear in a, a e Ae B T e 1 2 A 2 AB B 2 2 use q u ( R ') 2 T T † D. Mermin, J Math.Phys. 7,1038 (1966) q u ( R, t ) and q u ( R ') q u ( R, t ) r ( R) R u ( R) T T q u (0) 2 2W 2 T T q u (0) q u ( R R ', t ) T Translation symmetry of the system Debye-Waller factor S (q , ) e e T 2W 1 dt it iq R q u (0) q u ( R ,t ) T 2 e R e e 1 2 ... T T 2 0-phonon 1-phonon process … Exact so far (for a harmonic crystal) • a rough estimate (Kittel. App.A) Zero-phonon process 2W S0 (q , ) e 2W ( ) e R DebyeWaller factor Elastic scattering iq R N q ,G G Laue’s diffraction condition T T cos 2 T 1 = G2 u2 T 3 m 3 use ion 2 u 2 kT T 2 2 2W e G2 mion 2 kT 2 k ' 1 mn v0 2 NS (q , ) 2 k h 2 k' N or = a 2 S (q , ) k d d d 2 Intensity I=I0 e-2W (I0 for a rigid lattice) Differential cross-section Cf: = G2 u2 e d d d G u N = S (q , ) 2 2 a v0 mn For X-ray scattering (the same S) Scattering length For more discussion, see A+M, App. N use aks† aks • A more accurate evaluation 1 aks 2 a† ks 1 2 uks i ˆ m u p ks ks ks eks mks i ˆ m u p ks ks ks eks mks (eˆ* ks =eˆks ) a (k ) 2mion ks a † ks eˆ ks s 2mions (k ) a ks a† ks eˆks 2 T 1 N G eˆks 2m ks ion 2 s ( k ) (2nks 1) In 3D Debye model (at T =0!) 3 G2 2W 4 mion v k D (Prob. 7) In the calculation, one has kD 0 pks i G u nks T k D 1dk 1 kD D 2 k dk k 0 • In 3D, W weakens the diffraction peaks. • In 2D, W is finite at T=0 but infinite at finite-T. 1 uks eik R N k ,s 1 p( R) pks eik R N k ,s u ( R) • In 1D, no long-range order even at T=0 Mermin-Wagner theo (Mermin PR1968) There is no long-range crystalline order at finite-T in 2D. One-phonon process S1 (q , ) e2W dt it e eiqR q u (0) q u ( R, t ) 2 R T 1/2 ik R 1 † q u ( R, t ) e aks (t ) a ks (t ) q eˆks N ks 2mionks S1 (q , ) e 2W s 2mionqs q eˆks 2 aks (t ) e iks t aks (1 nqs ) ( qs ) nqs ( qs ) Phonon emission absorption Delta peaks are broadened only if anharmonic effect (phononphonon interaction) is included. One-phonon cross-section d d d k' 2 N S1 (q , ) = a k Mössbauer effect (1958) 57Fe nucleus (radioactive) 1961 • Natural linewidth 4.65x10-9 (eV) • Recoil energy 1.94x10-3 (eV) Mössbauer found that, by placing emitting and absorbing nuclei in a crystal, you could have (almost) recoilless nuclei with resonant absorption → an extremely sensitive detector for energy shift. The Pound-Rebka experiment (1959) ν note: precision measurement using atom interferometer ν0 Gravitational freq shift gH v v0 1 2 c gH c2 g 22.6 m 14.4 keV 3.5 10 11 eV 2 c E h(v v0 ) hv0 Ref: hyperphysics Müller H et al , Nature 2010 Quinn and Yi, SSP, Sec 2.3 Back to Mössbauer effect Ri f 2 f V i E f Ei 2 f f V i 1 V v q k ' eiq r k f e iq r ( R ) i Recoilless fraction q v 0 f e iq r ( R ) i V f i e iq r ( R ) i Put the nucleus at the origin 1/2 1 r (0) u ks aks a† ks , ks eˆks N 2mionks ks i e iq r ( R ) i nks e iq u nks nks e consider eˆks q iqks aks a† ks n ks ks nks e iq ks aks a† ks nks (iq ks ) 2 1 nks aks aks† aks† aks nks 2! E (q) nks 1/ 2 =1 ks N i e iq r ( R ) i E (q) nks 1/ 2 1 ks N ks E (q) nks 1/ 2 exp N ks ks 2 Using the Debye model 1 I N ks nks 1/ 2 ks 3 V 2 3 2 v N 9T k 2 9 4k D 0 d e for T for T 1 / kT 1 1 2 Cf: the specific heat calculation Recoilless fraction f i e iq r ( R ) i 2 e2 E ( q ) I Recoil energy E(q) ~2x10-3 eV, θ ~ 300 K At low T, f e1/3 0.7 Put 57Fe impurities in a diamond (θ=2230 K) f (295 K ) 0.94 Mossbauer Effect in Lattice Dynamics. Chen and Yang 2007 Peierls instability in 1D metal (1955) 2 k0 2a 2m 2 2 2a 2m 2ma 0 2 2 increase elastic energy, decrease electron energy. Who wins? Recall k(1) k0 k0 g 2 /2 a Eel 2 L 0 2L c 0 k0 k0 g 2 2 U g 2 0 2 Ug 2 (Chap 8) dk 0 k k(1) 2 dk 2 2 Ug 2 Ug 2 1 U g 2 1 ln c 2 U g c 4 For small displacement δ, U~δ Eel 2 ln but Eph 2 ∴ distortion is always favored in 1D
© Copyright 2026 Paperzz