A PROOF OF THE CAYLEY HAMILTON THEOREM CHRIS BERNHARDT Let M (n, n) be the set of all n × n matrices over a commutative ring with identity. Then the Cayley Hamilton Theorem states: Theorem. Let A ∈ M (n, n) with characteristic polynomial det(tI − A) = c0 tn + c1 tn−1 + c2 tn−2 + · · · + cn . Then c0 An + c1 An−1 + c2 An−2 + · · · + cn I = 0. In this note we give a variation on a standard proof (see [1], for example). The idea is to use formal power series to slightly simplify the argument. Proof. First, observe that 1 n det (I − tA) = t det I − A = c0 + c1 t + c2 t2 + · · · + cn tn . t Now Laplace’s formula for calculating the determinant gives the standard equation det(I − tA)I = (I − tA)adj(I − tA) where adj(A) denotes the adjugate (or classical adjoint) of A. If we consider formal power series in t with coefficients in M (n, n) i i then I − tA is invertible with Σ∞ 0 A t as inverse. So i i 2 n (Σ∞ 0 A t )(c0 + c1 t + c2 t + · · · + cn t )I = adj(I − tA). Writing adj(I − tA) as a formal power series in t with coefficients in M (n, n) gives i i ∞ i (c0 + c1 t + c2 t2 + · · · + cn tn )(Σ∞ 0 A t ) = Σ0 Bi t . Observe that the entries in adj(I − tA) are polynomials in t of degree at most n − 1. So Bi is the zero matrix for i ≥ n. Equating the coefficients of tn on both sides gives c0 An + c1 An−1 + c2 An−2 + · · · + cn I = 0. 1 2 CHRIS BERNHARDT References [1] G. Birkoff and S. MacLane, A Survey of Modern Algebra, A K Peters, Wellesley, MA, 1996. Fairfield University, Fairfield, CT 06824 E-mail address: [email protected]
© Copyright 2026 Paperzz