Combinations of Transformations (Lesson 7-7 extension) Do all problems on graph paper with the following guidelines: Set up a four-quadrant coordinate grid with a maximum of max = 10 and min = (-10) for both the x-axis and y-axis. Graph each original shape and its corresponding image(s) on the same coordinate grid. Set up a new coordinate grid for each problem. Use a straight-edge for drawing ALL lines. 1) Triangle XYZ has the vertices of X(-1, 3), Y(2,3), and Z(3, -1). Translate the triangle left 6 spaces and down 3 spaces and label the translated triangle X’Y’Z’. Then reflect the triangle over the x-axis and label it X’’Y’’Z’’. 2) Polygon KLMN has vertices of K(-1, 1), L(-3, 0), M(-2, -3), and N(0, -2). Reflect the polygon across the y-axis, label it K’L’M’N’. Then translate the figure up 5 spaces and right 2 spaces. Label the final polygon as K’’L’’M’’N’’. 3) Triangle ABC has vertices of A(-1, -2), B(-3, -2), and C(-2, -4). Make a dilation of the triangle using a scale factor of 2 and labeling the new triangle A’B’C’. Reflect new triangle across the x-axis and label it A’’B’’C’’. 4) Triangle RST has vertices R(1, 4), S(1, 7), and T(6, 7). Translate the triangle right 1 space and up 2 spaces and label it R’S’T’. Reflect the new triangle across the x-axis and label it R’’S’’T’’. 5) Trapezoid BIRD has vertices B(1, 1), I(2, 4), R(6, 4), and D(7, 1). Reflect the trapezoid across the x-axis and label it B’I’R’D’. Then rotate the trapezoid 90o clockwise and label it B’’I’’R’’D’’. 6) Parallelogram JUNE has vertices J(2, -2), U(6, -2), N(8, -5), and E(4, -5). Translate the parallelogram left 2 spaces and down 3 spaces and label it J’U’N’E’. Reflect the new parallelogram across the y-axis and label it J’’U’’N’’E’’. 7) Triangle BAT has vertices of B(1, 1), A(2, 3), and T(5, 3). Reflect the triangle over the y-axis. Then reflect the triangle over the x-axis. Finally, translate the figure 7 spaces up and 2 spaces to the right, then label it B’A’T’. 8) BONUS Trapezoid MATH has vertices M(-6, 0), A(-3, -3), T(-3, -6), and H(-6, -6). Dilate the trapezoid using a scale factor of 1⁄3, and label it M’A’T’H’. Rotate the new trapezoid 180o. Lastly, create another dilation using a scale factor of 4, and label it M’’A’’T’’H’’.
© Copyright 2026 Paperzz