Mathematics for Computer Science MIT 6.042J/18.062J Asymptotic Properties Albert R Meyer, April 10, 2013 Oh-props.1 The Oh’s lemma: If f = o(g) or f ~ g, then f = O(g) lim = 0 OR lim = 1 IMPLIES lim Albert R Meyer, April 10, 2013 Oh-props.2 The Oh’s If f = o(g), then g O(f) f lim = 0 g IMPLIES Albert R Meyer, g lim f April 10, 2013 = Oh-props.4 Little Oh: Lemma: Proof: o(∙) xa = o(xb) for a b x 1 and b - a > 0 = b b-a x x a so as x Albert R Meyer, 1 , ® 0 b-a x April 10, 2013 Oh-props.5 Little Oh: o(∙) Lemma: ln x = for ε > 0. Albert R Meyer, ε o(x ) April 10, 2013 Oh-props.6 Little Oh: Lemma: 0. Proof: 1 y ln x = ε o(x ) £ y for y ³ 1 so ln z £ z 2 2 Albert R Meyer, o(∙) for > z 1 1 y ò dy £ ò z 1 y dy for z ³ 1 April 10, 2013 Oh-props.7 Little Oh: Lemma: 0. Proof: ln x = ε o(x ) o(∙) for > , so let z = d ln x x d x £ 2 2 d x e ln x £ = o(x ) for > . d d Albert R Meyer, April 10, 2013 Oh-props.8 Little Oh: o(∙) Lemma: c x = for a > 1. Albert R Meyer, x o(a ) April 10, 2013 Oh-props.9 Little Oh: o(∙) proofs: L’Hopital’s Rule, McLaurin Series (see a Calculus text) Albert R Meyer, April 10, 2013 Oh-props.10 Big Oh: O(∙) Equivalent definition: f(n) = O(g(n)) c,n0 n n 0. f(n) c·g(n) Albert R Meyer, April 10, 2013 Oh-props.11 Big Oh: O(∙) f(x) = O(g(x)) ↑ log scale ↓ green stays below purple from here on c· g(x) ln c f(x) no Albert R Meyer, April 10, 2013 Oh-props.12 Why limsup? If f 2g then f = O(g), but maybe f/g has no limit. æ æ æ æ example 2 np f(n) = æ1 + sin æ ææ æg(n) æ 2 ææ æ but f(n) limsup n®¥ g(n) Albert R Meyer, =2<¥ April 10, 2013 Oh-props.13
© Copyright 2026 Paperzz