(n+1)( 32 )n+1 2 7. Ratio Test: lim n 2 n = lim n+1 = 23 < 1. Hence absolutely convergent. (3) n→∞ n 3 n→∞ 10n+1 2n+3 10 = 58 < 1. Hence absolutely convergent. 13. Ratio Test: lim (n+2)4 = lim n+1 10n n→∞ (n+1)42n+1 n→∞ n+2 16 q n2 +1 n 21. Root Test: lim n 2n = lim 2 +1 n2 +1 2 +1 2n n→∞ n→∞ = 1 2 < 1. Hence absolutely convergent. q 2 n 1 + 1 n = lim (1 + 1 )n = e > 1. Hence divergent. 23. Root Test: lim n n n→∞ n→∞ 27. Define (2n − 1)!! = 1 · 3 · · · (2n − 1). Ratio Test: (−1)n (2n+1)!! 2n + 1 (2n + 1)!! (2n − 1)! (2n+1)! lim = lim =0 = lim n→∞ (−1)n−1 (2n−1)!! n→∞ (2n + 1)(2n) n→∞ (2n − 1)!! (2n + 1)! (2n−1)! Hence absolutely convergent. 1 3 = lim n 3 = 1. Inconclusive. 35. (a) lim (n+1) 1 n→∞ n+1 n→∞ n3 n+1 = lim n+1 = 1 < 1. Absolutely convergent. (b) lim 2n+1 n 2 n→∞ 2n n→∞ 2n (−3)n √ p n (c) lim (−3)n+1 = 3 > 1. Divergent. n−1 = lim 3 n+1 n→∞ √ n→∞ n √n+1 q 2 n+1 1+n2 √ (d) lim 1+(n+1) = lim = 1. Inconclusive. n n 1+(n+1)2 n→∞ n→∞ 2 1+n 36. For k = 1, lim n→∞ (n!)2 n! = lim n! = ∞. n→∞ For k ≥ 2, ratio test will show this series is (absolutely) convergent: ((n+1)!)2 (k(n+1))! ((n + 1)!)2 (kn)! lim (n!)2 = lim 2 n→∞ (kn + k)! (kn)! n→∞ (n!) 1 n→∞ (kn + k)(kn + k − 1) · · · (kn + 1) 1 n+1 = lim n→∞ k (kn + k − 1)(kn + k − 2) · · · (kn + 1) 1 ,k = 2 4 = 0 ,k > 2 = lim (n + 1)2 1 41. p n |an | = L < 1, there exists a number r such that L < r < 1. By the n→∞ p defintion of limit, we know there exists some N such that n > N ⇒ | n |an |−L| < ∞ p P r − L ⇒ n |an | < r ⇒ |an | < rn . Then, as rn is a convergent series, by (i) Since lim comparison test, so is ∞ P n=1 |an |. n=1 (ii) By the defintion of limit, we know there exists some N such that n > N ⇒ p p n n |L − |an || < L − 1 ⇒ |an | > 1 ⇒ |an | > 1. Then, lim an can never be zero. n→∞ ∞ P 1 n n=1 (iii) It’s inconclusive because of the following examples: q is absolutely convergent. (Note that lim n n12 = lim −2 lim e x→∞ ln x x =e 1 x x→∞ 1 −2 lim =e 1 x→∞ x −2 lim = 1) n→∞ ∞ P n=1 is divergent. n=1 1 2/x x→∞ x (−1)n n ∞ P − x2 ln x = lim e x→∞ 1 n2 = is conditionally convergent. 42. (a) Ratio Test: 4 4n (4(n + 1))!(1103 + 26390(n + 1)) (n!) 396 lim · n→∞ ((n + 1)!)4 3964(n+1) (4n)!(1103 + 26390n) (4n + 4)(4n + 3)(4n + 2)(4n + 1) 1103 + 26390(n + 1) = lim n→∞ (n + 1)4 3964 1103 + 26390n 1 4n + 4 4n + 3 4n + 2 4n + 1 1103 + 26390(n + 1) = lim · lim · lim · lim · lim 4 n→∞ n→∞ n→∞ n→∞ n→∞ 396 n+1 n+1 n+1 n+1 1103 + 26390n 44 = <1 3964 (b) 9801 1 √ 2 2 1103 ≈ 3.14159273. 9801 1 √ 2 2 1103+ 4!·27493 4 396 2 ≈ 3.1415926535897939. π ≈ 3.1415926535897932.
© Copyright 2026 Paperzz