What are universal features of gravitating Q-balls? Takashi Tamaki(Nihon University) with Nobuyuki Sakai (Yamagata University) I. Introduction Q-balls:a kind of nontopological solitons consist of scalar fields Self-gravity may not be important? Kaup, PR172, 1331 (1968) m2 2 V ( ) flat × 2 with self-gravity ○ (mini-boson star) 2 m 2 gravity-mediation type Vgrav. ( ) 1 K ln in the Affleck-Dine (AD) 2 M mechanism 2 K 0 flat K 0 K 0 ○ × gravity K 0 ○ ○ ``Q-balls” surrounded by Q-matter TT, N. Sakai, PRD83, 084046 (2011) Here, gauge-mediation type seek for universal features!! 2 4 Vgauge ( ) m ln 1 2 m TT, N. Sakai, PRD84, 044054 (2011) II. Model 2 4 Vgauge ( ) m ln 1 2 m normalization m t mt m r mr V 2 V 4 ln(1 ) m III. flat case dVgauge 2 '' ' 2 r d Particle motion in V : Vgauge V d V ( 0) 0 2 d : 2 2 2 02 2 ln(1 2 ) 2 2 V 2 2 2 2 trivial max(V ) 0 02 2 r 2 0 V Thick-wall solution r 2 2 Thin-wall solution V r IV. gravitating case 2 dVgauge 2 ' A' 2 '' ' A 2 A d r 2 2 : 2 2 Signature of Particle motion in 2 depends on r. V V depends on ``time”. (a) 1.0003 0.001 2 1.0002 A(r) 0.08 =0 1.0001 1 0.06 ~ (r) Thick-wall (b) 0.1 0.9999 (r) 0.9998 0.04 0.9997 0.02 0.9996 =0.0005 0 0.9995 0 100 : Gm 2 0.0005 200 ~r 300 400 0 500 20 40 60 A(r) 140 10 =0 1 8 0.8 (r) ~ (r) 1.65 2 120 (b) 12 1.2 100 (a) 1.4 Thin-wall 80 ~r 6 0.6 4 =0.0005 0.4 2 0.2 0 2 4 ~r 6 8 10 0 0 2 4 6 ~r 8 10 Thick-wall 2 0.001 2 1.65 Thin-wall 5 10-5 4 10-7 infinity ~r=0 140 -7 3 10 4 10 -5 120 2 10-7 1 10-7 3 10 -5 100 0 -2 10-7 2 10-5 -V -V -1 10-7 0.005 0.01 0.015 0.02 0.025 0.03 80 60 40 1 10-5 20 infinity ~r=0 0 0 0.02 0.04 ~ 0.06 0.08 0 0.1 0 2 4 6 8 10 ~ V changes ``quickly”. For various 2? 12 strong gravity C 1 0 0 Q Q0 weak gravity C B 0.1 A 2 WHY ??? D 0.01 =0.004 0.001 =0 =0.0005 0.0001 0 200 400 600 Q 800 1000 1200 V. thick-wall case weak gravity take up to first order in h,f. 2 1 h(r ) A2 1 f (r ) Let us evaluate 0 : (r 0) V 2 2 h(0) 0 2 0 Evaluate from V 0 5 O ( We used Maclaurin expansion and neglected 0 ) 0 For 0 For 0 We should compare h(0) with 2 2 2 r t i 2 Gt Gi 8 r A 2 V A 2 0, i.e., 2 2 and weak gravity 2 16 r 2 2 2 r h We assume (r ) 0 1 and approximating 2 8 2 C h(0) 0 2 3 for r C C=const. C h ( ) h( ) 0 substitute into 2 h(0) 0 0 2 2 3 0 2 2 8 C 3 4 2 C 2 C 2 2 as in the flat case 0 Q r 0 2 3 2 1 2 0 2 3 2C 2 Q r 0 2 3 2 1 3 0 3 1 V. conclusion 2 4 Gravitating Q-balls Vgauge ( ) m ln 1 2 m The thick-wall limit is completely different from the flat case. Q0 exists !! From the analytic estimation, our results hold for general potentials if a positive mass term is a leading order. 3 0 2 2 8 C 3 4 2 C 2 C 2 as in the flat case 0 2 Q r 0 2 3 2 1 2 3 1 0.001 0.0001 3 10-5 2C 2 0 0 2 10-6 =10-4 10-7 Q r 0 2 3 2 1 3 =10-5 =10-6 0 10-8 -10 10 10-9 10-8 2 10-7 10-6 10-5 important quantities Total energy (Hamiltonian) 2 mE mQ E : 2 , Q : M M2 Basic equations サイズの議論 M p2 mini-BS 1/mの半径GM~1/m BS 4 の相互作用項の存在が本質的 e.g., 2 2 Λ大 2 2 U () m (1 U m 2 M p2 GM~1/m_re M 2 p ) 1 mre M M m M p2 M 3p m m2 m(neutron) 程度 M=M(太陽) m
© Copyright 2026 Paperzz